
Solus: An Autonomous Aircraft for Flight Control andTrajectory Planning ResearchElla M. Atkins�� Robert H. Millerz1 Tobin Van Peltz2 Keith D. Shaw+William B. Ribbensz Peter D. WashabaughzDennis S. Bernsteinz�� Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 48109z Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109+ Department of Biophysics, University of Michigan, Ann Arbor, MI 48109AbstractThe University of Michigan has developed a�xed-wing model aircraft (Solus) with an em-bedded control system to develop and demon-strate UAV technology. The analytical objec-tive of this project is the development of in-telligent 
ight control and trajectory planningtechniques, focusing on automated fault detec-tion and recovery. Our experimental objectiveis to implement and evaluate these techniqueson Solus for a variety of mission and fault sce-narios. 1. IntroductionRecent developments in sensor technology, data pro-cessing hardware, and software algorithms have madethe use of the Uninhabited Aerial Vehicle (UAV)a highly feasible approach to achieving a variety ofaerial mission objectives at lower risk and cost. UAVtechnology has the potential for use in many applica-tions such as aerial surveys, meteorological data col-lection, autonomous target identi�cation, and recon-naissance missions. Additionally, the UAV providesan inexpensive and e�cient experimental platform for
ight control and planning research.We describe an ongoing project at the University ofMichigan to develop and demonstrate UAV technol-ogy. Solus, the University of Michigan UAV test bedshown in Figure 1, is a 1/4 scale Citabria built usingstandard model aircraft technology. Equipped withan embedded on-board control system and R/F se-rial link to a monitored ground station, Solus uses1Supported in part by NASA under grant NGT4-524042Supported in part by AFOSR under AASERT grantF49620-97-1-0406S

Figure 1: Solus - University of Michigan UAV.a variety of sensors and software algorithms for real-time trajectory planning, guidance, control, and sys-tem identi�cation.The University of Michigan UAV can be operatedin three modes, including remotely piloted vehicle(RPV) mode, augmented (pilot-assist) mode, andfully-automated mode. Our project objectives are:� Accurately model UAV 
ight dynamics� Test and evaluate intelligent 
ight control andstate estimation software� Implement online identi�cation software� Automate mission and trajectory planning� Develop and test fault detection, isolation, andrecovery techniquesIn this paper we begin with a description of Solusinstrumentation and computer systems, followed by



an outline of the real-time software architecture andprocesses employed during 
ight. We discuss UAVresearch topics in system identi�cation and dynamic
ight planning with a focus on fault detection and re-covery, then conclude with a description of our 
ighttest program and the current project status.2. InstrumentationSolus carries an extensive instrumentation package,including an Inertial Measurement Unit (IMU), airdata system (ADS), di�erential GPS, hall-e�ect en-gine tachometer, strain gauges for measuring enginethrust, and potentiometers to measure control surfacede
ections. While state estimation and system iden-ti�cation software incorporate data from all sensors,we focus on the IMU and ADS in this section. Bothof these systems were designed, constructed, and cal-ibrated at the University of Michigan.2.1. Inertial Measurement UnitThe on-board inertial measurement package consistsof 6 Analog Devices solid state accelerometers, 3British Aerospace solid state rate gyroscopes, and aHoneywell 3 axis solid state 
uxgate magnetometer.All these instruments are mounted on a 5 inch cubein the plane's fuselage. This design was motivated by[1] as well as integration constraints. Calibration ofthe IMU cube was conducted as a stand alone unit us-ing an Ideal Aerosmith rate table and Singer Scorsbytable. The calibration was then veri�ed using thecombination of the rate and Scorsby tables.2.2. Air Data SystemThe Air Data System (ADS) measures angle of at-tack, angle of side-slip, and dynamic pressure. An-gles are sensed using low-friction potentiometers con-nected to vanes that align themselves with the localair
ow. The dynamic pressure is sensed with a Pitotprobe connected to a pressure transducer. The re-sulting system is capable of providing vehicle airspeedand wind direction during 
ight.The ADS is con�gured on a boom in front of theaircraft to avoid 
ow interference from the vehicle.The vane shafts are positioned in a plane perpendic-ular to the axial direction of the boom and the Pitotprobe extends out the end of the boom. The ADSis designed so that angles of attack and side-slip canbe measured at speeds in excess of 20 mph, which isslightly below the predicted stall speed of Solus. TheADS system was calibrated and tested in the 2 ft�2 ftwind tunnel at the University of Michigan.

3. Computer and Interface SystemsSolus is 
own using a combination of on-board andground-based computers. The aircraft contains twoPC104 single-board computers, a 486 and a Pentium,while the ground station computer is a Pentium lap-top. The two 
ight computer processors communi-cate via dual-port RAM, while the on-board Pentiumserially communicates with the ground station viaR/F modem link at 56 Kbps. Because of serial com-munication bandwidth limitations, the ground sta-tion performs only non-critical tasks with respect toreal-time control deadlines, including the user inter-face, long-term data storage between 
ights, and de-velopment of the baseline 
ight plan to accomplishmission goals. The on-board processors read all in-strumentation, perform all real-time control tasks,output actuator commands to the aircraft, and con-trol communications with the ground station.
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Figure 2: Data Acquisition and Controller Interface.Figure 2 shows the interface between the 
ight com-puters and aircraft instrumentation. The on-board486 reads all A/D, hall e�ect (tachometer), and ac-tuator interface board (AIB) data from I/O ports onits PC104 bus, and also outputs actuator commandsto the AIB. The on-board Pentium handles all seriallinks, including that from the PC104-based GPS andto/from the ground station. Solus actuators are con-trolled manually using a standard PPM (Pulse Posi-tion Modulation) R/C transmitter/receiver pair.The AIB is a custom-built board mounted on thePC104 computer stack which has two functions.First, it reads transmitted pilot commands, and
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GUI serial_modem_server flight_plannerFigure 3: UAV Software Processes.second, it outputs the computer-generated actuatorcommands (for augmented or fully-automated con-trol). Pilot-transmitted commands are interceptedby the R/C receiver, decoded by a microcontroller onthe AIB, then read by the 486 from the PC104 bus.Actuator commands are output by encoding currentactuator signals into a single PPM line that is fedinto the R/C receiver and subsequently to aircraftactuators. A control switch on the pilot's transmitterallows quick switching between computer and pilotcontrol modes. This feature allows the pilot to over-ride the computer manually if necessary.4. SoftwareUAV software integrates processes that read sensors,estimate state, develop 
ight plans, perform modelID, and compute actuator commands. We also re-quire that on-board parameters be communicatedto/from a user via the ground station computer. Inthis section, we outline UAV software processes andtheir real-time constraints, as well as describe how weachieve hard real-time execution for critical tasks.Figure 3 illustrates the software processes required tofully-automate the aircraft. For a typical 
ight, theground station begins by building, scheduling, and se-rially transmitting a 
ight plan to the 
ight comput-ers. Once this plan is received, the guidance processuses the way-point trajectory plan and aircraft stateestimate to issue the initial reference trajectory sig-nal. During 
ight, identi�cation uses state estimatesand actuator commands to update the aircraft model,while the controller uses the current state estimateand reference signal to compute actuator commands.Throughout the 
ight, the ground station will run agraphical user interface (GUI) that gives the user real-time access to a limited set of aircraft data and allowsthe user to input a limited set of high-level controlcommands. Due to serial communication bandwidthlimitations, all 
ight data will be stored on-board theaircraft during 
ight, then downloaded for permanentstorage between 
ights. Except for serial data han-

dling and the GUI, the ground-based processor mayremain idle for much of the 
ight, although dynamicalterations in the 
ight plan may be required.An important aspect of embedded control system de-sign is guaranteeing real-time execution of criticaltasks. The dynamics associated with aircraft 
ight re-quire meeting hard real-time deadlines both to main-tain stability and react quickly and safely to the largevariety of normal and anomalous situations that canoccur. Our computers run the QNX real-time op-erating system which supports strict adherence tohard real-time task schedules. We carefully allocateCPU and serial communication resources in our sys-tem to allow guaranteed response times for criticaltasks (e.g., reading sensors and executing the controlloop).On our UAV, primary time-critical processes executeon-board the aircraft. Processes executing on the486 (shown in Figure 3) execute at �xed period andworst-case execution time. This results in predictableCPU usage, so we use a static schedule to executethese tasks. On-board Pentium tasks are also critical,but have lower required execution frequencies. Read-ing the GPS will take near-constant execution time.However, the guidance and ID processes may requirecomputations with large execution time variance, sothey will be monitored by a dynamic scheduler thatcan pre-empt execution if a more critical task (e.g.,reading GPS) must be performed.The R/F modem serial connection uses a client/servermodel with the aircraft Pentium acting as the client.This design allows the on-board Pentium to optimizeCPU utilization by controlling both the quantity andtype of messages transmitted between ground stationand aircraft. The on-board serial client uses execu-tion times that have been required by high-variancetasks (e.g., model ID) to compute message transferparameters. For example, if the last model ID itera-tion was very slow, there will be little or no commu-nication with the ground station, but if model ID andguidance are both fast, serial communication will begiven a large percentage of the on-board Pentium'sCPU time. 5. Research ObjectivesWe are focusing UAV research toward fault detection,isolation, and recovery. In this section, we discuss on-line model identi�cation for recon�guring 
ight con-trol as well as forecasting aircraft performance capa-bilities. We describe methods to incorporate modelidenti�cation techniques for the fault detection andisolation of system anomalies such as airframe icing.



Once each fault class is described from the identi�edmodel, we will investigate methods for fault recovery,focusing on trajectory re-planning to accommodatecontrollability changes. This will be done while con-tinuing to satisfy the largest set of mission goals thatare still achievable after the fault has occurred.5.1. On Line System Identi�cation and Recon-�gurable Flight ControlIn recent years, o� line identi�cation techniques havebeen successful at building aircraft models from 
ightdata. The identi�cation is performed o� line to obtaina dynamic model that is used to design a gain sched-uled controller [2]. While this is a viable method ofbuilding 
ight control architectures, the UAV projectaims to maintain system operation in the presenceof unforeseen changes in aircraft dynamics. Sincetrajectory planning and recon�guration of 
ight con-trols is to be performed online, it requires fast ande�cient implementation of identi�cation algorithms.The UAV will use indirect adaptive control methods,such that an explicit model of the aircraft dynamicsis generated on-line and then used for controller de-sign. In addition, this dynamic model will be usedto forecast vehicle performance capabilities for use inonline trajectory planning.Quite often measurement and process noise as wellas inaccurate approximation of system order makeidenti�cation di�cult. For these reasons, the onlineidenti�cation will be performed using �-Markov pa-rameterized models [3]. �-Markov parameterizationsare non-minimal transfer functions that have sparsedenominator polynomial structure and Markov pa-rameters as coe�cients of the numerator polynomial.These Markov parameters can then be used directlyfor controller design or indirectly by building statespace models [4]. When performing least squaresidenti�cation using �-Markov parameterizations [3],the estimate of the system's Markov parameters areconsistent, or unbiased, in the presence of correlatedmeasurement and process noise. Moreover, the esti-mates are unbiased even with inaccurate knowledgeof system order. This makes it possible to accuratelyidentify aircraft dynamics even when anomalies dur-ing 
ight result in system order changes.5.2. Fault Detection and IsolationFault detection and isolation will be a key technol-ogy for autonomous vehicles. Research in this areawill also bene�t today's piloted vehicles by supply-ing pilots with additional information about the air-craft they are 
ying. An example of this is the useof detection �lters to indicate the presence of icing

by the change in aircraft dynamics. A study by theUnited Kingdom's Civil Aviation Authority indicatedthat all the manufacturers of aircraft, and a size-able portion of commercial pilots interviewed for thestudy \regarded ice detectors as unreliable" [5]. Thisis an area that would bene�t greatly from an e�ec-tive online ice detection and identi�cation algorithm.Presently ice detectors are mechanical devices thatcan only detect icing at speci�c points on the aircraft.One part of our research will focus on developing asystems level approach to ice detection that will givea more global picture of the presence and amountof icing. This research can be generalized to identifynon-additive changes in dynamics. Improving currentmethods by making them more robust to the uncer-tainties inherent in aircraft dynamical models will bea major focus.5.3. Flight Planning and Fault RecoveryFlight planning in commercial aircraft typically be-gins by retrieving a pre-computed way-point trajec-tory based on origin and destination airports. Cur-rent weather/wind conditions and air tra�c restric-tions are used to complete the 
ight plan with valuessuch as fuel consumption and time en route. OurUAV research in 
ight planning begins with the in-corporation of knowledge-based planning and real-time plan scheduling techniques such as those in [6] tobuild way-point trajectories that accomplish missionobjectives (e.g., surveillance over a speci�ed area forour UAV) given an initial dynamic model and windestimates. In near-term research, we will concentrateon implementing a planner that incorporates a dy-namic model of su�cient accuracy to build feasible
ight plans for our UAV.A major bene�t of a knowledge-based planning sys-tem is 
exibility, gained from a user-friendly worldmodel and the ability to incorporate state feedbackinto planning, even if the current state was previously\unplanned-for" [7]. As discussed above, model IDresearch will focus on fault detection and isolation.By performing dynamic trajectory replanning whennecessary, we will address the problem of fault re-covery. Examples of fault recovery are plans whichfollow a best-glide trajectory to a desirable landingsite upon [simulated] engine failure, or plans whichattempt standard techniques such as altitude adjust-ment or heading reversal to depart icing conditions.The ID algorithm will describe the fault (e.g. icing)in terms of a new dynamic model and environmentalparameter changes, which are then fed back to theplanner. If the current way-point trajectory can stillbe achieved, the plan remains unchanged. However,
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Figure 4: Control Surface De
ections for Continuous(t=205) and 4-point (t=229) Rolls.if it cannot (i.e. the old plan violates controllabilityconstraints required within the new model), the plan-ner must e�ciently build a new plan that achieves asmany mission objectives as possible and is dynami-cally feasible with the new model.6. UAV Flight Test ProgramThe University of Michigan UAV can be operated inthree modes: as a remotely piloted vehicle (RPV), inaugmented (pilot-assist) mode, and fully-automatedmode. In RPV mode, a pilot will manually controlthe aircraft using the R/C transmitter. In addition toperforming initial airframe and instrumentation tests,RPV mode will always be used as a backup safetymode and will be useful for conducting identi�cationand estimation research without automatic control.Pilot-assist mode will augment pilot commands withcomputer-controlled outputs to allow e�ector mixing,control smoothing and limiting, and control alloca-tion. This mode of operation can address many re-search issues involving pilot 
ying qualities, opera-tions safety, and mission optimization while recon�g-uring 
ight controls. During autonomous 
ight mode,the computer will completely control the aircraft, al-though the standby pilot will always have the abilityto override computer control and enter RPV mode.Our �rst test phase, conducted in RPV mode, per-forms data acquisition to debug hardware, as well asprovide experimental data for o�-line dynamic modelestimates. An example of such data is shown inFigure 4, which contains 
ight test data illustrat-ing control surface de
ections during a roll maneu-ver sequence. In the next phase, the aircraft re-mains in RPV mode and uses the previously esti-

mated dynamic model to perform state estimation,as well as test online identi�cation software. We con-tinue with this bottom-up testing strategy, buildingan initial controller to autonomously 
y simple pre-de�ned high-altitude cruise trajectories, followed bytests with more complex guidance and 
ight plan-ning tasks. Once we have a set of working processesfor \normal" cruise 
ight, we will begin to introducefaults that make 
ight control even more challengingby forcing dynamic adaptation in one or more of thecontrol, model ID, and planning processes.7. SummaryWe have described the University of Michigan's UAVproject, focusing on the instrumentation, computerhardware, and software that is required to allow anembedded control system to 
y autonomously. OurUAV research involves system identi�cation, recon-�gurable control, and dynamic 
ight planning, withUAV tests illustrating fault detection and recoverycapabilities. To-date, we have calibrated sensors andoperated the UAV in RPV mode while collecting
ight data. We plan to begin testing the UAV inthe augmented and fully-autonomous modes for high-altitude 
ight maneuvers later this year.References[1] J.H. Chen, S.C. Lee, D.B. Debra. GyroscopeFree Strapdown Inertial Measurement Unit by SixLinear Accelerometers. Journal of Guidance, Control,and Dynamics, 17(2):286{290, March-April 1994.[2] J. G. Batterson. STEP and STEPSPL - Com-puter Programs for Aerodynamic Model StructureDetermination and Parameter Estimation. Technicalreport, NASA TM-86410, 1986.[3] T. H. Van Pelt and D. S. Bernstein. LeastSquares Identi�cation Using �-Markov Parameteriza-tions. To appear in IEEE Conf. Decision and Control,December 1998.[4] J. Juang. Applied System Identi�cation.Prentice-Hall, Englewood Cli�s, NJ, 1994.[5] P.M. Render, L.R. Jenkinson. Investigationinto Ice Detection Parameters for Turboprop Aircraft.Journal of Aircraft, 33(1):125{129, January-February1996.[6] D. J. Musliner, E. H. Durfee, K. G. Shin. WorldModeling for the Dynamic Construction of Real-Time Control Plans. Arti�cial Intelligence, 74:83{127, 1995.[7] E. M. Atkins, E. H. Durfee, K. G. Shin. De-tecting and Reacting to Unplanned-for States. InProceedings of the Fourteenth National Conference onArti�cial Intelligence, pages 571{576, July 1997.


