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We apply retrospective cost adaptive control (RCAC) to spacecraft attitude control with mag-
netic actuators. We compare two approaches to address the rank deficiency and time-varying
nature of the input matrix. The first approach utilizes an average of the magnetic field based on a-
priori knowledge, whereas the second approach uses three multi-input, single-output controllers.
RCAC uses no information about the spacecraft inertia, and model information is limited to the
input-output relation given by the first Markov parameter, which is computed from an inertia-free
linearization of Euler’s and Poisson’s equations. We examine two problems for each of the con-
trollers. For both problems, the spacecraft has an arbitrary initial angular rate and initial attitude.
The objective for the first problem is to bring the spacecraft to rest at a specified attitude, while
the second problem seeks to bring the spacecraft to spin about an inertially pointed body axis.
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II. SPACECRAFT MODEL

I. Introduction

The attitude of a spacecraft in low-Earth orbit can be either passively stabilized or actively controlled.
Passive methods exploit environmental torques to achieve a stable attitude. However, the range of reachable
attitudes is limited by the specific method utilized [1]. Active control actuators generate torques that provide
three-axis control and are able to reach any attitude. However, the cost of actuators such as reaction wheels
and thrusters for use in small spacecraft is high and their reliability is unproven. Alternatively, magnetic
coils, produce torque by creating a magnetic field that interacts with the Earth’s local magnetic field.

Magnetic coils are commonly used to reduce momentum in spacecraft that use momentum storage de-
vices such as reaction wheels [2]. Magnetic actuators are also used to de-spin spacecraft after launch vehicle
separation [3]. However, the torque produced by the coils is constrained to the plane orthogonal to the Earth’s
local magnetic field vector. This lack of instantaneous controllability along with low-torque capability, and
low pointing accuracy make magnetic coils impractical for three-axis attitude control of large spacecraft.
Yet, as the size of the spacecraft decreases and pointing accuracy requirements are relaxed, the benefits of
magnetic coils, such as small size, ease of manufacturing, and low power consumption, outweigh the chal-
lenges in the design and operation of these control systems [4]. Thus, the application of active magnetic
coils for three-axis attitude control of small spacecraft has gained interest in recent years [5].

Attitude regulation methods for magnetic control typically rely on a model of the spacecraft dynamics
and kinematics, the spacecraft mass properties, and a model of the magnetic field. Control techniques
include proportional-derivative control, optimal control, and nonlinear methods [6]. However, these methods
may fail when accurate modeling information is not available. Thus, a control law that reduces the required
modeling information is desired.

In this paper we develop a controller that utilizes measurements of the local magnetic field without
knowledge of the mass properties. This control law is based on retrospective cost adaptive control (RCAC)
which is a multi-input, multi-output direct adaptive controller. RCAC utilizes the input and output history
of the system combined with Markov parameters to update teh control law and determine the next control
input [7], [8], [9], [10]. Previous applications of RCAC to spacecraft attitude control have been limited to
thruster and reaction-wheel actuation [11], [12], [13]. In these applications, RCAC was applied to motion-to-
rest (M2R) maneuvers, where the controller brings the body to rest at a specified attitude and motion-to-spin
maneuvers (M2S), where the spacecraft is brought to spin about an inertially pointed body axis.

We apply RCAC to the attitude regulation of a rigid body spacecraft using magnetic actuators. First,
we develop the nonlinear equations of motion for a rigid body spacecraft with magnetic actuators. Then,
we describe the RCAC algorithm based on a linear time-invariant system. Next, we modify the RCAC
formulation to accommodate the nonlinear equations, matrix-valued attitude state, and the rank deficiency
of the input matrix. Finally, we present numerical results for M2R and M2S maneuvers for spacecraft with
various inertia matrices in high-inclination orbits.

II. Spacecraft Model

We consider a rigid body controlled by magnetic torque actuators. The rotational motion is described by
Euler’s equation, and the kinematics are given by Poisson’s equation. We define a body-fixed frame for the
spacecraft, with the origin located at the center of mass, and we use an Earth-centered inertial (ECI) frame
to determine the attitude of the spacecraft. Thus, the spacecraft motion is described by

JSCω̇ = (JSCω)× ω +BSCu+ zdist, (1)

Ṙ = Rω×, (2)
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III. THE RCAC ALGORITHM

where ω ∈ R3 is the angular velocity of the body frame with respect to the ECI frame resolved in the
spacecraft frame and JSC ∈ R3×3 is the constant inertia dyadic of the spacecraft relative to the spacecraft
center of mass resolved in the spacecraft frame. The proper orthogonal matrix (that is, the rotation matrix)
R ∈ R3×3 transforms the components of a vector resolved in the spacecraft frame into the components of
the same vector resolved in the inertial frame, and ω× is the skew-symmetric cross-product matrix of ω.

The productBSCu, whereBSC ∈ R3×lu , determines the applied torque about each axis of the spacecraft
frame due to the control input vector u ∈ Rlu . The vector zd represents disturbance torques, that is, all
internal and external torques applied to the spacecraft aside from control torques. These disturbances may
be due to onboard components, gravity gradients, solar pressure, atmospheric drag, or the ambient magnetic
field. For convenience in (1) and (2) we omit the argument t, recognizing that ω,R, u, and zd are time-
varying quantities.

We assume that both rate (inertial) and attitude (noninertial) measurements are available. Gyro mea-
surements yrate ∈ R3 provide measurements of the angular velocity resolved in the spacecraft frame, that
is,

yrate = ω. (3)

Attitude is measured indirectly using sensors such as star trackers. The attitude measurement is determined
to be

yattitude = R. (4)

For simplicity, we assume that both rate and attitude measurements are available without noise and that gyro
bias, if present, has been corrected.

The objective of the attitude control problem is to determine control inputs such that the spacecraft
attitude R follows a commanded attitude trajectory given by a possibly time-varying C1 rotation matrix
Rd(t). For t ≥ 0, Rd(t) is given by

Ṙd(t) = Rd(t)ωd(t)×, (5)

Rd(0) = Rd0, (6)

where ωd is the desired, possibly time-varying angular velocity. The attitude error, that is, the rotation
between R(t) and Rd(t), is given by

R̃
4
= RT

dR, (7)

which satisfies Poisson’s equation

˙̃R = R̃ω̃×, (8)

where the angular velocity error ω̃ is defined by

ω̃
4
= ω − R̃Tωd. (9)

III. The RCAC Algorithm

RCAC is a discrete-time output-feedback controller that minimizes the command-following error corre-
sponding to the performance variable z. The algorithm does not require detailed plant information, instead,
RCAC uses knowledge of the system’s input response as described by Markov parameters. Although RCAC
is derived for linear systems, we apply it to the nonlinear spacecraft model by using Markov parameters
from the linearized dynamics.
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III. THE RCAC ALGORITHM

A. The Extended System and Retrospective Cost

Consider the MIMO discrete-time linear system

x(k + 1) = Ax(k) +Bu(k), (10)

z(k) = E1x(k)− E0r(k), (11)

where x(k) ∈ Rlx , z(k) ∈ Rlz , u(k) ∈ Rlu , r(k) ∈ Rlr , and k ≥ 0. We can rewrite (11) as

z(k) = E1Ax(k − 1) + E1Bu(k − 1)− E0r(k). (12)

Then, we collect the terms in (12) such that

z(k) = S(k) + Hu(k − 1), (13)

where

S(k) = E1Ax(k − 1)− E0r(k) (14)

and H = E1B is the first Markov parameter of the system.
For a positive integer s, define the extended performance as

Z̄(k) =


z(k)

z(k − 1)
...

z(k − s)


= S̄(k) + H̄Ū(k − 1), (15)

where

S̄(k) =


S(k)

S(k − 1)
...

S(k − s)

 ∈ Rslz , (16)

H̄ =


H

H
. . .

H

 ∈ Rslz×slu , (17)

Ū(k − 1) =


u(k − 1)
u(k − 2)

...
u(k − s)

 ∈ Rslu . (18)

We replace the control inputs in (15) with the retrospective controls ˆ̄U(k − 1) and define the extended
retrospective performance

ˆ̄Z(k) = S̄(k) + H̄ ˆ̄U(k − 1). (19)
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III. THE RCAC ALGORITHM

Next, we subtract the extended performance in (15) from the extended retrospective performance in (19)
and obtain

Ẑ(k) = Z(k)−HŪ(k − 1) + ˆ̄U(k − 1). (20)

We wish to find the retrospective control inputs ˆ̄U(k−1) that minimize the retrospective performance ˆ̄Z(k).
Thus, we define the retrospective cost function

J (̂̄U(k − 1), k)
4
= ˆ̄ZT(k)RZ(k) ˆ̄Z(k) + ˆ̄U(k − 1)TRU (k) ˆ̄U(k − 1)Z(k), (21)

whereRZ(k) ∈ Rslz×slz andRU (k) ∈ Rslu×slu are positive-definite weighting matrices on the performance
and the control respectively. Using (20) we rewrite the cost function as

J (̂̄U(k − 1), k) = ˆ̄U(k − 1)TA(k) ˆ̄U(k − 1) + ˆ̄UT(k − 1)BT(k) ˆ̄U + C(k), (22)

where

A(k)
4
= H̄TRZ(k)H̄ +RU (k), (23)

B(k)
4
= 2H̄TRZ(k)[Z̄(k)− H̄Ū(k − 1)], (24)

C(k)
4
= Z̄T(k)RZ(k)Z̄(k)− 2Z̄T(k)RZ(k)H̄Ū(k − 1) + ŪT(k − 1)H̄TRZ(k)H̄Ū(k − 1). (25)

If A(k) is positive definite, the unique minimizer for J(Ū(k − 1), k) is

ˆ̄U(k − 1) = −1

2
A−1(k)B(k). (26)

B. Controller Construction

We utilize the retrospective controls ˆ̄U(k−1) in order to compute the next control input u(k). We design
a strictly proper time-series controller of order nc given by

u(k) =

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)z(k − i), (27)

where, for all i = 1, . . . , nc, Mi(k) ∈ Rlu×lu and Ni(k) ∈ Rlu×lz . The control (27) can be expressed as

u(k) = θ(k)φ(k − 1), (28)

where

θ(k)
4
= [M1(k) · · · Mnc(k) N1(k) · · · Nnc(k)] ∈ Rlu×nc(lu+lz), (29)

and

φ(k − 1)
4
=



u(k − 1)
...

u(k − nc)
z(k − 1)

...
z(k − nc)


∈ Rnc(lu+lz). (30)
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IV. MODIFICATIONS TO RCAC FOR MAGNETIC CONTROL OF SPACECRAFT ATTITUDE

C. Recursive Least Squares Update of θ(k)

We compute the parameter θ(k) by solving a recursive least squares problem. In order for the applied
controls Ū(k) to approach the retrospective controls ˆ̄U(k) we minimize the cost function

J(θ(k))
4
= [û(k)− u(k)]T[û(k)− u(k)],

= [û(k)− θ(k)φ(k − 1)]T[û(k)− θ(k)φ(k − 1)],

= ‖û(k)− θ(k)φ(k − 1)‖2. (31)

The minimizer for (31) is

θT(k)
4
= θT(k − 1) + P (k − 1)φ(k − qg − 1)[φT(k − qg − 1)P (k − 1)φ(k − qg − 1)]−1

· [θ(k − 1)φ(k − qg − 1)− û(k − qg)]T. (32)

The error covariance is updated by

P (k)
4
= P (k − 1)− P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1)]−1φT(k − qg − 1)P (k − 1). (33)

IV. Modifications to RCAC for Magnetic Control of Spacecraft Attitude

RCAC is applied to discrete-time linear systems where the state x(k) in (10) is a vector. However,
the spacecraft equations (1), (2) are nonlinear, and the attitude state R is a matrix. Thus, the spacecraft
equations must be modified in order to apply RCAC as developed in Section III. Furthermore, the magnetic
constraints on the control torque introduce additional difficulties in the computation of the retrospective
controls ˆ̄U(k − 1) in (26) and the implementation of the control input u(k) in (28).

Thus, we develop the equations for a vector performance variable z and obtain a suitable matrix H for the
nonlinear spacecraft equations based on the linearized system. Then, we present a torque-allocation scheme
to transform the torques computed by RCAC into magnetic dipoles. Finally, we develop two methods for
managing the rank deficiency in H caused by the singular input matrix.

A. Performance Variable for Attitude Control

We express the rotation matrix R̃ as

R̃ =

 r̃1
r̃2
r̃3

 , (34)

where, for i = 1, 2, 3, r̃i ∈ R1×3 is a row of R̃. As in [11], we define the vector state

r̃
4
=
[
r̃1 r̃2 r̃3

]T
. (35)

Next, we utilize the attitude error vector in [14] given by

S
4
=

3∑
1

ai

(
R̃Tei

)
× ei = −MaRar̃, (36)
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IV. MODIFICATIONS TO RCAC FOR MAGNETIC CONTROL OF SPACECRAFT ATTITUDE

where the constants ai are positive and distinct, the vector ei ∈ R3 for i = 1, 2, 3 is the ith column of the
3× 3 identity matrix, and

Ma =
[
e×1 e×2 e×3

]
,∈ R3×9 (37)

Ra =

 a1I3
a2I3

a3I3

 ∈ R9×9. (38)

Including the angular velocity error in (9) yields the performance variable

z =

[
ω̃
S

]
. (39)

B. Markov parameter

We rewrite (1) and (2) using the errors r̃ and ω̃ such that

˙̃ω = J−1SC [[JSC (ω̃ + D(ωd)r)]× (ω̃ + D(ωd)r)] + ω̃ × [D(ωd)r]−D(ω̇d)r + J−1SC (BSCu+ zd) , (40)

where, for x ∈ R3 with components x1, x2, x3,

D(x)
4
=
[
x1I3 x2I3 x3I3

]
(41)

and

˙̃r =

−ω̃× −ω̃×
−ω̃×

 r̃. (42)

We compute the discrete-time system matrices A,B,E1 by linearizing (40) and (42) about ω̃e = 0 and
R̃ = I3 followed by discretization with the controller time step h. Linearization yields the continuous-time
dynamics matrices

Ac =

[
03×3 03×9
−MT

a 09×9

]
, (43)

Bc =

[
J−1SCBSC

09×3

]
, (44)

Cc =

[
I3 03×9

03×3 −MaRa

]
. (45)

Discretization of Ac, Bc, Cc with the controller time step h yields

A = eAch =

[
I3 03×9

−hMT
a I9

]
, (46)

B =

(∫ h

0
Adτ

)
Bc =

[
hJ−1SCBSC

−h2

2 M
T
a J
−1
SCBSC

]
, (47)

E1 = Cc. (48)

The Markov parameter corresponding to the performance in (39) is given by

H = E1B =

[
hJ−1SCBSC

1
2h

2MaRaM
T
a J
−1
SCBSC

]
. (49)
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V. RANK DEFICIENCY OF BSC

As in [11], we remove the inertia information from H and define

H
4
= α

[
hBSC

1
2h

2MaRaM
T
a BSC

]
, (50)

where α is a positive scalar.

C. Magnetic Dipole Allocation

The command u computed by RCAC is the desired torque. However, the magnetic coils must generate
these torques using a magnetic dipole command d. Given the control torque u commanded by RCAC we
must compute the required dipole d. The resulting dipole creates a torque vector that is orthogonal to the
local, time-varying magnetic field b(t) ∈ R3.

The torque obtained from a magnetic dipole d(t) and the Earth’s magnetic field b(t) is given by

τ(t) = −b(t)×d(t). (51)

We replace τ in (51) with the desired control torque u, and solve formally for d by using the generalized
inverse of the skew-symmetric matrix b(t)×,

b(t)×
+

= − b(t)×

b(t)Tb(t)
(52)

and obtain

d(t) = −b(t)×+u =
b(t)×

b(t)Tb(t)
u. (53)

The generalized inverse projects the desired torque onto the plane orthogonal to b(t) and allocates the nec-
essary dipole d(t). Thus, the control torque applied to the spacecraft is

τ(t) = −b(t)×d(t) = BSC(t)u, (54)

where

BSC(t)
4
=
−b(t)×b(t)×

b(t)Tb(t)
. (55)

Note that, at each time instant, the rank of BSC(t) is 2.

V. Rank deficiency of BSC

In previous approaches to spacecraft attitude control [11], [12], [13], RCAC was set up as a multi-input,
multi-output controller. The input matrix BSC(t) in (1) is used to compute the Markov parameter matrix H̄
in (17). However, since b(t)× is skew symmetric, H̄ is rank deficient, which prevents the inversion of A in
(26) in the absence of the control weighting matrix RU . Although it is possible to create a full rank A by
using the control weighting matrix RU , numerical studies suggest that this does not result in a successful
control law.

Thus, to ensure that the product H̄TRZH̄ in (23) is invertible, we propose two modifications to the
previous attitude control RCAC implementations. The first approach utilizes the average of the input matrix
BSC(t). This average matrix is shown in [15] to have full-rank for orbits that are non-equatorial, thus the
resulting Markov parameter is left invertible. The second approach uses an alternate control architecture in-
cluding three separate multi-input, single-output RCAC controllers instead of one multi-input, multi-output
controller.

8 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

ug
us

t 2
4,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

45
63

 

 Copyright © 2013 by Gerardo Cruz, Dennis Bernstein. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



V. RANK DEFICIENCY OF BSC

A. Averaged Markov parameter

Define the input matrix BSC(t) resolved in the ECI frame as

BSC(t)
∣∣∣
ECI

= B′SC(t)
4
=
−b′(t)×b′(t)×

b′(t)Tb′(t)
(56)

where b′(t) is the magnetic field vector resolved in the ECI frame. Next, we compute the average of B′SC(t)
over several orbits

B̃′SC = lim
T→∞

1

T

∫ T

0
B′SC(t)dt. (57)

The averaged input matrix (57) is used to prove controllability and stability in [15]. We use this approach
to obtain a full rank Markov parameter for RCAC. First, we transform the averaged input matrix into the
spacecraft body frame

B̃SC
4
= B̃′SC

∣∣∣
B

= RTB̃′SCR. (58)

Then, using the average matrix in resolved in the body frame we construct the average Markov parameter

H̃ = α

[
hJ−1SC B̃SC

1
2h

2MaRaM
T
a J
−1
SC B̃SC

]
. (59)

As in (50), we remove the inertia and obtain,

H̃ = α

[
hB̃SC

1
2h

2MaRaM
T
a B̃SC

]
, (60)

which is left invertible for non-equatorial orbits.

B. Decentralized RCAC

For the second method, we synthesize the desired torque u using three independent multi-input single-
output RCAC control loops. A similar architecture is used in [16] for angular velocity control using a
heuristic approach to controller construction. We define the performance for each RCAC block as

zi(k)
4
=

[
ω̃i

Si

]
= C ′iz(k), (61)

where Si and ω̃i are the ith components of S and ω̃, respectively, and

C ′i
4
=

[
eTi 01×3

01×3 eTi

]
. (62)

We rewrite (61) using (10) and obtain

zi(k) = C ′iE1Ax(k − 1) +
3∑

j=1

C ′iE1Bejuj(k − 1), (63)

where uj(k) is the jth component of u(k).
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VI. NUMERICAL EXAMPLES

Parameter Value
Inclination 87◦

Radius 450 [km]
Right ascension of ascending node 0
Argument of perigee 0
Mean anomaly 0
Period (Torbit) 5615 [sec]

Table 1: Orbital parameters.

parameter Value
nc 10
P0 100I

RU 10I

s Torbit
h

θ0 0
a1 1
a2 2
a3 3
h 10 [sec]
α 0.1

Table 2: RCAC parameters.

To compute the Markov parameter we assume that the sensor and actuator frames are aligned and that
each component of the performance z(k) is only affected by the corresponding component of the control
u(k − 1) such that

zi(k) ≈ C ′iE1Ax(k − 1) + C ′iE1Beiui(k − 1). (64)

Thus, the Markov parameter for the ith multi-input, single-output RCAC is

Hi(t) = C ′iE1Bei (65)

=

[
heTi J

−1
SCBSC(t)

1
2h

2eTi MaRaM
T
a J
−1
SCBSC(t)

]
ei. (66)

Removing the inertia yields

H ′i(t)
4
=

[
heTi BSC(t)

1
2h

2eTi MaRaM
T
a BSC(t)

]
ei, (67)

which is left invertible. This approach ignores the coupling between axes and only requires knowledge of
the alignment between actuators and sensors.

VI. Numerical Examples

Consider a rigid spacecraft around a high-inclination circular orbit given by the orbital parameters in
Table 1. The magnetic field is computed using the International Geomagnetic Reference Field (IGRF)
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VI. NUMERICAL EXAMPLES

model [17]. Furthermore, all disturbances zd are assumed to be zero. The RCAC parameters used are
shown in Table 2. Furthermore, the performance weighting is given by

RZ =

[
εI3 0
0 ε2I3

]
, (68)

where ε is a positive number. The scaling requirements between the angular velocity and attitude error terms
is explained in [15]. For the M2R examples, we set ε = 10−5.

A. M2R Examples

Let the initial motion of the spacecraft be described by

ω(0) = 0.001
[

0 −1 0
]T rad/sec. (69)

We describe the initial and desired attitudes using eigenaxis rotations as defined by Rodrigues’ equation

R(θe, n̂e) = cos(θe)I3 + (1− cos(θe))nen
T
e + sin(θe)n

×
e , (70)

where θe is the eigenangle and n̂e ∈ R3 is the eigenaxis. Thus, the initial attitude be given by an eigenaxis
rotation of θ0 = 90◦ about the vector

n0 =
[
−0.03 −0.9 0.03

]T
. (71)

The goal of the controller is to bring the spacecraft to rest, that is, ωd = 0, at the inertial attitude given by
the eigenaxis rotation of θd = 96◦ about the vector

nd =
[

1 1 −1
]T
. (72)

We test the M2R maneuver on three different rigid bodies, namely, a sphere, a cylinder, and an arbitrary
body.

We assume that the sensor and actuator axes are aligned such that the inertia matrices resolved in the
body frame are given by

Jsphere = diag(10, 10, 10) kg-m2, (73)

Jcylinder = diag(10, 10, 5) kg-m2, (74)

Jarbitrary =

 5 −0.1 −0.5
−0.1 2 1
−0.5 1 3.5

 kg-m2. (75)

We compare the performance of both approaches to magnetic control for the M2R maneuver using
the inertias in (73), (74), and (75). Figure 1 shows the results for the sphere inertia, Figure 2 shows the
results for the cylinder inertia, and Figure 3 shows the results for the arbitrary inertia. The dipoles shown
in the examples indicate that both implementations, averaged and decentralized, command dipoles of the
same magnitude given the same tuning parameters in Table 2. Thus, we compare both approaches based on
settling time of the eigenaxis attitude error θeig. For all three inertias, the centralized approach based on the
average Markov parameter H̃ settles faster than the decentralized version based on the Markov parameter
H ′i.

11 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

ug
us

t 2
4,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

45
63

 

 Copyright © 2013 by Gerardo Cruz, Dennis Bernstein. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



VI. NUMERICAL EXAMPLES

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Orbits

θ ei
g [r

ad
]

 

 

(a) Eigenaxis attitude errorfor MIMO RCAC using the average
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(b) Eigenaxis attitude error for decentralized RCAC
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(c) Angular velocity for MIMO RCAC using the average
Markov parameter H̃
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(d) Angular velocity for decentralized RCAC
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(e) Magnetic dipole for MIMO RCAC using the average
Markov parameter H̃
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(f) Magnetic dipole for decentralized RCAC

Figure 1: Performance comparison of RCAC using the average Markov parameter H̃ versus the decentral-
ized approach for the M2R maneuver for a spherical spacecraft with inertia Jsphere in (73).
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(b) Eigenaxis attitude error for decentralized RCAC
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(c) Angular velocity for MIMO RCAC using the average
Markov parameter H̃
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(d) Angular velocity for decentralized RCAC
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(e) Magnetic dipole for MIMO RCAC using the average
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(f) Magnetic dipole for decentralized RCAC

Figure 2: Performance comparison of RCAC using the average Markov parameter H̃ versus the decentral-
ized approach for the M2R maneuver for a cylindrical spacecraft with inertia Jcylinder in (74).
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Markov parameter H̃
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(b) Eigenaxis attitude error for decentralized RCAC
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(c) Angular velocity for MIMO RCAC using the average
Markov parameter H̃
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(d) Angular velocity for decentralized RCAC
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(e) Magnetic dipole for MIMO RCAC using the average
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(f) Magnetic dipole for decentralized RCAC

Figure 3: Performance comparison of RCAC using the average Markov parameter H̃ versus the decentral-
ized approach for the M2R maneuver for the arbitrary inertia Jarbitrary in (75).
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VI. NUMERICAL EXAMPLES

The advantage of the centralized controller can be attributed to the dimension of the controller parameter
θ and to the information about coupling of the axes in the average input matrix B̃SC. The loss of information
caused by decoupling the input and output relations in (67) increases the settling time of the decentralized
architecture in the presence of the real time input matrix BSC(t).

We can also compare these approaches based on algorithm complexity and execution time. The dimen-
sion of the control parameter θ in (28) affects the memory requirements and time required to compute each
control iteration. This is an important factor for the application of these control laws on small spacecraft.
For a controller of order nc, the averaged Markov parameter method needs to compute lunc(lu + lz) = 27nc
entries of θ. In contrast, the decentralized approach requires 3lunc(lu + lz) = 9nc entries. Thus, the de-
centralized approach yields similar settling times for M2R maneuvers using a third of the computational
cost.

B. M2S Examples

We command the spacecraft to spin about a body axis aligned in a specific inertial direction. Let the
initial angular velocity and attitude of the spacecraft be as in Section VI. A. The desired angular rate

ωd = 0.001
[

0 −1 0
]T rad/sec (76)

corresponds to an Earth-pointing attitude. The desired attitude evolves over time according to (6) where the
initial desired attitude Rd(0) is described by an eigenaxis rotation of θd(0) = 96◦ about the vector nd in
(72). We set the controller parameters as in Table 2. Unlike the M2S examples, we set α = 1 in (60) and
(67) and ε = 5× 10−5 in (68).

Figures 4 and 5 show that the decentralized approach is able to bring the both the spherical and cylin-
drical spacecraft into a Nadir pointing attitude, that is, a spin about an inertially pointed body axis.
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(b) Angular velocity for decentralized RCAC

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Orbits

d 
[A

−
m

2 ]

 

 
d

1

d
2

d
3
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Figure 4: Performance of RCAC using the decentralized approach for the M2S maneuver for the spherical
spacecraft inertia Jsphere in (73).
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(b) Angular velocity for decentralized RCAC
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(c) Magnetic dipole for decentralized RCAC

Figure 5: Performance of RCAC using the decentralized approach for the M2S maneuver for the cylindrical
spacecraft inertia Jcylinder in (74).

17 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

ug
us

t 2
4,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

45
63

 

 Copyright © 2013 by Gerardo Cruz, Dennis Bernstein. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



VII. CONCLUSIONS AND FUTURE RESEARCH

VII. Conclusions and Future Research

The RCAC algorithm was used to control spacecraft angular rate and attitude using magnetic torque
actuators. The torque command computed by RCAC was allocated into magnetic dipoles based on the
generalized inverse of the skew symetric cross-product matrix of the magnetic field vector. In order to utilize
the RCAC framework, the nonlinear, continuous spacecraft dynamics were linearized to obtain Markov
parameters. The Markov parameter obtained was then made left invertible through two different approaches,
averaging and decentralized control.

The average of the input matrix used to compute the Markov parameter is positive definite for the high
inclination orbits which are of interest for most low-earth-orbit missions. Using the averaged Markov pa-
rameter an inertia free stabilizing control law was developed. Numerical simulations show that the algorithm
can achieve a M2R maneuver and bring different spacecraft to rest at an inertial attitude.

The decentralized control approach assumes that the sensor and actuator axes are aligned. The three
control inputs are computed by independent RCAC controllers using different performance variables. This
architecture results in a multi-input, single-output system with left invertible Markov parameters. The de-
centralized RCAC approach was also shown to complete the M2R maneuver for different inertias.

Comparison of the numerical results indicate that the averaged Markov parameter approach has better
settling time characteristics than the decentralized approach given similar RCAC tunings. However, the
decentralized method uses one third of the computational capacity of the averaged Markov parameter ap-
proach. Thus, the decentralized method is better suitable for applications where computational capacity is
limited and settling time requirements are flexible. Furthermore, the settling time of the decentralized ap-
proach could be improved by modifying the performance variable to account for the coupling present in the
magnetic control formulation.

Future work will focus on extending the implementation of RCAC to use additional Markov parameters.
Furthermore, the relation between the performance and controller weighting matrices and the magnitude of
the control input will be investigated. A stability analysis of the full closed loop system is also of interest.
We also wish to investigate the effects of noise on magnetic field measurement and to address the problem
of attitude-only output feedback control using RCAC. The problem of momentum dumping using magnetic
torque is also of interest. Finally, we will test the RCAC on a higher fidelity simulator which includes
disturbances such as aerodynamic drag, gravity gradient, and solar pressure.
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