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Structural flexibility in spacecraft can degrade the accuracy of the attitude control system. With this mo-
tivation in mind, we compare the performance of inertia-free attitude control laws for a spacecraft with an
undamped discrete flexible mode and demonstrate robustness with respect to unmodeled spacecraft dynam-
ics and actuator saturation. First the equations of motion are derived using Lagrangian dynamics. Next we
present the inertia-free control laws considered in the study. Next, we establish a baseline model for subse-
quent comparisons. Finally, we demonstrate robustness of the control laws to actuator saturation and plant
uncertainty through variations in the inertia matrix as well as the parameters of the discrete flexible mode.

I. Introduction

Attitude control of rigid spacecraft is a widely studied problem.1, 2 Because of the nonlinear nature of the dynamics
and kinematics, nonlinear control methods are required for maneuvers involving high rates and large angles. An ad-
ditional source of nonlinearity is the type of control actuation, which may involve thrusters with deadzone and on-off
behavior, reaction wheels, control-moment gyros, and magnetic torquing. In addition, the representation of spacecraft
attitude has many different parameterizations, such as quaternions, Rodrigues parameters, modified Rodrigues param-
eters, and rotation matrices.1 Each type of attitude representation and actuation mechanism has characteristics that
impact spacecraft design and attitude control law synthesis.

The assumption that a spacecraft is rigid is an approximation that is limited to low angular velocity maneuvers. Flex-
ible effects become increasingly pronounced, however, as the angular acceleration of the spacecraft increases due to,
for example, high-authority, high-bandwidth control. In this case, flexible effects can be included by modeling ap-
pendages, such as gravity gradient booms and solar panels, as distributed structures with dynamics governed by partial
differential equations.1, 3–5

The goal of the present paper is to compare the performance of several attitude control laws as applied to flexible
spacecraft. In particular, we are interested in the case where the spacecraft inertia and flexible effects are unmodeled
in the control law formulation. In the case of a rigid spacecraft, inertia-free control laws are considered in.6–9 In the
present paper, we investigate the performance of these control laws for flexible spacecraft with unknown inertia as
well as flexible components.

Unlike common practice1, 3–5 in the present paper we do not model flexible effects using continuum mechanics. In-
stead, we consider a rigid body connected by a spring to a single lumped mass, which moves without damping along
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a track that is fixed in the body frame. This idealized and exact model of a flexible spacecraft allows us to carefully
compare the performance of inertia-free control laws by varying the inertia of the rigid body, the inertia of the lumped
mass, and the stiffness of the spring. The model thus considers the dynamics of a rigid body with a single discrete
flexible mode. Additional discrete modes can be included as desired to more fully emulate the dynamics of a flexible
spacecraft.

The controllers that we consider include four rotation-matrix-based nonlinear PD and PID control laws, which we
designate SO(3)/0, SO(3)/3, SO(3)/6, and SO(3)/9, where the final number indicates the number of integrators in the
control law. Loosely speaking, three integrators are used to achieve disturbance rejection with attitude commands,
whereas six integrators are used for the inertia estimate. In addition we also consider Retrospective Cost Adaptive
Control (RCAC), which applies a retrospective cost least squares algorithm to tune controller gains based on Markov
parameters.10–13 In this paper we consider rest-to-rest maneuvers (R2R) where the spacecraft is at an initial attitude
at rest and the objective is to bring the spacecraft to a specified attitude and at rest. If the R2R maneuver begins
from an arbitrary angular velocity, then we use the terminology motion-to-rest (M2R). We consider the case where the
actuators can provide continuous torques in R3.

In section II we derive the equations of motion. In section III we derive the SO(3) control laws and RCAC. Section
IV defines the nominal spacecraft parameters. Sections V and VI define baseline tunings for the SO(3) control laws
and RCAC for saturation and settling time. Sections VII, VIII and IX study robustness to torque saturation, rigid body
inertia, and flexible mode dynamics, respectively.

II. Equations of Motion

Consider the dynamics of a spacecraft consisting of a rigid body with a discrete flexible mode modeled as a point
mass moving along a fixed slot. Let M ∈ R and J ∈ R3×3 denote the mass and inertia matrix of the spacecraft,
respectively. The attitude of the rigid body and the location of its center of mass with respect to an inertial frame are
defined as (R, y) ∈ SE(3), where R ∈ SO(3) transforms of the representation of a vector in the body-fixed frame to
its representation in the inertial frame. To represent a discrete flexible mode, a particle with mass m is assumed to
be moving along a slot fixed to the rigid body (see Figure 1). The configuration of the slot with respect to the rigid
body is described as follows. Let C be the point on the slot whose distance to the center of mass of the rigid body is
minimum, and let ρ ∈ R3 be the vector from the center of mass of the spacecraft body to C. The unit vector along the
slot is defined as s ∈ R3. The displacement of the mass along the slot from the point C is denoted by x ∈ R. The
location of the mass is thus given by ρx , ρ+ xs ∈ R3 with respect to the body-fixed frame, and ρ̇x = ẋs. The point
C and the mass are connected by a linear spring with spring constant κ, and the spring is relaxed when x = 0. The
corresponding configuration manifold is SE(3)× R. The attitude kinematics are given by

Ṙ = Rω×, (1)

where ω ∈ R3 is the angular velocity of the spacecraft resolved in the body frame, and ω× is the cross-product matrix
of ω. Both attitude and rate measurements are assumed to be available. Gyro measurements are assumed to provide
measurements of the angular velocity resolved in the spacecraft frame. For simplicity, we assume that gyro measure-
ments are available without noise and without bias. In practice, bias can be corrected by using attitude measurements.
Attitude is measured indirectly through direction measurements using sensors such as star trackers. When attitude
measurements are given in terms of an alternative attitude representation, such as quaternions, Rodrigues’s formula
can be used to determine the corresponding rotation matrix. Attitude estimation on SO(3) is considered in.14

m

Figure 1: Discrete flexible model of a spacecraft with a lumped mass
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A. Lagrangian Mechanics

In this section, we derive the equations of motion for a spacecraft with a discrete flexible mode according to
Hamilton’s variational principle on SE(3) × R. Lagrangian mechanics for complex mechanical systems evolving
on Lie groups and the two-sphere have been studied in Ref.15, 16 The corresponding Euler-Lagrange equations are
developed in a coordinate-free fashion to avoid singularities associated with local parameterizations. These equations
yield concise expressions that are globally defined on the configuration manifold. Here, the Lagrangian of a spacecraft
with a discrete flexible mode is formulated, and an action integral is defined. The variation of the action integral yields
the Euler-Lagrange equations according to Hamilton’s principle, which involves the energy of the complete system,
that is, the kinetic and potential energy.

The kinetic energy E of the spacecraft is

E =
1

2
M‖ẏ‖2 +

1

2
ωTJω. (2)

The location of the mass in the inertial-frame is given by

y +R(ρ+ xs) = y +Rρx, (3)

and consequently its velocity with respect to the inertial frame is given by

v = ẏ +Rẋs+Rω×ρx. (4)

The total kinetic energy, which consists of the kinetic energy of the spacecraft and the point mass, is given by

T =
1

2
M‖ẏ‖2 +

1

2
ωTJω +

1

2
m‖ẏ +Rẋs+Rω×ρx‖2

=
1

2
(M +m)‖ẏ‖2 +

1

2
ωT(J −mρ×2x )ω +

1

2
mẋ2 +mẏT

[
R(ẋs+ ω×ρx)

]
+mẋsTω×ρx.

(5)

The potential energy, which is due to the linear spring, is given by U = 1
2κx

2. The resulting Lagrangian is

L =
1

2
(M +m)‖ẏ‖2 +

1

2
ωT
[
J −mρ×2x

]
ω +

1

2
mẋ2 +mẏT

[
R(ẋs+ ω×ρx)

]
+mẋsTω×ρx −

1

2
κx2. (6)

The variations of the Lagrangian with respect to ẏ, x, ẋ, and ω are given by

DẏL
Tδẏ =

[
(M +m)ẏ +mR(ẋs+ ω×ρx)

]T
δẏ, (7)

DxL
Tδx =

[
mẏTRω×s−mρTxω×2s− κx

]T
δx, (8)

DẋL
Tδẋ =

[
mẋ+mẏTRs+msTω×ρx

]T
δẋ, (9)

DωL
Tδω =

[
(J −mρ×2x )ω +mρ×xR

Tẏ +mẋρ×x s
]T
δω, (10)

where DẏL denotes the derivative of L with respect to ẏ and the remaining expressions are defined similarly. An
infinitesimal variation of the rotation matrix R can be parametrized by η ∈ R3 as15

RTδR = η×. (11)

The variation of L with respect to R can thus be written as

DRL
TδR = ẏT

[
Rη×(ẋs+ ω×ρx)

]
=
[
m(ẋs× + (ω×ρx)−×)RTẏ

]T
η. (12)

The corresponding variation of the angular velocity can be obtained as

δω× = −η×RTRω× +RT(Rω×η× +Rη̇×) = η̇× + ω×η× − η×ω× = η̇ + ω×η. (13)

The variation of the action integral G ,
∫ tf
t0
Ldt is then given by

δG =

∫ tf

t0

DẏL
Tδẏ + DẋL

Tδẋ+ DxL
Tδx+ DRL

TδR+ DωL
Tδω dt. (14)
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Substituting (7)-(13) and using integration by parts yields

δG =

∫ tf

t0

[
−mẍ−mÿTRs+msTρ×x ω̇ −mρTxω×2s− κx

]T
δx

−
[
(M +m)ÿ +mẍRs+ 2mẋRω×s−mRρ×x ω̇ +mRω×2ρx

]T
δy

−
[
(J −mρ×2x )ω̇ −mẋ(s×ρ×x + ρ×x s

×)ω +mρ×xR
Tÿ +mẍρ×x s

+ ω×
[
(J −m(ρ×x )T)ω +mẋρ×x s

]]T
η dt.

(15)

According to Hamilton’s principle δG = 0 for all δx, δy, and η. Hence the coefficients of δx, δy and η in (15) are
zero, which implies the Euler-Lagrange equations

mẍ+mÿTRs−msTρ×x ω̇+mρTxω
×2s+ κx = 0, (16)

(M +m)ÿ +mẍRs+ 2mẋRω×s−mRρ×x ω̇ +mRω×2ρx = 0, (17)

(J −mρ×2x )ω̇ −mẋ(s×ρ×x + ρ×x s
×)ω +mρ×xR

Tÿ +mẍρ×x s+ ω×
[
(J −mρ×2x )ω +mẋρ×x s

]
= Bu+ zdist,

(18)

where B ∈ R3×3 is the torque input matrix, u = [u1 u2 u3]T is the control torque input, and zdist represents external
disturbances. We rewrite (16), (17) and (18) in matrix form as m msTRT −msTρ×x
mRs (M +m)I −mRρ×x
mρ×x s mρ×xR

T J −mρ×2x


ẍÿ
ω̇

 =

 −mρTxω×2s− κx
−2mẋRω×s−mRω×2ρx

mẋ(s×ρ×x + ρ×x s
×)ω − ω×

[
(J −mρ×2x )ω +mẋρ×x s

]
+Bu+ zdist

 .
(19)

As a special case, we can consider the dynamics in SO(3) × R by redefining the total kinetic energy of the system
without translational terms as

T =
1

2
ωTJω +

1

2
m‖Rẋs+Rω×ρx‖2.

This is also equivalent to setting ÿ = 0 in (17) and (18) recovering the equations in SO(3), which have the form

mẍ−msTρ×x ω̇+mρTxω
×2s+ κx = 0, (20)

(J −mρ×2x )ω̇ −mẋ(s×ρ×x + ρ×x s
×)ω +mẍρ×x s+ ω×

[
(J −mρ×2x )ω +mẋρ×x s

]
= Bu+ zdist. (21)

Equations (20) and (21) are used in the remainder of the paper to study the performance of attitude control laws
with an unmodeled discrete flexible mode.

III. Controller Construction

In this section we describe four SO(3) control laws along with RCAC. The controllers are derived for use with
continuously variable thruster actuation without onboard momentum storage. These algorithms are inertia-free control
laws whose goal is to bring the spacecraft to a prescribed attitude without knowledge of the spacecraft inertia.

A. SO(3)/0

The SO(3)/0 control law for almost global stabilization17, 18 is given by

u = −B−1(KpS +Kvω), (22)

where Kp ∈ R and Kv ∈ R3×3 are proportional (attitude) and derivative (angular velocity) positive-definite gains,
respectively. The attitude error S is defined by

S
4
=

3∑
i=1

ai(R̃
Tei)× ei, (23)
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where a1, a2, a3 are positive numbers, e1, e2, e3 are the standard basis vectors, and the rotation matrix R̃ = RRT
d

represents the pointing error between the current attitude R and the desired attitude Rd. Note that the control law (22)
is inertia-free. We use the following Lemma to show that V is a Lyapunov function.

Lemma 1.18 Let a1, a2, a3 be distinct and let R be a rotation matrix. Then:

i) For all i, j = 1, 2, 3, Rij ∈ [−1, 1].

ii) tr (A−AR) ≥ 0.

iii) tr (A−AR) = 0 if and only if R = I.

Defining A = diag(a1, a2, a3), the effect of the control law (22) on the attitude of a rigid spacecraft follows from
the Lyapunov function

V (ω, R̃)
4
= 1

2ω
TJω +Kptr (A−AR̃), (24)

for which V̇ (ω, R̃) = −ωTKvω.

By choosing Kv to be a function of ω, the control law (22) satisfies the following saturation bounds.18, 19 Let
σmin(B) denote the minimum singular value of B.

Proposition 1. Let α and β be positive numbers, let A = diag(a1, a2, a3) have distinct positive diagonal entries,
and let Kp and Kv(ω) be given by

Kp =
α

trA
(25)

and

Kv(ω) = β


1

1+|ω1| 0 0

0 1
1+|ω2| 0

0 0 1
1+|ω3|

 . (26)

Then, for all t ≥ 0, the control torque given by (22) satisfies

‖u(t)‖∞ ≤
α+ β

σmin(B)
. (27)

Alternative forms of the gain Kv(ω) are given in.20

B. SO(3)/3

We include integral action by extending (22) to the SO(3)/3 control law

u = −B−1[KpS +KvK1S +KiC̄dD
−1C̄T

d

∫ t

0

[ω̃(s) +K1S(s)] ds+Kvω̃], (28)

where Ki ∈ R, K1 ∈ R3×3 are positive definite, C̄d ∈ R3×3, and D ∈ R3×3 is positive definite. The angular-velocity

error ω̃ is defined by ω̃
4
= ω − R̃Tωd, where ωd is the desired possibly time-varying angular velocity. The control

law (28) is suggested by the SO(3)/9 control law (35) given below by specializing u = B−1(v2 + v3). Although
SO(3)/3 does not have a known Lyapunov function that ensures closed-loop stability, simulation results suggest that it
is stabilizing for all gains Kp, Kv, and Ki.

C. SO(3)/6

The SO(3)/6 control law is a simplification of the SO(3)/9 control law given below by specializing u = B−1(v1 +
v3) in (35), and Ad = 0 in (31) and (32). In particular, this control law has the form

u = −B−1[KpS +KvK1S + +K1S(s)) +Kvω̃ + ĴK1Ṡ + (Ĵω)× ω], (29)

where Ĵ is the inertia estimate updated by (30), (32), and Ṡ is updated by (33).
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D. SO(3)/9

To develop an estimate of the spacecraft inertia, we introduce the notation Jω = L(ω)γ, where γ ∈ R6 is defined
by

γ
4
=
[
J11 J22 J33 J23 J13 J12

]T
(30)

and

L(ω)
4
=

 ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0

 .
Next, let Ĵ ∈ R3×3 denote an estimate of J , and define the inertia-estimation error J̃

4
= J − Ĵ . Letting γ̂, γ̃ ∈ R6

represent Ĵ , J̃ , respectively, it follows that γ̃ = γ − γ̂. Likewise, let ẑdist ∈ R3 denote an estimate of zdist, and define

the disturbance-estimation error z̃dist
4
= zdist − ẑdist.

Assuming that the disturbance is harmonic with known spectrum, it follows that zdist can be modeled by

ḋ = Add, zdist = Cdd, (31)

where Ad ∈ Rnd×nd and Cd ∈ R3×nd are known matrices. In this model, d(0) is unknown, which is equivalent to
the assumption that the amplitude and phase of all harmonic components in the disturbance are unknown; however,
the spectrum of d is assumed to be known. To provide asymptotic rejection of harmonic disturbances, the matrix Ad

is chosen to include eigenvalues of all frequency components that may be present in zdist, where the zero eigenvalue
corresponds to constant disturbances. Since zdist is harmonic, Ad is chosen to be skew symmetric. Let d̂ ∈ Rnd

denote an estimate of d, and define the disturbance-state estimation error d̃
4
= d− d̂.

Theorem 1. Let Kp ∈ R be positive, let K1 ∈ R3×3, let Q ∈ R6×6 and D ∈ Rnd×nd be positive definite, let
A = diag(a1, a2, a3) be a diagonal positive-definite matrix with distinct diagonal entries, and define the attitude error
S by (23). Then the Lyapunov candidate

V (ω̃, R̃, γ̃, d̃)
4
= 1

2 (ω̃ +K1S)TJ(ω̃ +K1S) +Kptr (A−AR̃) + 1
2 γ̃

TQγ̃ + 1
2 d̃

TDd̃

is positive definite, that is, V is nonnegative, and V = 0 if and only if ω̃ = 0, R̃ = I, γ̃ = 0, and d̃ = 0.

Theorem 2. Let Kp ∈ R, Kv ∈ R3×3, K1 ∈ R3×3, Q ∈ R6×6, and D ∈ Rnd×nd be positive definite, assume that
AT

dD + DAd is negative semidefinite, let A = diag(a1, a2, a3) be a diagonal positive-definite matrix with distinct
diagonal entries, define S and V as in Theorem 1, and let γ̂ and d̂ satisfy

˙̂γ =Q−1[LT(ω)ω× + LT(K1Ṡ + ω̃ × ω − R̃Tω̇d)](ω̃ +K1S), (32)

where

Ṡ =

3∑
i=1

ai[(R̃
Tei)× ω̃]× ei (33)

and

˙̂
d = Add̂+D−1CT

d (ω̃ +K1S), ẑdist = Cdd̂. (34)

Furthermore, let

u = B−1(v1 + v2 + v3), (35)

where

v1
4
= −(Ĵω)× ω − Ĵ(K1Ṡ + ω̃ × ω − R̃Tω̇d), (36)
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v2
4
= −ẑdist, (37)

v3
4
= −Kv(ω̃ +K1S)−KpS. (38)

Then,

V̇ (ω̃, R̃, γ̃, d̃) = −(ω̃ +K1S)TKv(ω̃ +K1S)−KpS
TK1S + 1

2 d̃
T(AT

dD +DAd)d̃ (39)

is negative semidefinite. Equation (21) can be rewritten in terms of ω̃ as

(J −mρ×2x ) ˙̃ω = mẋ(s×ρ×x + ρ×x s
×)
(
ω̃ + R̃Tωd

)
−mẍρ×x s

−
(
ω̃ + R̃Tωd

)× [
(J −mρ×2x )

(
ω̃ − R̃Tωd

)
+mẋρ×x s

]
+Bu+ zdist. (40)

Furthermore, the equilibrium manifold (ω̃, R̃, (γ̃, d̃)) = (0, I,Q0) of the closed-loop system given by (32)-(34) and
(40) is locally asymptotically stable, and the remaining equilibrium manifolds given by (0,Ri,Qi), for i ∈ {1, 2, 3}
are unstable. Finally, the set of all initial conditions converging to these equilibrium manifolds forms a lower dimen-
sional submanifold of R3 × SO(3)× R6 × R3.

E. RCAC

In this section, we review the cumulative retrospective cost adaptive controller developed in11, 21–23 for linear plants.
First, consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k), (41)
y0(k) = E1x(k), (42)
z(k) = r(k)− y0(k), (43)

where x(k) ∈ Rn, z(k) ∈ Rlz , u(k) ∈ Rlu , r(k) ∈ Rlw , and k ≥ 0. The goal is to develop an adaptive output feed-
back controller that minimizes the command-following error z in the presence of the command signal r with minimal
modeling information about the dynamics and r.

We represent (41) and (43) as the time-series model from u to z given by

z(k) = E1A
mx(k −m)− E0r(k) + H̄Ū(k − 1), (44)

where k > m, H̄ is defined by

H̄
4
=
[
H1 · · · Hm

]
∈ Rlz×mlu ,

where Hi
4
= E1A

i−1B are the Markov parameters, and

Ū(k − 1)
4
=

 u(k − 1)
...

u(k −m)

 ∈ Rmlu

is the extended control vector.

Next, we present an adaptive control algorithm for the general control problem represented by (41)–(43). The
control u(k) is given by the strictly proper time-series controller of order nc of the form

u(k) =

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)z(k − i), (45)
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where, for all i = 1, . . . , nc, Mi(k) ∈ Rlu×lu and Ni(k) ∈ Rlu×lz . The control (45) can be expressed as

u(k) = θ(k)φ(k − 1), (46)

where

θ(k)
4
=
[
M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k)

]
∈ Rlu×nc(lu+lz) (47)

is the controller gain matrix, and the regressor vector φ(k − 1) is given by

φ(k − 1)
4
=



u(k − 1)
...

u(k − nc)
z(k − 1)

...
z(k − nc)


∈ Rnc(lu+lz).

Next, we define the retrospective performance

ẑ(k − kj)
4
= Sj(k − kj) +HjÛj(k − kj − 1), (48)

where S(k)
4
= E1A

mx(k −m) − E0r(k) +H′U ′(k − 1), and the past controls Uj(k − kj − 1) are replaced by the
surrogate controls Ûj(k − kj − 1). Now, we express the extended retrospective performance as

Ẑ(k)
4
=

 ẑ(k − k1)
...

ẑ(k − ks)

 ∈ Rslz ,

which can be rewritten as

Ẑ(k) = S̃(k) + H̃ ˆ̃U(k − 1), (49)

where the components of ˆ̃U(k − 1) ∈ RlŨ are the components of Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) ordered in the
same way as the components of Ũ(k − 1). Hence

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃ ˆ̃U(k − 1). (50)

Finally, we define the retrospective cost function

J( ˆ̃U(k − 1), k)
4
= ẐT(k)R(k)Ẑ(k), (51)

where R(k) ∈ Rlzs×lzs is a positive-definite performance weighting. To ensure that (51) has a global minimizer, we
consider the regularized cost

J̄( ˆ̃U(k − 1), k)
4
= ẐT(k)R(k)Ẑ(k) + η(k) ˆ̃UT(k − 1) ˆ̃U(k − 1), (52)

where η(k) ≥ 0. Substituting (50) into (52) yields

J̄( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1) + B(k) ˆ̃U(k − 1) + C(k),

where

A(k)
4
= H̃TR(k)H̃+ η(k)IlŨ ,

B(k)
4
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)],

C(k)
4
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1).
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If either H̃ has full column rank or η(k) > 0, thenA(k) is positive definite. In this case, J̄( ˆ̃U(k−1), k) has the unique
global minimizer given by

ˆ̃U(k − 1) = −1

2
A−1(k)B(k). (53)

Next, let q be a positive integer such that Ũ(k − 1) contains u(k − q) and define the cumulative cost function as

JR(θ(k))
4
=

k∑
i=1

λk−i‖φT(k − q − 1)θT(k − 1)− ûT(k − q)‖2, (54)

where ‖ · ‖ is the Euclidean norm, and λ ∈ (0, 1] is the forgetting factor. Minimizing (54) yields

θT(k) = θT(k − 1) + P (k − 1)φ(k − q − 1)[φT(k − q)P (k − 1)φ(k − q − 1) + λ]−1

[φT(k − q − 1)θT(k − 1)− ûT(k − q)].

The error covariance is updated by

P (k) = λ−1P (k − 1)− λ−1P (k − 1)φ(k − q − 1)

[φT(k − q − 1)P (k − 1)φ(k − q) + λ(k)]−1φT(k − q − 1)P (k − 1).

We initialize the error covariance matrix as P (0) = α(k)I , where α(k) > 0.

IV. Nominal Spacecraft Parameters

In this section we define a nominal model of a spacecraft with a discrete flexible mode. We set ρx = [1 0 0]T m,
and s = [0 1 0]T m. Thus the lumped mass moves along the ̂ body-frame direction, offset 1 m from the spacecraft
body-frame origin.

The lumped mass and spring stiffness are, respectively, m = 3 kg and k = 2 N-m, the spacecraft mass is M = 60
kg, and the spacecraft inertia is given by

J =


30 0 0

0 25 0

0 0 15

 . (55)

Let the spacecraft be initially at rest with the initial attitude and angular velocityR0 = I and ω0 = [0 0 0]Trad/sec.
The goal is to bring the spacecraft to rest at the desired attitude Rd and angular velocity ωd = [0 0 0]T. We simulate a
rest-to-rest (R2R) scenario commanding a 60-deg rotation about the body-fixed direction n = 1√

3
[1 1 1]T. The desired

attitude is obtained by using Rodrigues’s rotation formula

Rd = I cos(θ) + (1− cos(θ))nnT + sin(θ)n×. (56)

Hence, the desired attitude matrix is given by

Rd =


0.6667 −0.3333 0.6667

0.6667 0.6667 −0.3333

−0.3333 0.6667 0.6667

 . (57)

We assume that the spacecraft is fully actuated (that is, B = I).

To evaluate performance for the R2R maneuvers, we define the settling-time metric

k0 = min
h>100

{h : for all i ∈ {1, . . . , 100}, e((h− i)Ts) < 0.05 rad}, (58)

where h is the simulation step, Ts is the integration step size, and e(kTs) is the eigenaxis attitude error at the kth
simulation step given by

e(kTs) = cos−1( 1
2 [tr R̃(kTs)− 1]). (59)
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V. Baseline Tuning for the SO(3) Control Laws for Saturation and Settling time

We define the controller parameters α = 1, β = 1, Ki = 0.015, K1 = I , and A = diag(1, 2, 3). These parameters
are identical and constant for all four SO(3) controllers. The following subsections show the SO(3) control laws tuned
for actuator saturation. Note that the commanded maneuver is about a non-principal axis.

A. Baseline Tuning for the SO(3)/0 Control Law

Figure 2 shows the SO(3)/0 control law with actuator saturation. The saturation level is chosen to obtain a settling
time of about 500 sec.
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Figure 2: R2R for the SO(3)/0 control law with actuator saturation of 0.16 N-m. The maneuver is a 60-deg
rotation about the body-fixed frame direction n = 1√

3
[1 1 1]T. The spacecraft reaches the desired attitude, and

the lumped mass is brought to rest with a settling time of 505.3 sec.

B. Baseline Tuning for the SO(3)/3 Control Law

Figure 3 shows the SO(3)/3 control law with actuator saturation. The saturation level is chosen to obtain a settling
time of about 500 sec.
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Figure 3: R2R for the SO(3)/3 controller with actuator saturation of 1.43 N-m. The maneuver is a 60-deg
rotation about the body-fixed frame direction n = 1√

3
[1 1 1]T. The spacecraft reaches the desired attitude, and

the lumped mass is brought to rest with a settling time of 482.2 sec.

C. Baseline Tuning for the SO(3)/6 Control Law

Figure 4 shows the SO(3)/6 control law with actuator saturation. The saturation level is chosen to obtain a settling
time of about 100 sec.
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Figure 4: R2R for the SO(3)/6 controller with actuator saturation of 2.36 N-m. The maneuver is a 60-deg
rotation about the body-fixed frame direction n = 1√

3
[1 1 1]T. The spacecraft reaches the desired attitude, and

the lumped mass is brought to rest with a settling time of 91.9 sec.

D. Baseline Tuning for the SO(3)/9 Control Law

Figure 5 shows the SO(3)/9 control law with actuator saturation. The saturation level is chosen to obtain a settling
time of about 100 sec.
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Figure 5: R2R for the SO(3)/9 controller with actuator saturation of 3.24 N-m. The maneuver is a 60-deg
rotation about the body-fixed frame direction n = 1√

3
[1 1 1]T. The spacecraft reaches the desired attitude, and

the lumped mass is brought to rest with a settling time of 95.0 sec.

VI. Baseline Tuning for RCAC for Saturation and Settling time

For RCAC we define the performance variable

z =

[
ω̃

S

]
, (60)

and we select the controller order nc = 12, the initial covariance parameter α(k) = 0.1, and the forgetting factor
η(0) = 0. Since the spacecraft dynamics are nonlinear, the Markov parameters used for RCAC are based on the rigid
body spacecraft linearized model described in24 where the first Markov parameter H1 of the linearized dynamics is
given by

H1 =

[
hB

h2B

]
. (61)

Figures 6 and 7 show the closed-loop performance for an illustrative R2R maneuver in the presence of actuator satu-
ration of 0.12 and 0.015 N-m, respectively.
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Figure 6: R2R for RCAC with actuator saturation of 0.12 N-m. The maneuver is a 60-deg rotation about the
body-fixed frame direction n = 1√

3
[1 1 1]T. The spacecraft reaches the desired attitude, and the lumped mass is

brought to rest with a settling time of 102.9 sec.
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Figure 7: R2R for RCAC with actuator saturation of 0.015 N-m. The maneuver is a 60-deg rotation about the
body-fixed frame direction n = 1√

3
[1 1 1]T. The spacecraft reaches the desired attitude, and the lumped mass is

brought to rest with a settling time of 503.2 sec.
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VII. Torque Saturation Variation

In this section we study the performance robustness of the SO(3) control laws and RCAC under saturation levels
and tuning parameters established in previous section. We represent the settling time as a function of different torque
saturation levels, and define a criterion to consider actuator saturation for the robustness studies of sections VIII and
IX.

A. SO(3) Control Laws with Torque Saturation Variation

We examine the performance of all four SO(3) controllers in the presence of torque saturation. Figure 8 shows
the performance of the SO(3) controllers for R2R with different torque saturation levels. Note that the settling time
increases as the saturation level decreases. Figure 8 shows that there exist two distinct settling time ranges.
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Figure 8: R2R settling time for the SO(3) control laws as a function of torque saturation level. The same
saturation level is applied to each axis. Note that SO(3)/0 and SO(3)/3 have longer settling times than SO(3)/6
and SO(3)/9.

B. RCAC with Torque Saturation Variation

Figure 9 shows the settling time of RCAC as a function of the actuator saturation level.
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Figure 9: R2R settling time for RCAC as a function of torque saturation level. The same saturation level is
applied to each axis.

C. Baseline Saturation Specification

Based on the results of the previous sections, we now define torque saturation levels for each controller that will
be used for the rest of this paper. For the case where no saturation is applied, the SO(3)/0 and SO(3)/3 controllers
exhibit settling times of about 500 sec, while the SO(3)/6 and SO(3)/9 controllers exhibit settling times of about 100
sec. We then choose saturation levels that provide settling times similar to the settling time obtained without saturation.

To compare RCAC with the SO(3) controllers, we consider two different torque saturation levels for this controller.
The first level is defined as the saturation level for which RCAC exhibits settling times of 500 sec (RCAC(500)), as
well as the saturation level for which RCAC exhibits a settling time of 100 sec (RCAC(100)). We will use RCAC(100)
and RCAC(500) nomenclature in the next sections.
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Based on Figures 2-7, the saturation levels defined for RCAC(500) are 0.16 N-m for SO(3)/0, 1.43 N-m for SO(3)/3
and 0.12 N-m for RCAC, and the saturation levels defined for RCAC(100) are 2.36 N-m for SO(3)/6, 3.24 N-m for
SO(3)/9 and 0.015 N-m for RCAC.

VIII. Rigid Body Inertia Variation

We now study robustness to uncertainty in the rigid body inertia. We define two different inertia variations. First
we examine robustness to actuator misalignment relative to a body-fixed direction. Second we study robustness to
changes in the components of the inertia matrix.

To model actuator misalignment we rotate the inertia matrix by the angle θ about the body-fixed direction n. The
rotated inertia matrix J ′ is defined by

J ′
4
= RJ(θ)TJRJ(θ). (62)

We use Rodrigues’s formula (56) to construct the rotation matrix RJ(θ) . We rotate the inertia matrix J by the angle
θ ∈ (−180◦, 180◦] about the body-fixed direction n = 1√

3
[1 1 1]T.

In the case of inertia variations, we examine the inertia matrix components variation between the nominal inertia
cases defined below. Figure 10 shows the triangular region of feasible principal moments of inertia of a rigid body.
There are five cases that are highlighted for the principal moments of inertia λ1 ≥ λ2 ≥ λ3 > 0, where λ1, λ2, λ3
satisfy the triangle inequality λ1 < λ2 + λ3. Let M denote the mass of the rigid body. The point λ1 = λ2 = λ3

corresponds to a sphere of radiusR =
√

5λ1

2M ; the point λ1 = λ2 = 2λ3 corresponds to a cylinder of length l and radius

r, where l/r = 3 and r =
√

2λ1

M ; and the point λ1 = 6
5λ2 = 2λ3 is located at the centroid of the triangular region.

The remaining cases in Figure 10 are limiting cases. As established in the baseline setup, λ1 is normalized to λ1 = 30
kg-m2. we let J1, J2, J3, J4, J5 correspond to the points noted in Figure 10. These matrices, which correspond to the
sphere, cylinder with l/r = 3, centroid, thin disk, and thin cylinder, respectively, are defined as J1 = diag(30, 30, 30),
J2 = diag(30, 30, 15), J3 = diag(30, 25, 15), J4 = diag(30, 15, 15), and J5 = diag(30, 30, 0.3). We vary the inertia
by using a linear scaling between these points using

Jij(α) = (1− α)Ji + αJj , (63)

where α ∈ [0, 1] for i, j ∈ {(1, 5), (3, 1), (3, 5), (3, 4)}.
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λ1 

λ3 

λ1 = λ2 = 2λ3 

λ 2
=

λ 1
 

λ2 
λ1 

λ1 =
6

5
λ2 = 2λ3 

𝑆𝑝ℎ𝑒𝑟𝑒  
λ1 = λ2 = λ3 

𝑇ℎ𝑖𝑛 𝑑𝑖𝑠𝑘 
λ1 = 2λ2 = 2λ3 

𝑇ℎ𝑖𝑛 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 
λ1 = λ2, λ3 = 0 

Figure 10: Feasible region of the principal moments of inertia λ1, λ2, λ3 of a rigid body satisfying 0 < λ3 ≤
λ2 ≤ λ1, where λ1 < λ2 + λ3. The shaded region shows all feasible values of λ2 and λ3 in terms of the largest
principal moment of inertia λ1. The open dots and dashed line segment indicate nonphysical, limiting cases.

A. SO(3) Control Laws with Inertia Variation

Figure 11 shows robustness to actuator misalignment for the SO(3) control laws. The controllers are able to bring
the spacecraft to rest at the desired attitude despite off-diagonal terms in the inertia matrix. For RCAC(500), both
controllers are able to bring the spacecraft to rest. However, SO(3)/3 is more sensitive to actuator misalignment than
SO(3)/0. For RCAC(100), settling time remains unaffected for both controllers except for certain angles where the
settling time increases substantially.
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(a) SO(3)/0 and SO(3)/3 saturated as RCAC(500).
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(b) SO(3)/6 and SO(3)/9 saturated as RCAC(100).

Figure 11: R2R settling time for the SO(3) control laws as a function of the principal-frame/body-frame rotation
angle θ for a misalignment about the body-fixed direction n = 1√

3
[1 1 1]T.
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Next, we show robustness for the SO(3) control laws to variations in the spacecraft inertia distribution as defined
in (63). Figure 12 shows the settling time as a function of the scaling parameter α for RCAC(100). Note that when
the inertia matrix is close to represent an inertia nominal shape (that is, cylinder, sphere, thin cylinder or thin disk) the
controllers are not able to bring the spacecraft to rest.

Figure 13 shows the settling time variation as a function of the scaling parameter α for RCAC(500). These
controllers seems to bring the spacecraft to rest for more α values than the controllers of RCAC(100). Note that
the SO(3)/0 controller shows notable robustness with all four different inertia variations, and the SO(3)/3 controller
actuation degrades when high α values are used.
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(a) SO(3)/6 saturated as RCAC(100).
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(b) SO(3)/9 saturated as RCAC(100).

Figure 12: R2R settling time for the SO(3)/6 and SO(3)/9 control laws as a function of the scaling parameter α
for various combinations of inertia matrices.
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(a) SO(3)/0 saturated as RCAC(500).
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(b) SO(3)/3 saturated as RCAC(500).

Figure 13: R2R settling time for the SO(3)/0 and SO(3)/3 control laws as a function of the scaling parameter α
for various combinations of inertia matrices.

B. RCAC with Inertia Variation

We study robustness for RCAC to actuator misalignment in Figure 14. For RCAC(500), the settling time increases
by 44% in some cases. However, the controller brings the spacecraft to rest at the desired attitude despite the presence
of off-diagonal inertia terms. Similarly, RCAC(100) is able to arrive to the desired attitude with settling time increasing
by 71% in some cases.
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(a) RCAC saturated as RCAC(500).
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(b) RCAC saturated as RCAC(100).

Figure 14: R2R settling time for RCAC as a function of the scaling parameter α for various combinations of
inertia matrices.
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Next, we show robustness for RCAC to variations in the spacecraft inertia distribution by varying the principal
moments of inertia. Figure 15 shows the settling time as a function of the scaling parameter α. Note that RCAC brings
the spacecraft to rest for every inertia variation from both RCAC(500) and RCAC(100).
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(a) RCAC saturated as RCAC(100).
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(b) RCAC saturated as RCAC(100).

Figure 15: R2R settling time for RCAC as a function of the scaling parameter α for various combinations of
inertia matrices. The controller is robust to all inertia.

IX. Robustness to Flexible Mode Variation

We now study robustness to variations in the unmodeled spacecraft flexible mode. These variations involve the
inertia of the lumped mass and the spring stiffness. First we keep the spring stiffness constant at k = 2 N-m while
varying the lumped mass over 3 ≤ m ≤ 30 kg. Then we maintain the mass constant at m = 3 kg while varying the
spring stiffness over 0.01 ≤ k ≤ 100 N-m.

A. SO(3) Control Laws with Flexible Mode Variation

Figure 16 shows the settling time as a function of m for the SO(3) control laws. SO(3)/0 is able to bring the space-
craft to rest. The controllers exhibit higher settling time as m increases. SO(3)/3 is not able to bring the spacecraft to
rest as the mass magnitude is varied in that range. Finally, SO(3)/6 and SO(3)/9 are not able to bring the spacecraft to
the desired attitude for certain values of m.

Figure 17 compares the settling time as a function of the spring stiffness. Both SO(3)/0 and SO(3)/3 bring the
spacecraft to rest, with SO(3)/0 exhibiting the best performance. On the other hand, SO(3)/6 and SO(3)/9 controllers
show sensitivity to the stiffness variation, and the settling time increases considerably as the stiffness decreases. Note
that SO(3)/9 is not able to bring the spacecraft to rest for values of the stiffness lower than 10−1 N-m.
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(a) SO(3)/0 saturated as RCAC(500).
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(b) SO(3)/6 and SO(3)/9 saturated as RCAC(100).

Figure 16: R2R settling time for the SO(3) control laws as a function of the lumped mass m while the spring
stiffness remains at its nominal value.
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(a) SO(3)/0 and SO(3)/3 saturated as RCAC(500).
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(b) SO(3)/6 and SO(3)/9 saturated as RCAC(100).

Figure 17: R2R settling time for the SO(3) control laws as a function of the spring stiffness while the lumped
mass m remains at its nominal value.

B. RCAC with Flexible Mode Variation

Figure 18 and 19 show the settling time as a function of the lumped mass m for RCAC. Note that the settling time
keeps within similar values for all cases studied.
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(a) RCAC saturated as RCAC(500).
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(b) RCAC saturated as RCAC(100).

Figure 18: R2R settling time for RCAC as a function of the particle mass while the spring stiffness remains at is
nominal value.
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(a) RCAC saturated as RCAC(500).
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(b) RCAC saturated as RCAC(100).

Figure 19: R2R settling time for RCAC as a function of the spring stiffness while the lumped mass m remains
at its nominal value.

To further demonstrate RCAC robustness, we study settling time as a function of lumped mass and spring stiffness
variations within a motion-to-rest (M2R) scenario. Now, we keep the baseline setup and define the new initial angular
velocity ω0 = [0.5 0.5 0.5]T rad/sec. RCAC(500) and RCAC(100) criteria are maintained.

Figures 20 and 21 show that RCAC is able to bring the spacecraft to the desired attitude and angular velocity. The
lumped mass motion is reduced to zero. Note that higher angular velocity leads to larger flexibility effects.
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(a) Eigenaxis attitude error.
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(b) Angular velocity components.
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(d) Controller coefficients.
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(e) Lumped mass position.
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(f) Lumped mass velocity.

Figure 20: M2R settling time for RCAC with torque saturation at 0.6 N-m. The maneuver is a 60-deg rotation
about the body-fixed direction n = 1√

3
[1 1 1]T. The settling time needed is 98.5 sec.
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(a) Eigenaxis attitude error.
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(b) Angular velocity components.
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(c) Torque input.
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(d) Controller coefficients.
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(e) Lumped mass position.
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(f) Lumped mass velocity.

Figure 21: M2R settling time for RCAC with torque saturation at 0.11 N-m. The maneuver is a 60-deg rotation
about the body-fixed direction n = 1√

3
[1 1 1]T. The settling time needed is 488.1 sec.

Figures 22 and 23 represent the settling time as a function of the lumped mass m and spring stiffness k in a M2R
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scenario. The desired attitude is achieved for every simulation. However, the settling time increases notably compared
with the R2R scenario.
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(a) RCAC saturated as RCAC(500).
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(b) RCAC saturated as RCAC(100).

Figure 22: M2R settling time for RCAC as a function of the particle mass while the spring stiffness remains at
its nominal value. The spacecraft is initially at motion with ω0 = [0.5 0.5 0.5]T rad/sec. Note that settling time
increases with specific lumped mass magnitudes.

10
−2

10
−1

10
0

10
1

10
2

0

200

400

600

Spring Stiffness (N
m
)

S
et
tl
in
g
T
im

e
(s
ec
)

(a) RCAC saturated as RCAC(500).
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(b) RCAC saturated as RCAC(100).

Figure 23: M2R settling time for RCAC as a function of the spring stiffness while the lumped mass remains at
its nominal value. The spacecraft is initially at motion with ω0 = [0.5 0.5 0.5]T rad/sec. Note that settling time
increases for low stiffness values.
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X. Conclusion

We have compared the performance of several inertial free attitude control laws as applied to a spacecraft with a
discrete flexible mode. RCAC presents a better performance than the SO(3) controllers for more restrictive saturation
levels, with SO(3)/0 being the only one with similar performance at low saturation levels. Conversely, RCAC required
low saturation levels to achieve the desired attitude.

The numerical results show that both RCAC and the SO(3) controllers are robust to actuator misalignment and varia-
tion of the inertia matrix. In general RCAC presents better performance than the SO(3) controllers, again with SO(3)/0
presenting the smaller variation in settling time criteria out of the SO(3) controllers. Finally, both controllers show
robustness on the variation of flexible mode parameters, with RCAC outperforming again the SO(3) controllers for
both change in the lumped mass and the stiffness. In general both control laws have demonstrated their robustness
to unknown actuator saturation and plant uncertainties, which is a desired property to avoid the degradation of the
accuracy of attitude control systems when structural flexibility of spacecraft comes into play.
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