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In many system identi�cation applications, only output measurements are available for
constructing empirical models. In these cases, sensor-to-sensor identi�cation (S2SID) can
be used. In the SISO case, one measurement is designated as the pseudo-input, while an-
other measurement is designated as the pseudo-output. Identi�cation between the pseudo-
input and pseudo-output results in the construction of a pseudo transfer function (PTF).
In the present paper we apply S2SID to data obtained from the NASA SOFIA (Strato-
spheric Observatory for Infrared Astronomy) testbed. The objective of this work is to
determine whether linear PTF models can approximate the relationship between di�erent
sensor measurements. The identi�cation of such models can potentially be used in practice
to detect faults or changes in a structure.

I. Introduction

In traditional system identi�cation, measurements of input and output signals are used to �t a model of
a chosen structure and dynamic order. While system identi�cation techniques are extensively developed [1],
there is continued interest in problems such as experiment design, model structure determination, and �t
accuracy in the presence of noise. Nonlinear system identi�cation, which may involve gray-box, white
box, or black-box model structures, remains a challenging problem with many open and active research
directions [2, 3].

In some applications, the input signal may be unknown, and thus sensor measurements are the only
available data. If a statistical description of the unknown input is available, then sensor-only identi�cation
techniques can be used to detect changes in the dynamics of the system [4{7]. For structural dynamics
applications, sensor-only identi�cation is known as operational modal analysis (OMA) [8{10].

In applications where the excitation is unknown and only sensor measurements are available, system iden-
ti�cation can be performed by designating one measurement as the pseudo-input and another measurement
as the pseudo-output. The identi�ed model, called a pseudo-transfer function, typically captures information
about only the zeros, with transmissibility a special case within the context of structural dynamics. Although
pole locations are generally not estimated, sensor-to-sensor identi�cation (S2SID) has the advantage of not
requiring knowledge of the system excitation. In fact, the unknown ambient system excitation plays the
valuable role of providing an excitation that can be used to identify PTFs within S2SID. As one potential
application, S2SID is used in [11, 12] to detect system changes. It is essential, however, to ensure that the
identi�ed PTF is independent of the excitation signal.
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A di�culty associated with S2SID is the fact that sensor measurements are not causally related. Con-
sequently, special care is needed to analyze the role of the initial conditions of the underlying input-output
system since the underlying state is suppressed in the PTF due to cancellation of the modal dynamics.
This issue is analyzed in detail in [12]. Extensions to MIMO PTF identi�cation, which is necessitated by
non-scalar excitation, is considered in [13].

In the present paper we apply PTF identi�cation to data measured from the NASA SOFIA (Stratospheric
Observatory for Infrared Astronomy) testbed [18]. This data measures vibration response during 
ight. Since
no data are available concerning the excitation forcing, we apply S2SID in order to identify PTFs. The long-
range goal of this research is to apply S2SID in order to determine whether S2SID is able to identify PTFs
with su�cient accuracy to determine changes in the system.

The contents of the paper are as follows. In Section II we analyze the data set by applying various tests
and preprocessing procedures. First, we determine the e�ective bit count of each signal, which determines
the e�ect of quantization on each signal relative to its range. Next, we compute the coherence function for
various signal pairs. We then detrend each signal by removing linear trends, and �nally, reanalyze the data
sets in terms of the coherence function.

In Section III we describe the PTF models that are �t using least squares. These model structures
include time series models as well as �-Markov models, that is, time series models with explicit Markov
parameters [16], [14]. In addition, we �t FIR models indirectly by truncating �-Markov models and directly
by applying least squares with poles constrained to be zero. We brie
y review MIMO PTF identi�cation as
well as the use of the eigensystem realization algorithm (ERA) for constructing reduced-order models based
on the singular value decomposition of the Hankel matrix of Markov parameters [15, 19, 20].

In Section IV we apply the techniques described in Section III to the NASA SOFIA data. In particular,
we choose various signal pairs that represent a range of signal quality. For each pair of signals, we consider the
e�ect of detrending on the �ts obtained by the methods described in Section III. Fit accuracy is determined
by two methods, namely, by applying the pseudo-input data to the identi�ed model (prediction error analysis)
and by using both the pseudo-input and pseudo-output data with the identi�ed model for one-step-ahead
prediction. The latter method is required when the identi�ed model is unstable, which may arise due to
nonminimum-phase zeros in the plant.

In Section V we apply the techniques described in Section III to a simulated mass-spring-damper system.
This allows us to explain the phenomena seen with the SOFIA data.

II. Data Analysis and Preprocessing

We apply S2SID to 
ight data obtained from the SOFIA aircraft located at the NASA Dryden Flight
Research Center. The SOFIA aircraft is a highly modi�ed Boeing 747SP, housing an infrared telescope in
the aft fuselage. The telescope is isolated from the onboard scienti�c sta� and equipment by means of a
pressure dome, thus allowing a door to open for astronomical observations. Due to 
ight durations of 10
hours or more and the stress of opening the telescope door in-
ight, structural health monitoring of both the
aircraft and telescope are of great concern. As such, accelerometers have been placed at various locations
throughout the aircraft to provide data for post-
ight stress analysis.

Experimental 
ight data was gathered during routine 
ight at 12,192{15,240 m (40,000{50,000 ft). Data
was collected by the accelerometers under ambient conditions during 
ight. The accelerometer data used
in this study was collected from sensors located at the right horizontal stabilizer tip, rear spar (vertical
direction), and vertical stabilizer front and rear spars (lateral direction). The sensor data was recorded at 5
kHz and �ltered by a sixth-order antialiasing Butterworth �lter with a cut-o� at 1 kHz. Data was collected
while the aircraft operated in a Mach number range from M = 0.4{0.7 and dynamic pressures Q = 26{390
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psf (pounds per square foot). Data was preprocessed to remove the linear trend, mean, and outliers. This
ensures that all unwanted low-frequency disturbances, o�sets, trends, and drifts are removed. The goal of
preprocessing is to minimize the e�ect of each source of error on the identi�cation. Coherence between
signals is studied with and without preprocessing. We later perform S2SID with and without preprocessing
in order to ascertain the e�ects of these procedures.

We begin by estimating how much error exists in the data due to the sensor resolution. In particular, the
output resolution is the smallest possible distance between signal measurements. Dividing the output range
by the output resolution gives the dynamic range, which is the maximum number of unique sensor output
values over the output range. The dynamic range can be expressed in e�ective bits by �nding the base-2
logarithm of the dynamic range. The results of this study are shown in Table 1.

If the coherence between two signals is near unity, then the system is linear, and identi�cation with a
linear model structure is justi�ed. In this study, the coherence between most signal pairs is found to degrade
at high frequencies. The signal pairs with the best coherence are from sensors located on the same aircraft
component. For example, the coherence between two sensors located on the vertical stabilizer is shown in
Figure 1(a), while the coherence between a sensor located on the vertical stabilizer and a sensor located on
the right horizontal stabilizer is shown in Figure 1(b). Note that the coherence between the sensors located
on the vertical stabilizer is better. Therefore, for contrast, identi�cation will be done using sensors that are
located near each other, as well as sensor pairs that are distant.

Coherence was checked again after detrending each signal. The best least-squares-�t linear trend was
removed from each signal, resulting in zero-mean data. In the most extreme case, the slope of the trend
line was 0.038. In most cases the trend line was nearly horizontal, and detrending the signal resulted in
only a uniform shift of the signal so that the mean is zero. For these cases, detrending had no e�ect on the
coherence of the signals, as shown in Figure 2. Since detrending has no e�ect on the coherence, it is not
expected to have an e�ect on the identi�ed model.
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III. Problem Formulation and Identi�cation Methods

A. �-Markov Model and Least Squares

The linear system shown in Figure 3 has the scalar input u and scalar outputs y1 and y2. As shown in
Figure 4, we estimate a linear model whose input and output are the signals y1 and y2, respectively. This
linear model, called a pseudo-transfer-function (PTF), has the form

A(q)y2(k) = B(q)y1(k); (1)

where q is the forward shift operator, A and B are polynomials in q, and the degree of A is the unknown
PTF order n.

For all k � 0, � � 1, and each model order nmod � n; the pseudo-input y1(k) and pseudo-output y2(k)

Table 1. Sensor Quantization Analysis and Location

Signal Output Range Output Resolution Bins E�ective Bits Location

(m=s2) (m=s2)

AC01 21.001 0.0261 805 9.653 Left hand horizontal stabilizer tip

front spar, vertical direction

AC02 6.897 0.0257 268 8.066 Left hand horizontal stabilizer tip

rear spar, vertical direction

AC03 16.891 0.0261 647 9.338 Right hand horizontal stabilizer tip

front spar, vertical direction

AC04 28.632 0.0270 1138 10.152 Right hand horizontal stabilizer

tip rear spar, vertical direction

AC05 4.619 0.0259 171 7.418 Vertical stabilizer front spar,

lateral direction

AC06 4.608 0.0251 178 7.476 Vertical stabilizer rear spar,

lateral direction

AC07 4.717 0.0259 188 7.555 Left hand wing tip, front spar,

lateral direction

AC08 5.549 0.0268 214 7.741 Left hand wing tip, rear spar,

lateral direction

AC09 5.582 0.0260 208 7.700 Right hand wing tip, front spar,

lateral direction

AC10 4.417 0.0250 170 7.409 Right hand wing tip, rear spar,

lateral direction

AC103 0.476 0.0251 19 4.248 Aperture acceleration

AC104 0.752 0.0251 30 4.907 Aperture acceleration

AC105 1.579 0.0251 63 5.977 Aperture acceleration

AC106 1.027 0.0251 41 5.358 Aperture acceleration

AC107 0.526 0.0251 21 4.392 Lower 
exible door acceleration

AC108 0.927 0.0251 37 5.209 Rear 
exible door acceleration
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(a) Coherence between sensors AC05 and AC06
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(b) Coherence between sensors AC04 and AC05

Figure 1. Example: coherences between signals.
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Unaltered Signals
Detrended Signals

Figure 2. Coherence between signals AC05 and AC06 before and after detrending

satisfy the �-Markov model

y2(k) =

��1X
j=0

Hjy1(k � j) +

nmod+��1X
j=�

bjy1(k � j)�
nmod+��1X

j=�

ajy2(k � j); (2)

where H0; : : : ;H��1 are Markov parameters of the PTF, that is, if the outputs y2(k � j) for all j 2
f�; : : : ; nmod + � � 1g are zero and the input is the impulse y1(0) = 1; y1(k) = 0 for all k > 0, then
the �rst � outputs of both (1) and (2) are the Markov parameters H1; : : : ;H� of the PTF. Models of the
form (2) are of interest because consistent estimation of H1; : : : ;H� is possible in the presence of arbitrary
output noise using standard least squares [14, 16] when the input y1 is white. Even though the input to
the PTF is not white, we nevertheless use this approach as a convenient technique for estimating Markov
parameters.

The �-Markov model (2) can be expressed as

y2(k)= ����(k) + �y1�y1(k)� �y2�y2(k); (3)
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Linear system
u

y1

y2

Figure 3. The signal u is the unknown input of
the linear system, and y1 and y2 are the measured
outputs of the linear system.

PTF
y1 y2

Figure 4. De�nition of the PTF. The PTF is a
linear system whose input and output are the lin-
ear system outputs y1 and y2, respectively. These
signals are the pseudo-input and pseudo-output,
respectively.

where

��
4
=
h
H0 � � � H��1

i
;

�y1
4
=
h
b� � � � bnmod+��1

i
;

�y2
4
=
h
a� � � � anmod+��1

i
;

��(k)
4
=
h
y1(k) � � � y1(k � �+ 1)

iT
;

�y1(k)
4
=
h
y1(k � �) � � � y1(k�nmod��+1)

iT
;

�y2(k)
4
=
h
y2(k � �) � � � y2(k � nmod � �+ 1)

iT
:

Least squares estimates �̂�;‘, �̂y1;‘, �̂y2;‘ of ��, �y1 , �y2 are given byh
�̂�;‘ �̂y1;‘ �̂y2;‘

i
= argmin

[ ��� ��y1
��y2 ]



	y2;‘� �����;‘� ��y1�y1;‘+
��y2�y2;‘




F
; (4)

where ���; ��y1 ;
��y2 are variables of appropriate size, jj : jjF denotes the Frobenius norm,

	y2;‘
4
=
h
y2(nmod + �� 1) � � � y2(‘)

i
;

��;‘
4
=
h
��(nmod + �� 1) � � � ��(‘)

i
;

�y1;‘
4
=
h
�y1(nmod + �� 1) � � � �y1(‘)

i
;

�y2;‘
4
=
h
�y2(nmod + �� 1) � � � �y2(‘)

i
;

and ‘ is the number of samples.

B. PTF Identi�cation Methods

We now describe several techniques for identifying PTF models.

a) In�nite Impulse Response (IIR): We set � = 1 in (2) and apply the least squares algorithm described
above to estimate �y1 and �y2 . Equation (4) becomesh

�̂y1;‘ �̂y2;‘

i
= argmin

[ ��y1
��y2 ]



	y2;‘� ��y1�y1;‘+
��y2�y2;‘




F
: (5)

This technique can be applied for a range of values of the model order nmod.
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b) Indirect Finite Impulse Response (IFIR): We solve (4) but retain only �̂�;‘. The output of the
resulting FIR PTF model is thus calculated as the convolution between the pseudo-input signal and the
Markov parameters identi�ed, that is,

y2(k) =

��1X
j=0

Hjy1(k � j): (6)

c) Direct Finite Impulse Response (DFIR): In this case we set �y1 and �y2 in (3) to zero and optimize
over �� only. The output y2 is described as

y2(k) =

��1X
j=0

H 0jy1(k � j): (7)

We de�ne

�0�
4
=
h
H 00 � � � H 0��1

i
; (8)

where �0� is estimated using the optimization

�̂0�;‘ = argmin
[ ��0� ]



	y2;‘ � ��0��y1;‘




F
: (9)

d) Eigensystem Realization Algorithm (ERA): The ERA algorithm constructs an IIR model by com-
puting the singular value decomposition of the Hankel matrix constructed from the Markov parameters
of the system [17]. We estimate the Markov parameters using (4), and then we apply the ERA algorithm
to obtain an estimated PTF in state space form.

e) Multi-Input, Single-Output (MISO) PTFs: For reasons discussed in [13], we consider up to four
inputs and a single output PTF. For example, for the case of two inputs and one output (2ISO), we assume
that the PTF has the form shown in Figure 5, and we apply the identi�cation techniques described above
to the 2ISO case.

PTF

y1

y3

y2

Figure 5. The signals y1 and y3 are the inputs and y2 is the output of the 2ISO PTF.

C. Evaluating the accuracy of identi�ed model

We evaluate the accuracy of the identi�ed models by calculating the prediction error (PE) de�ned by

"
4
= ky2 � y02k ; (10)

where y2 is the computed PTF output and y02 is the pseudo-output data.

In some cases the identi�ed PTF is unstable. This may be a consequence of nonminimum-phase zeros in
the transfer function, or it may be a spurious consequence of noise or nonlinearity. To quantify the accuracy
of the �t when the identi�ed model is unstable, we use both the pseudo-input data and the pseudo-output
data and use the identi�ed model to compute a one-step-ahead prediction. The error in this case is the norm
of the di�erence between the measured pseudo-output and the computed pseudo-output. The computed
pseudo-output is not used subsequently in the simulation. We de�ne this error as the all-data error (ADE)
since both pseudo-input data and pseudo-output data are used to simulate the identi�ed model.
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D. Choosing the model order nmod

To estimate the model order, we begin with an initial estimate n̂ of n that exceeds the model order n.
We set � = 2n̂�1 in (4) and obtain the estimated Markov parameters to construct the Markov block-Hankel
matrix

H(H)
4
=

2664
H1 � � � Hn̂

:::
: : :

:::

Hn̂ � � � H2n̂�1

3775 ; (11)

where H is the vector or matrix of Markov parameters de�ned as

H
4
=
h
H0 � � � H2n̂�1

i
; (12)

and H(�) is a linear mapping that constructs a Markov block-Hankel matrix from the components of the
vector H except for H0. The rank of H(H) is equal to the McMillan degree of the PTF.

We compute the singular values of H(H) and look for a large decrease in the singular values. For noise-
free data, a large decrease in the singular values is evident. Simulation results show that, even with a small
amount of noise, the large decrease in the singular values disappears and thus the problem of estimating
the model order becomes di�cult. The nuclear-norm minimization technique given in [19, 20] provides a
heuristic optimization approach to this problem. In particular, de�ne the optimization parameter vector Ĥ
as

Ĥ
4
=
h
Ĥ0 � � � Ĥ2n̂�1

i
: (13)

To estimate the model order we solve the optimization problem

minimize
Ĥ




H(Ĥ)





N
(14)

subject to



Ĥ �H




F
� 
; (15)

where k � kN denotes the nuclear norm, and 
 is varied from zero to kH(H)kF. For each value of 
, we
�nd the optimal Ĥ(
), and then we construct the Markov block-Hankel matrix H(Ĥ(
)) and compute its
singular values. We de�ne the �-rank of a matrix to be the number of nonzero singular values after setting
all the singular values below � to zero. If, for a relatively wide range of 
, the same �-rank value is obtained,
then we consider it to be the McMillan degree of the system of interest.

The following example illustrates this method.

Example III.1. Consider the second-order transfer function

G(q) =
(q + 0:5)(q + 0:3)

(q� 0:3)(q� 0:8)
: (16)

We use a gaussian input and add input and output noise with signal-to-noise ratio of 10. Let H 0 and H
be vectors of Markov parameters obtained from (4) with noise-free data and data corrupted with noise,
respectively. We set n̂ = 20 and solve the optimization problem (14), (15) for a range of 
 from 0 to
kH(H)kF. For each value of 
, we �nd the optimal Ĥ(
), and then we construct the Markov block-Hankel
matrix H(Ĥ(
)) and compute its singular values. We set � = 1 � 10�5, that is, all singular values below
this threshold are set to zero, which yields the �-rank for each 
. Figure 6 shows a plot of �-rank(H(Ĥ(
)))
versus 
. We note that, for a relatively large range of 
, we have �-rank(H(Ĥ(
))) = 2, which is in fact the
order of the system. Figure 7 shows the singular values for noise-free data (triangles), data corrupted with
noise (circles), and after nuclear norm minimization (NNM) (squares) for 
 = 0:313. This value of 
 was
chosen from Figure 6 for which �-rank(H(Ĥ(
))) = 2. Note the relatively large gap after the second singular
value after performing nuclear norm minimization.
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Figure 6. �-rank of H(Ĥ(
)) versus 
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IV. Examples with SOFIA Accelerometer Data

In this section, we apply the identi�cation methods described above to the SOFIA accelerometer data.
For the �rst two examples, we consider the following cases:

a) Pseudo-input is AC05 and pseudo-output is AC06.

b) Pseudo-input is AC04 and pseudo-output is AC06.

c) Pseudo-inputs are AC04 and AC05, and pseudo-output is AC06.

Example IV.1. Consider the IIR model. Figure 8 shows PE-versus-nmod plots for the three cases above.
Note that, for the IIR model, PE decreases as nmod increases. Also, note that detrending the data reduces
the PE in all cases.

Example IV.2. To construct an IIR model, we apply the nuclear norm minimization method to choose
the model order nmod. For each case, we choose n̂ = 20 and set the singular value threshold to � = 1� 10�5,
where 
 is varied from 0:1 to 2. Figures 9, 10, and 11 show plots of �-rank(H(Ĥ(
))) versus 
 for cases a),
b), and c), respectively. Note that the three �gures do not give de�nitive values for the rank due possibly to
high levels of noise. However, we choose nmod = 2 for case a), nmod = 1 for case b), and nmod = 12 for case
c) since they exhibit the widest range of 
 for each case.

Table 2 shows the smallest PE value obtained for the cases above using the identi�cation techniques
discussed in the previous section. We note that both IFIR and DFIR achieve the smallest error for cases a)
and c). IIR shows poor behavior for all three cases. Case b) identi�cation is the worst of the three cases,
which is due to the poor coherence between AC04 and AC06.

Table 2. Identi�cation methods comparison, error calculation is based on PE

Case a) Case b) Case c)

IIR 42.9467 37.8612 39.6049

IFIR 18.4114 38.0624 17.9470

DFIR 18.0532 37.6029 17.4933

ERA 28.1186 41.0648 27.1831
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Figure 8. IIR PTF Identi�cation with error " calculated as PE. (a) Pseudo-input is AC05 and pseudo-output
is AC06 (b) Pseudo-input is AC04 and pseudo-output is AC06 (c) Pseudo-inputs are AC04 and AC05, and
pseudo-output is AC06.
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Figure 9. Plot of �-rank of H(Ĥ(
)) versus 
 for
case a), where � = 1 � 10�5. Note that this plot
does not give a de�nitive value for the rank due
possibly to high levels of noise. However, nmod = 2
covers the widest range of 
 for this case.
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Figure 10. Plot of rank of H(Ĥ(
)) versus 
 for
case b), where � = 1 � 10�5. Note that this plot
does not give a de�nitive value for the rank due
possibly to high levels of noise. However, nmod = 1
covers the widest range of 
 for this case.

Example IV.3. In this example, we explore MISO FIR ID on a subset of accelerometer signals from the
SOFIA aircraft. Seventy-�ve MISO DFIR models (with � = 300) are �t to detrended signals AC03, AC04,
AC05, AC06, and AC07 for all possible input/output combinations. For each model �t, an error measurement
is obtained by dividing the model’s PE by the maximum amplitude of the measured PTF output signal.
This normalization is performed to facilitate comparisons between models with di�erent output amplitudes.

Tables 3, 4, and 5 summarize the results obtained in this example. Table 3 shows the error for each
SISO �t sorted left-to-right by error size. Table 4 shows the best possible SISO and MISO �ts (and their
corresponding error) for each output and for increasing numbers of inputs. For comparison, Table 5 shows
the worst possible �ts for the same categories as Table 4. Note that best possible and worst possible are
de�ned in terms of prediction error.
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Figure 11. Plot of �-rank of H(Ĥ(
)) versus 
 for case c), where � = 1�10�3. Note that this plot does not give a
de�nitive value for the rank due possibly to large levels of noise. However, we choose nmod = 12 since it covers
the widest range of 
 for this case.

By examining Tables 3, 4, and 5, the following observations can be made:

i) The best identi�cation results are obtained between accelerometers located near each other.

ii) Adding more inputs may reduce or increase the error.

iii) The best MISO �ts have a 4% lower error than the best SISO �ts.

iv) For a given output, the best possible collection of m-inputs includes the best possible collection of
(m� 1)-inputs.

v) For a given output, the best possible collection of m-inputs are often the m best SISO inputs.

Figure 12 shows the simulated output of a 2ISO PTF exhibiting a good �t along with the measured data.
For comparison, Figure 13 shows the simulated output of a 2ISO PTF exhibiting a poor �t.

Table 3. Error for each SISO �t. The table is sorted left-to-right by error size.

1 Input 1 Input 1 Input 1 Input

AC03 Output AC04 (6.33) AC06 (15.04) AC05 (15.22) AC07 (16.38)

AC04 Output AC03 (9.05) AC05 (13.28) AC06 (13.39) AC07 (13.86)

AC05 Output AC06 (6.83) AC04 (14.42) AC03 (14.71) AC07 (15.95)

AC06 Output AC05 (6.85) AC04 (15.13) AC03 (15.41) AC07 (17.05)

AC07 Output AC05 (17.73) AC06 (17.99) AC03 (18.06) AC04 (18.17)

Table 4. Best possible SISO and MISO �ts (and corresponding error) for each category speci�ed by the row
and column. For a multi-input model, the inputs consist of the input in the corresponding column and all
inputs to its left.

1 Input 2 Input 3 Input 4 Input

AC03 Output AC04 (6.33) and AC06 (6.08) and AC07 (6.19) and AC05 (6.42)

AC04 Output AC03 (9.05) and AC05 (9.11) and AC06 (9.10) and AC07 (9.93)

AC05 Output AC06 (6.83) and AC04 (6.72) and AC03 (6.78) and AC07 (6.87)

AC06 Output AC05 (6.85) and AC04 (6.79) and AC03 (6.67) and AC07 (6.87)

AC07 Output AC05 (17.73) and AC06 (18.42) and AC03 (19.26) and AC04 (20.28)
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Table 5. Worst possible SISO and MISO �ts (and corresponding error) for each category speci�ed by the row
and column. For a multi-input model, the inputs consist of the input in the corresponding column and all
inputs to its left.

1 Input 2 Input 3 Input 4 Input

AC03 Output AC07 (16.38) and AC05 (15.69) and AC06 (15.71) and AC04 (6.42)

AC04 Output AC07 (13.86) and AC06 (13.81) and AC05 (14.05) and AC03 (9.93)

AC05 Output AC07 (15.95) and AC03 (15.48) and AC04 (15.48) and AC06 (6.87)

AC06 Output AC07 (17.05) and AC03 (16.24) and AC04 (16.10) and AC05 (6.87)

AC07 Output AC04 (18.17) and AC03 (19.19) and AC06 (19.73) and AC05 (20.28)

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500
−8

−6

−4

−2

0

2

4

6

8

Step

 

 
AC03 Data
Model Output

Figure 12. Example of a good �t: AC04 and AC06 input to AC03 output.
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Figure 13. Example of a poor �t: AC06 and AC07 input to AC04 output.

Example IV.4. From Example IV.2 above we �nd that the most accurate model �ts, as determined by
PE are obtained from least-squares optimization of FIR time-series models. However, these investigations
provided an unexpected feature illustrated in Figure 14. Speci�cally, Figure 14 shows that the PE decreases
as the PTF output signal is delayed relative to the PTF input. The reason for this surprising e�ect becomes
clear upon plotting the impulse response of the identi�ed FIR model. As shown in Figure 15, the impulse
response of the FIR model has a signi�cant noncausal component, plotted to the left of the chosen delay.
To con�rm that the noncausal component of the identi�ed FIR impulse response is contributing to the PE,
we remove the noncausal component and then re-include it one impulse parameter at a time; this is done
by including the impulse response parameters one at a time from the left of the chosen delay in Figure
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Figure 14. Prediction Error for an identi�ed FIR model using DFIR as a function of output delay. Delaying
the output data relative to the input data improves the accuracy of the identi�ed FIR model as measured by
the PE criterion.
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Figure 15. Impulse response of an identi�ed FIR model with a delay of 298 steps applied to the output data.
The surprising feature of this impulse response is that it has a signi�cant noncausal component, which appears
to the left of the delay of 298 steps.

15. Figure 16 shows that the PE decreases as noncausal impulse response parameters are included in the
identi�ed FIR model.
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Figure 16. The PE criterion is plotted here as an increasing number of noncausal impulse response parameters
are included in the model. This plot con�rms that the noncausal component of the estimated model enhances
the prediction accuracy.
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V. Examples with Simulated Mass-Spring-Damper System

In order to better understand the phenomena seen with the SOFIA data, the identi�cation techniques
described in Section III.B are applied to the mass-spring-damper system shown in Figure 17.
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Figure 17. Mass-spring-damper system. This system is used to produce synthetic data for investigating
phenomena seen with the SOFIA data. By adjusting the parameters, stable and unstable PTFs can be
constructed.

Example V.1. As seen in Example IV.2, FIR models can produce a much smaller PE than IIR models.
To investigate this phenomenon, we simulate the mass-spring-damper system shown in Figure 17 with the
parameters m1 = 4 kg, m2 = 3 kg, m3 = 2 kg, k1 = 99 N/m, k2 = 28 N/m, k3 = 310 N/m, k4 = 101 N/m,
c1 = 0:9 N-s/m, c2 = 5:1 N-s/m, c3 = 0:8 N-s/m, c4 = 5:2 N-s/m, and discretization time step Ts = 0:2 s.
The system is simulated with a white-noise input force f to obtain the velocities v1 and v3 of mass 1 and
mass 3, respectively. Several models are then identi�ed for the PTF from v3 to v1. These models include
IIR models with model orders n between 1 and 8, and FIR models with impulse response lengths � between
1 and 301. For each model, PE is calculated. These PEs are shown by the circle-markers in Figure 18. The
entire example is then repeated, but with output noise (SNR = 108) added to the simulation. The resulting
prediction errors are shown by the x-markers in Figure 18.

Both IIR and FIR models perform equally well provided that nmod and � are set to a suitable value.
However, the IIR �ts produced good results only for nmod = 4, whereas the FIR �ts produce good results
for all su�ciently high �.

This example reveals a possible explanation for why FIR models perform better than IIR models on the
SOFIA data. It is possible that we cannot �nd the correct model order of the SOFIA PTF’s, and therefore
we cannot construct an IIR model of the true order n. However, we are able to construct a suitable FIR
model because we need only to select a su�ciently large value of � without specifying nmod.
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Figure 18. Prediction error of various IIR and FIR models identi�ed from data obtained by simulating the
system shown in Figure 17. Prediction errors for IIR models with n > 4 are extremely large and are not shown.
A low PE is obtained for IIR models with n = 4 and for FIR models with su�ciently large �.
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Example V.2. As seen in Example IV.4, the prediction error in FIR models can often be reduced by
introducing a delay to the PTF output. This output delay e�ectively allows the FIR model to be noncausal.
To investigate the origin of this property, we again simulate the mass-spring-damper system shown in Figure
17 using the same parameters as Example V.1 and discretization time step Ts = 0:2 s. The system is simulated
with a white-noise input force f to obtain the velocities v1 and v3 of mass 1 and mass 3, respectively. For
this system, the PTF from v3 to v1 is stable. The v1 data from the simulation is then delayed by 10 steps,
and an FIR model was identi�ed from v3 to the delayed v1. The resulting impulse response of the identi�ed
FIR model is shown in Figure 19. Note that the �rst 10 impulse response values are zero. This indicates
that the identi�ed FIR model is causal.

The example is then repeated with m3 set to 20 kg. This causes the PTF from v3 to v1 to be unstable.
This may seem surprising since the mass-spring-damper system is stable and both signals v1 and v3 are
bounded. However, the transfer function from f to v3 in this case is nonminimum phase; that is, it has zeros
outside of the unit circle. Therefore, the PTF from v3 to v1 is unstable.

The system is simulated with a white-noise input force f to obtain the velocity signals v1 and v3. The
data v1 from the simulation is then delayed by 10 steps, and an FIR model is identi�ed from v3 to the
delayed v1. The resulting impulse response of the identi�ed FIR model is shown in Figure 20. Note that the
�rst 10 impulse response values are nonzero. This indicates that the identi�ed FIR model is noncausal.

This example suggests that the best FIR model of a stable PTF is obtained with a causal FIR model,
whereas the best FIR model of an unstable PTF is obtained with a noncausal FIR model. Therefore, a
possible explanation for why the PTF’s in the SOFIA data are best identi�ed with noncausal FIR models is
that at least some of the SOFIA PTF’s may be unstable.
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Figure 19. PTF identi�cation is applied to the structure in Figure 17 with the parameters m1 = 4 kg, m2 = 3
kg, m3 = 2 kg, k1 = 99 N/m, k2 = 28 N/m, k3 = 310 N/m, k4 = 101 N/m, c1 = 0:9 N-s/m, c2 = 5:1 N-s/m, c3 = 0:8
N-s/m, c4 = 5:2 N-s/m, and discretization time step Ts = 0:2 s. A random white noise force excitation is applied
to m2. The pseudo-input is the velocity of m3, and the pseudo-output is the velocity of m1: The estimated
PTF impulse response is found to be causal.

VI. Conclusions

In this paper we identi�ed linear SISO and MISO pseudo-transfer functions (PTFs) using data from the
NASA SOFIA testbed. Detrending was applied to the signals in order to remove linear trends. We discussed
several identi�cation techniques for constructing PTFs, including IIR, direct and indirect FIR, and ERA. We
found that FIR gives the best �ts. We showed that using multiple inputs may either increase or reduce the
error compared to using single-input �ts. Finally, we studied the e�ect of output delay on improving the �ts
obtained and found that the best FIR �ts have a signi�cant noncausal component. We showed using stable
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Figure 20. PTF identi�cation is applied to the structure in Figure 17 with the parameters as in Figure 19 except
that now m3 = 20 kg. In this case, the estimated impulse response is found to be noncausal. The noncausal
component of the impulse response is due to the fact that one of the transfer functions from excitation to
measurement is nonminimum phase, and therefore the PTF from the pseudo-input to the pseudo-output is
unstable. The instability of the PTF induces a noncausal component in the PTF impulse response.

and unstable PTFs constructed from a lumped mass-spring-damper system that the noncausal component
is due to the fact that the identi�ed PTFs are unstable.
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