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Abstract— We consider a tracking problem for a car moving
at a constant speed on a piecewise-circular road with known
radius-of-curvature. Retrospective-cost-based adaptive control
is applied under various off-nominal conditions, including
unknown bank and inclination angles. A preview estimate of the
time-to-departure, based on radius-of-curvature information, is
used to define a performance variable.

I. INTRODUCTION

Each year in the U.S., approximately 40% of speeding-

related fatalities (about 5,000) and 20% of non-speeding

related fatalities (about 5,000) occur on a curved portion

of the road [1]. Fatality on a curve can be due to run-

off-the-road crashes, crashing into moving or nonmoving

objects, rollovers, and multiple event accidents. Causes of

these accidents include the driver’s panic actions, speeding,

the demand of fast reaction time, the driver’s inability to

adapt to sudden changes, and road conditions.

Accidents on curves can potentially be reduced through

electronic controls that can exploit the handling capability

of the vehicle. Knowledge of the road geometry (curvature,

bank, and inclination) is essential, as is knowledge of the

road conditions (coefficient of friction). With this informa-

tion, the goal is to determine and maintain a safe path over

which electronic controls can guide the vehicle. Research

along these lines is reported in [2, 3].

A challenging issue within this context is the extent to

which the control system can augment or override decisions

of the driver. These issues are important for future imple-

mentation but are outside the scope of the present paper.

In the present paper we consider a tracking problem for a

car moving at a constant speed. We assume that radius of cur-

vature information is available at each point along a road that

is piecewise straight and circular. We assume that the only

control input is the steering angle. In addition, we assume

that the road friction is sufficient to avoid skidding. Under

these assumptions, we adopt an adaptive control approach

that incorporates both feedback and feedforward preview

inputs. The feedback control assumes that the displacement

and velocity of the car from the center of its lane are known;

however, neither yaw rate nor roll angle are assumed to be

known.

The adaptive control method that we apply is based on

retrospective cost optimization (RCO) as discussed in [4, 5].
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RCO-based adaptive control is a sampled-data adaptive con-

trol technique that requires knowledge of the relative degree,

the first nonzero Markov parameter, and the nonminimum-

phase zeros of the system; otherwise, RCO requires no

matching assumptions on the command or the disturbance.

The required modeling information is provided by system

identification methods; no additional knowledge about car

parameters such as cornering stiffness or moment of inertia

is required. RCO-based adaptive control can use multiple

measurements, which can represent both feedback and feed-

forward signals. We take advantage of this flexibility by

including a preview estimate of time-to-departure, which is

based on current and future radius-of-curvature information.

Various approaches to steering control that incorporate

road preview are reported in [6–8]. Preview control is com-

bined with frequency-shaped linear quadratic (FSLQ) control

theory in [6]. In [7], the road curvature is modeled as low-

pass-filtered Gaussian white noise, and time-invariant LQR is

extended to preview control. Finally, [8] applies the optimal

preview control algorithm presented in [9] to automatic lane-

tracking control.

Since RCO-based adaptive control requires only limited

modeling information, we implement this controller in simu-

lation using only data obtained from the simulation platform.

In particular, we perform Markov parameter identification

using the CarSim simulation environment [10], and then

implement the RCO-based adaptive control law within the

CarSim environment. No other vehicle modeling is required

for this implementation. We consider various off-nominal

conditions, including unknown bank and inclination angles.

II. PROBLEM SETUP

We consider the problem of having a car track a specified

road while moving at a constant speed. We assume that the

radius-of-curvature at each point along the road is known

in advance. This information facilitates the use of preview

control within a feedforward control setting. However, the

bank and inclination of the road are unknown. For simplicity,

the road is piecewise circular, which means that it consists

of segments that are either straight or arcs of circles. We

assume that the road is free of bumps and the ambient wind

is zero.

The only available control input is assumed to be the

front wheel steering. The speed of the car is maintained at

a given constant value without explicit reference to throttle

or braking commands. For feedback control we assume that

the lateral displacement of the car from the center of lane

and its derivative are known.
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We model the problem as the linear discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu and

k ≥ 0. The input u denotes the steering angle, while the

exogenous signal w represents the curvature, bank angle, and

inclination angle along the road. Our goal is to minimize the

performance vector z(k), which consists of the displacement

h from the center of the lane, and its derivative ḣ. As

described in [4], adaptive algorithm requires specific, limited

modeling information relating to (1)-(3).

Let c denote the center of mass of the car, OA denote a

point on the center of the lane, FA be a road-fixed frame, and

FB be a car-fixed frame, as shown in Figure 1. Let
⇀
r c/OA

denote the position of c relative to OA, and
⇀
v c/OA/A denote

the velocity with respect to FA. We resolve these vectors as
⇀
r c/OA

∣

∣

∣

A
=

[

h

d

]

,
⇀
v c/OA/A

∣

∣

∣

A
=

[

ḣ

ḋ

]

,
⇀
v c/OA/A

∣

∣

∣

B
=

[

vx

vy

]

. The speed of the car Vcar is then given by

Vcar =
√

v2
x + v2

y =

√

ḣ2 + ḋ2 =
vx

cos(β)
, (4)

where β is the sideslip angle.

We assume that measurements of h and ḣ are available,

so that y(k) = z(k) =
[

h(k) ḣ(k)
]T

. When we use

preview, we assume that measurements of vx and β are

available as well as knowledge of the radius-of-curvature

and road width at each point on the road surface. We then

use this data to extrapolate and thus estimate the time-to-

departure Tdep, and define the preview variable ξTdep
, which

is further discussed in Section III. The performance vector

is then extended to z(k) =
[

h(k) ḣ(k) ξTdep
(k)

]T
. We

do not assume that additional output measurements such as

yaw rate or roll angle are available.

Fig. 1. Illustration of the car-road model on a straight track.

The simulation architecture is shown in Figure 2. In order

to apply RCO-based adaptive control, we require specific

modeling information, which we obtain from parameter

estimation based on simulation. In practice, this modeling

data would be obtained from road tests. For identification

and implementation of RCO-based adaptive control, CarSim

is interfaced with Simulink. Since all required modeling data

are obtained by system identification methods, there is no

need to specify the state space matrices in (1)–(3). RCO-

based adaptive control is described in detail in [4].

Fig. 2. Block diagram of the control architecture. The retrospective cost
optimization and extrapolation logic are handled by Matlab and Simulink,
while the car-road model and the road database are provided by Carsim.

III. DEFINITION OF THE PREVIEW VARIABLE

In this section, we construct the preview variable ξTdep
,

which requires an estimate of Tdep. The speed Vcar, the

radius-of-curvature ρ, and width of the track 2a are assumed

to be known and constant, as shown in Figure 3.

Fig. 3. Illustration of the variables used to estimate Tdep on a curve with
constant radius of curvature and road width.

We define the estimated preview tracking error hest(k, T )
by

hest(k, T )
△
= ((ρ + h(k))2 + (VcarT )2

− 2(ρ + h(k))VcarT cos(
π

2
+ arcsin

ḣ(k)

Vcar

))−1 − ρ (5)

where T is the preview period. For a straight road, hest(k, T )
is given by

lim
ρ→∞

hest(k, T ) = ḣ(k)T + h(k).

Next, ξT (k) is defined by

ξT (k)
△
= hest(k, T )f(T ), (6)

where f(T ) is a monotonically decreasing positive nonnega-

tive function for T > 0, and limT→∞ f(T ) = 0. We choose

f(T ) = e−T 2

. We then estimate the time-to-departure Tdep

as the minimum positive Tdep that satisfies

|hest(k, Tdep)| = a.
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Finally, we obtain the preview variable ξTdep
(k) by setting

T = Tdep in (6), so that

ξTdep
(k) = hest(k, Tdep)f(Tdep). (7)

Since f(Tdep) is monotonically decreasing and nonnegative

for all Tdep, minimizing |ξTdep
(k)| maximizes Tdep. Note

that Tdep → ∞ as ξTdep
(k) → 0.

We now demonstrate the extrapolation of Tdep under the

assumption that ρ is constant. Suppose the vehicle is tracking

the centerline of the curved track shown in Figure 3 with the

present tracking error h and its derivative ḣ. Depending on

ρ, a, and the direction of
⇀
v c/OA/A, the vehicle leaves the

road from either the inner or outer edge. It can be shown

that the car departs from the inner edge of the road if both

ḣ < 0 (8)

and

0 < cos−1

(

|ḣ|

Vcar

)

≤ sin−1

(

ρ − a

ρ + h

)

. (9)

Otherwise, the vehicle leaves from the outer edge. Note that,

if
⇀
v c/OA/A is constant and ρ < ∞, then the vehicle always

leaves the track in finite time.

If (8) and (9) both hold, then Tdep is given by the minimum

positive solution of

V 2
carT

2 − 2(ρ + h)|ḣ|T + (ρ + h)2 − (ρ − a)2 = 0.

Otherwise, Tdep is the positive solution of

V 2
carT

2 − 2(ρ + h) cos(Ψ(ḣ, Vcar))VcarT + (ρ + h)2

− (ρ + a)2 = 0,

where

Ψ(ḣ, Vcar) =
π

2
+ arcsin

ḣ

Vcar

.

IV. MARKOV PARAMETER IDENTIFICATION

We estimate Hi offline through least square identifica-

tion in conjunction with a µ-Markov model structure [11],

where Hi represents the ith Markov parameter from u to

y =
[

h ḣ
]T

. For identification, we apply a white noise

steering input to the vehicle moving at 90 km/h along a

straight road for 100 sec. We sample the input and outputs

h and ḣ with a sample interval Ts of 0.01 sec, yielding

10001 samples for each signal. We then apply least squares

µ-Markov identification to the sampled signals to obtain

estimates of Hi, each of which is a 2 × 1 matrix. Various

identification methods are compared in [11].

Next, we estimate the Markov parameters for ξTdep
. Let

Hh,i denote the estimate of the ith Markov parameter for h.

Then, the estimate of the ith Markov parameter for ξTdep
is

HξTdep
,i = Hh,τ+if(Tdep), (10)

where τ
△
= ⌊

Tdep

Ts
⌋. Therefore, the Markov parameters for

ξTdep
are estimated by shifting Hh,i back in time by Tdep

seconds and scaling by f(Tdep).
The estimates of Hh,i and Hḣ,i are illustrated in Figures

4 and 5. Note that Hh,i is almost linear, particularly for

i ≥ 100. Therefore, we approximate Hh,τ+i by the least

squares line fit to reduce implementation complexity.
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Fig. 4. Markov parameter estimates for Hh,i, obtained through µ-Markov
least-squares estimation.
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Fig. 5. Markov parameter estimates for H
ḣ,i

, obtained through µ-Markov

least-squares estimation.

V. CONTROLLER PARAMETER TUNING

In this section, we investigate by simulations the least

amount of Markov parameter estimates µ that is required

in order to achieve closed-loop stability. We also present

simulation results with various values of nc and µ, and

compare the transient and tracking performances.

We consider the track shown in Figure 6. We define the

output and performance vectors y = z
△
=
[

h ḣ ξTdep

]T
.

We take the adaptive controller order nc = 1, learning rate

α(k) = 2000, and R1 = diag(20, 20, 1) [4].

We first set µ = 1. We conclude by simulation that the

vehicle cannot follow the track when µ = 1.

Now, we choose µ = 2 and keep the other parameters

constant. Figure 7 shows that the performance variables do

not diverge, although the tracking error is large.

To obtain better tracking, we now vary nc and µ. Figure

8 shows that regardless of µ, we get poor transients as we

increase nc. Furthermore, nc does not affect the tracking

error significantly for µ = 10, 15 and 20. Therefore, we

conclude that nc = 1 yields the best transient performance.

On the other hand, increasing µ by keeping nc constant leads

to worse transient behavior, but improved tracking error. For

nc = 1, using µ = 15 yields the best performance, although

decreasing µ to 10 yields similar results.
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Fig. 6. Spiral loop track. Starting from the origin, the track spirals inward
first, then outward. After two 180-degree curves, the track ends at the origin.
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Fig. 7. Input and output plots with µ = 2 on spiral track.
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Fig. 8. Simulation results obtained by varying the values of nc and µ

and keeping the remaining parameters constant. Each plot in a given row
corresponds to the same µ, and each plot in a given column corresponds to
the same nc.

VI. NUMERICAL EXAMPLES

We now illustrate the performance of RCO-based adaptive

control for various road types. For preview control we

extrapolate Tdep and define ξTdep
under the assumption that

ρ is constant, as shown in Section III. The only exception is

the last example, where we use preview information about ρ

to extrapolate Tdep. It is assumed in each example that the

car is moving at constant longitudinal speed vx = 90 km/h.

A. Quasi-Circular Track

We now consider a flat, quasi-circular closed track con-

sisting of six different circular arcs with radii 100, 150, and

250 m in the horizontal plane, Preview is not used, and thus

y = z =
[

h ḣ
]T

. We take nc = 1, α(k) = 2000 for all

k ≥ 0, and R1 = diag(1, 20).
The closed-loop responses are shown in Figure 9. Note

that the tracking error does not exceed 1.25 m, and decreases

as the car repeats the track. The controller gains plotted in

Figure 10 show that the algorithm adapts to different radii

of curvature.
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Fig. 9. Steering input, closed-loop responses, and road radius of curvature.
These results are obtained for the simulation on the quasi-circular track.
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Fig. 10. These traces show the time histories of the controller gains. The
components adapt to various radii of curvature. These results are obtained
for the simulation on the quasi-circular track.

B. Banked Road

We now consider the track shown in Figure 11. This

track contains banked sections with bank angles specified

as percentages shown in Figure 11. Colors indicate the bank

direction. The simulation starts from the origin, and the car

starts by moving to the right.

We first do not use preview variable, so that y = z =
[

h ḣ
]T

. We take nc, α(k), and R1 as in Section VI-A.

Figure 12 shows that the car remains on the road with a

maximum tracking error about 1 m. Moreover, the steering

input and ḣ response are oscillatory.

Now, preview variable is added to the performance vector,

so that z =
[

h ḣ ξTdep

]T
. Tdep is extrapolated under

constant ρ assumption. We take nc = 1, α(k) = 2000
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Fig. 11. This track contains banked sections. Bank angles are illustrated
with percentages and colors. Black represents the higher edge, while gray
represents the lower edge of the road; red means the road is not banked.
Radii of curvature on this track range from 100 m to 500 m.
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Fig. 12. Steering input and closed-loop responses for the banked road of
Figure 11. Preview is not used in this simulation.

for all k ≥ 0, and R1 = diag(20, 20, 1). The closed-loop

responses of h, ḣ, and ξTdep
are presented in Figure 13.

The oscillatory behavior of u(k) and ḣ disappears, while the

maximum tracking error decreases to about 0.7 m.
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Fig. 13. Steering input and closed-loop responses for the banked road of
Figure 11. Preview variable is used in this simulation.

C. Inclined Road

Consider the track shown in Figure 14. This track has

inclined sections as shown in Figure 15. The simulation starts

from the origin and the car starts moving to the right. We

first do not use the preview variable, and take nc, α(k), and

Fig. 14. Inclined road. This track contains inclined sections as shown in
Figure 15. The radii of curvature on this track range from 100 m to 168 m.

Fig. 15. Elevation in the road with respect to the distance s along the
road, where s = 0 at the origin of the inclined track shown in Figure 14.

R1 as in Section VI-A. Figure 16 shows that the car is kept

on track with a maximum tracking error of about 1.2 m. We

also note oscillations in u(k) and ḣ.
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Fig. 16. These simulation results are for the inclined road of Figures 14
and 15. Preview is not used in this simulation.

Preview variable is now added to the performance vec-

tor, and Tdep is estimated under the assumption that ρ is

constant. We take nc, α(k) as in Section VI-A, and R1 =
diag(20, 20, 1). The closed-loop responses are presented

in Figure 17. The transient behavior of u(k) and ḣ are

improved compared to Figure 16. We also note a significant

improvement in the overall tracking error. Furthermore, as

shown in Figure 18, preview control drives the car on the

inside of the curve unlike control without preview.

D. Single Curve

We now consider a section of a track that consists of a

straight road, followed by a curve with ρ = 100 m.
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Fig. 17. These simulation results are for the inclined road of Figures 14
and 15. Preview variable is used in this simulation.
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Fig. 18. Tracking on a curved section of the inclined road. The adaptive
control drives the car on the inside of the curve with a smaller tracking
error when we include the preview variable.

First, we do not use the preview variable, and we set the

control parameters as in Section VI-A. Figure 19 shows that

the control does not steer the car until the curve begins. The

vehicle is driven on the outside of the curve with a maximum

tracking error of about 0.5 m.

Now, we include the preview variable to the performance

vector, and we extrapolate Tdep using current and preview ρ

information. We set the control parameters as in Section VI-

C. The control starts steering to the inside of the track before

the curve begins, and keeps the vehicle on the inside of the

curve, as shown in Figure 19. The tracking error remains

less than 0.25 m throughout the simulation.
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Fig. 19. Trajectories with and without preview on the single curve track.

VII. CONCLUSIONS

We applied retrospective-cost-optimization-(RCO)-based

adaptive control to the problem of track following of a

car moving at a constant speed. For identification and im-

plementation of RCO-based adaptive control we interfaced

CarSim with Simulink. We then illustrated the performance

of the RCO algorithm for track following on a vehicle model

obtained from Carsim, under various off-nominal conditions

such as unknown bank and inclination angles. We applied

preview control through time-to-departure extrapolation and

compared the performance with and without preview. Future

work includes robustness analysis under various vehicle and

road conditions, as well as control through both steering and

braking.
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