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We extend the inertia-free continuous control law for spacecraft attitude tracking derived
in prior work to the case of three axially symmetric reaction wheels. These wheels are
assumed to be mounted in a known and linearly independent, but not necessarily orthog-
onal, con�guration with an arbitrary and unknown orientation relative to the spacecraft
principal axes. We analyze the stability and performance of the closed-loop system under
scale-factor sensor and actuator uncertainty. Finally, we present a numerical study of the
algorithm’s robustness to sensor noise.

I. Introduction

In spacecraft applications it is often expensive to determine the mass properties with a high degree of
accuracy. To alleviate this requirement, the control algorithms given in refs.1,2 require no prior modeling of
the mass distribution. These algorithms incorporate internal states that can be viewed as estimates of the
moments and products of inertia; however, these estimates need not converge to the true values, and in fact
do not converge to the true values except in cases of su�ciently persistent motion.

The results of ref.1 are based on rotation matrices in place of quaternions as used in refs.2{4 Quaternions
provide a double cover of the rotation group SO(3), and thus, when used as the basis for a continuous control
algorithm cause unwinding, that is, unnecessary rotation away from and then back to the desired physical
attitude.5 To avoid unwinding while using quaternions it is thus necessary to resort to discontinuous control
algorithms, which introduce the possibility of chatter due to noise as well as mathematical complications.6{8

On the other hand, rotation matrices allow for continuous control laws but introduce multiple equilibria.
The additional equilibria that do not represent the desired equilibrium are rendered saddle points by the
closed-loop system, and thus present no inherent di�culties.

The goal of this paper is to extend the inertia-free control law developed in ref.1 to include reaction-
wheel actuation and additional realistic e�ects. We derive the equations of motion for such a satellite and
demonstrate the performance of the modi�ed algorithm for slew and spin maneuvers. We then analyze
system stability due to scale-factor uncertainty in both the sensors and actuators. Finally, we include the
e�ects of gyro sensor noise.

II. Spacecraft Dynamics with Reaction Wheels

In this section we derive the dynamic equations for a spacecraft with reaction wheels, while carefully
treating the underlying assumptions on wheel geometry, inertia, and attachment to the spacecraft bus.

We assume that three rotating wheels are attached to a rigid bus as shown in Figure 1. Each wheel is
mounted so that it is free to rotate about one of its principal axes passing through its center of mass. For
initial generality, however, we do not assume that the mass distribution of each wheel is symmetric about its
axis of rotation. For example, the wheels may be elliptical. Let the spacecraft, that is, the bus and wheels,
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Figure 1: Spacecraft with three reaction wheels.

be denoted by sc, and let c denote its center of mass. Although the spacecraft is not a rigid body, c is a
�xed point, that is, c does not move relative to the bus. We assume a bus-�xed frame FB, three wheel-�xed
frames FWi whose x-axes are aligned with the rotation axes of their respective wheels, and an Earth-centered
inertial frame FE. The angular momentum of the spacecraft about its center of mass relative to the inertial
frame is given by

*

Hsc=c=E =
*

Hb=c=E +

3X
i=1

*

Hwi=c=E

=

*
*

I b=c
*
!B=E +

3X
i=1

*
*

I wi=c
*
!Wi=E; (1)

where

*
*

I b=c is the constant, positive-de�nite inertia matrix of the bus, that is, the inertia dyadic of the bus

relative to the center of mass of the spacecraft,

*
*

I wi=c is the constant, positive-de�nite inertia matrix of

wheel i relative to the spacecraft’s center of mass,
*
!B=E is the angular velocity of FB with respect to FE,

and
*
!Wi=E is the angular velocity of wheel i with respect to FE, which can be decomposed as

*
!Wi=E =

*
!Wi=B +

*
!B=E; (2)

where
*
!Wi=B is the angular velocity of wheel i relative to the bus. Note that

*
!Wi=B has only one degree of

freedom relative to the bus, which can be seen when resolving it in FWi
, that is,

*
!Wi=B

���
Wi

=

2664
qi

0

0

3775 : (3)

Since FWi
is aligned with the ith wheel’s principal axes, we have

*
*

I wi=c

�����
Wi

=

2664
�i 0 0

0 �i 0

0 0 i

3775 : (4)

Note that
*
!Wi=B is an eigenvector of

*
*

I wi=c with eigenvalue �i.
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II.A. Equations of Motion

Before proceeding with control design and simulations, we �rst derive the equations of motion for a
spacecraft actuated with reaction wheels as described above. We begin with Newton’s second law for rotation,
which states that the derivative of the angular momentum of a body relative to its center of mass in an inertial
frame is equal to the sum of the moments applied to that body about its center of mass. We thus have

*

M sc=c =

E�
*

H sc=c=E

=

E�z }| {
*
*

I b=c
*
!B=E +

E�z }| {
3X
i=1

*
*

I wi=c
*
!Wi=E

=

B�z }| {
*
*

I b=c
*
!B=E +

*
!B=E �

*
*

I b=c
*
!B=E+

B�z }| {
3X
i=1

*
*

I wi=c
*
!Wi=E +

*
!B=E �

3X
i=1

*
*

I wi=c
*
!Wi=E

=

*
*

I b=c

B�
*
! B=E +

B�z }| {
3X
i=1

*
*

I wi=c
*
!Wi=E +

*
!B=E �

 *
*

I b=c
*
!B=E +

3X
i=1

*
*

I wi=c
*
!Wi=E

!
: (5)

Furthermore,

B�z }| {
*
*

I wi=c
*
!Wi=E =

Wi�z }| {
*
*

I wi=c
*
!Wi=E +

*
!Wi=B �

*
*

I wi=c
*
!Wi=E

=

*
*

I wi=c

Wi�
*
! Wi=E +

*
!Wi=B �

*
*

I wi=c
*
!Wi=E

=

*
*

I wi=c

Wi�
*
! Wi=B +

*
*

I wi=c

Wi�
*
! B=E

+
*
!Wi=B �

 *
*

I wi=c
*
!Wi=B +

*
*

I wi=c
*
!B=E

!

= �i

B�
*
!Wi=B +

*
*

I wi=c

 
B�
*
! B=E +

*
!B=Wi

�*
!B=E

!

+
*
!Wi=B �

 
�i
*
!Wi=B +

*
*

I wi=c
*
!B=E

!

= �i

B�
*
!Wi=B +

*
*

I wi=c

B�
*
! B=E �

*
*

I wi=c

�
*
!Wi=B �

*
!B=E

�
(6)

+
*
!Wi=B �

*
*

I wi=c
*
!B=E:
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Substituting (6) into (5), yields a coordinate-free equation that describes the dynamics of the spacecraft
given by

*

M sc=c =

*
*

I b=c

B�
*
! B=E +

3X
i=1

*
*

I wi=c

B�
*
! B=E +

3X
i=1

�i

B�
*
!Wi=B

+
*
!B=E �

 *
*

I b=c
*
!B=E +

3X
i=1

*
*

I wi=c
*
!Wi=E

!

+

3X
i=1

*
!Wi=B �

*
*

I wi=c
*
!B=E �

3X
i=1

*
*

I wi=c

�
*
!Wi=B �

*
!B=E

�

=

 *
*

I b=c +

3X
i=1

*
*

I wi=c

!
B�
*
! B=E +

3X
i=1

�i

B�
*
!Wi=B

+
*
!B=E �

  *
*

I b=c +

3X
i=1

*
*

I wi=c

!
*
!B=E +

3X
i=1

�i
*
!Wi=B

!

+

3X
i=1

 
*
!Wi=B �

*
*

I wi=c
*
!B=E �

*
*

I wi=c

�
*
!Wi=B �

*
!B=E

�!
: (7)

We now resolve (7) in FB using the notation

Jb
4
=

*
*

I b=c

�����
B

; Jwi

4
=

*
*

I wi=c

�����
B

;

Jw
4
=

3X
i=1

*
*

I wi=c

�����
B

; Jsc
4
= Jb + Jw;

!
4
=

*
!B=E

���
B
; _!

4
=

B�
*
! B=E

�����
B

;

�i
4
=

*
!Wi=B

���
B
; _�i

4
=

B�
*
!Wi=B

�����
B

;

�dist
4
=

*

M sc=c

����
B

:

We let the vector �dist represent disturbance torques, that is, all internal and external torques applied to
the spacecraft aside from control torques. Disturbance torques may be due to onboard components, gravity
gradients, solar pressure, atmospheric drag, or the ambient magnetic �eld.
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Resolving (7) in FB yields

�dist = (Jb + Jw) _! +

3X
i=1

�i _�i + ! �

 
(Jb + Jw)! +

3X
i=1

�i�i

!

+

3X
i=1

(�i � Jwi
! � Jwi

(�i � !))

= Jsc _! +

3X
i=1

�i _�i + ! �

 
Jsc! +

3X
i=1

�i�i

!

+

3X
i=1

(�i � Jwi! � Jwi (�i � !)) : (8)

Rearranging (8) yields equations of motion for a spacecraft with reaction wheels, which have the form

Jsc _! =

 
Jsc! +

3X
i=1

�i�i

!
� ! �

3X
i=1

�iOB=Wi
e1ui + �dist

+

3X
i=1

(Jwi (�i � !)� �i � Jwi!) ; (9)

_�i = OB=Wi
e1ui; (10)

where e1 =
h

1 0 0
iT

, ui is a scalar control, and OB=Wi
2 R3�3 is the proper orthogonal matrix (that

is, the orientation matrix) that transforms components of a vector resolved in FWi into the components of
the same vector resolved in FB.

Note that �
P3
i=1 �iOB=Wi

e1ui is the torque applied to the spacecraft due to the wheels. To physically
realize this torque, electric motors must apply moments to their respective wheels in order for the wheels to
apply the desired reaction torque to the bus. These moments are given by

�motor;i = Jwi
_! + �iui: (11)

The control inputs ui(t) are designed based on equations (9) and (10), and, once they are determined,
equation (11) is used to calculate the required torque commands to each motor.

II.B. Special case: symmetric top

The following result specializes the dynamic equations (9)-(10) to the situation where each wheel is a
symmetric top, that is, axially symmetric about its axis of rotation.

Proposition 1. Let �i = i so that

*
*

I wi=c

�����
Wi

=

2664
�i 0 0

0 �i 0

0 0 �i

3775 :
Then,

*
!Wi=B �

*
*

I wi=c
*
!B=E �

*
*

I wi=c

�
*
!Wi=B �

*
!B=E

�
= 0: (12)
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Proof. Resolving (12) in FWi yields

 
*
!Wi=B �

*
*

I wi=c
*
!B=E �

*
*

I wi=c

�
*
!Wi=B �

*
!B=E

�!�����
Wi

=

2664
qi

0

0

3775�
2664
�i 0 0

0 �i 0

0 0 �i

3775
2664
!1

!2

!3

3775�
2664
�i 0 0

0 �i 0

0 0 �i

3775
0BB@
2664
qi

0

0

3775�
2664
!1

!2

!3

3775
1CCA

=

2664
0 0 0

0 0 �qi
0 qi 0

3775
2664
�i!1

�i!2

�i!3

3775�
2664
�i 0 0

0 �i 0

0 0 �i

3775
2664

0 0 0

0 0 �qi
0 qi 0

3775
2664
!1

!2

!3

3775

=

2664
0

�qi�i!3

qi�i!2

3775�
2664

0

�qi�i!3

qi�i!2

3775 = 0:

Henceforth we assume that the wheels are symmetric tops, and thus equations (9)-(10) reduce to

Jsc _! =

 
Jsc! +

3X
i=1

�i�i

!
� ! �

3X
i=1

�iOB=Wi
e1ui + �dist; (13)

_�i = OB=Wi
e1ui: (14)

II.C. Special case: orthogonal wheels aligned with FB

We further specialize the equations of motion by assuming that the wheels are not only symmetric tops
but are also mounted orthogonally to each other. For further simpli�cation, we align FB with the rotational
axes of the three orthogonal wheels. However, we do not assume that FB is aligned with the principal axes
of the bus. In this con�guration we have

OB=W1
e1 =

2664
1

0

0

3775 ; OB=W2
e1 =

2664
0

1

0

3775 ; OB=W3
e1 =

2664
0

0

1

3775 : (15)

By writing

3X
i=1

�iOB=Wi
e1ui = �1

2664
u1

0

0

3775+ �2

2664
0

u2

0

3775+ �3

2664
0

0

u3

3775

=

2664
�1 0 0

0 �2 0

0 0 �3

3775
2664
u1

u2

u3

3775 ; (16)
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we can de�ne

J�
4
=

2664
�1 0 0

0 �2 0

0 0 �3

3775 ; u
4
=

2664
u1

u2

u3

3775 ;

and the equations of motion (13) and (14) simplify to

Jsc _! = (Jsc! + J��)� ! � J�u+ �dist; (17)

_� = u: (18)

II.D. Special case: principal axis alignment

A further special case is considered in ref.14 In this case it is assumed that the principal axes of the bus
are aligned with the rotational axes of the wheels, that the wheels are mass-balanced relative to the center
of mass of the bus so that the center of mass of the spacecraft coincides with the center of mass of the bus,
and, �nally, that the moments of inertia �i of the wheels are lumped into the bus inertia Jb. With these
assumptions, equations (17) and (18) reduce to equations (7.59) and (7.60) of ref.14

For the control laws (30) and (38) given below, we do not need to make these assumptions. Speci�cally,
we only assume that the wheels are symmetric tops and mounted orthogonally to each other, but are not
necessarily aligned with the principal axes of the bus.

III. Spacecraft Model, Assumptions, and Objectives for Control Design

The kinematics of the spacecraft model are given by Poisson’s equation

_R = R!�; (19)

which complements (17) and (18). In (19), !� denotes the skew-symmetric matrix of !, and R 2 R3�3 is
the rotation dyadic that transforms FE into FB resolved in either FE or FB. Therefore, R is the proper
orthogonal matrix (that is, the rotation matrix) that transforms the components of a vector resolved in the
bus-�xed frame into the components of the same vector resolved in the inertial frame.

Compared to the case of thrusters treated in ref.,1 the reaction wheel actuation complicates the dynamic
equations due to the term J�� added to (17), as well as the integrators (18) augmented to the system. The
kinematic relation (19) remains unchanged. The torque inputs applied to each reaction wheel are limited
due to current limitations on the electric motors and ampli�ers as well as angular velocity constraints on the
wheels.

Both rate (inertial) and attitude (noninertial) measurements are assumed to be available. Gyro measure-
ments yrate 2 R3 are assumed to provide measurements of the angular velocity resolved in the spacecraft
frame, that is,

yrate = ! + vrate; (20)

where vrate 2 R3 represents the presence of noise in the gyro measurements. Attitude is measured indirectly
using sensors such as magnetometers or star trackers. The attitude is determined to be

yattitude = R: (21)

When attitude measurements are given in terms of an alternative attitude representation, such as quaternions,
Rodrigues’s formula can be used to determine the corresponding rotation matrix. Attitude estimation on
SO(3) is considered in ref.13

The objective of the attitude control problem is to determine control inputs such that the spacecraft
attitude given by R follows a commanded attitude trajectory given by a possibly time-varying C1 rotation
matrix Rd(t). For t � 0; Rd(t) is given by

_Rd(t) = Rd(t)!d(t)�; (22)

Rd(0) = Rd0; (23)
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where !d is the desired, possibly time-varying angular velocity. The error between R(t) and Rd(t) is given
in terms of the attitude-error rotation matrix

~R
4
= RT

dR;

which satis�es the di�erential equation

_~R = ~R~!�; (24)

where the angular velocity error ~! is de�ned by

~!
4
= ! � ~RT!d:

We rewrite (17) in terms of the angular-velocity error as

Jsc _~! = [Jsc(~! + ~RT!d) + J��]� (~! + ~RT!d) + Jsc(~! � ~RT!d � ~RT _!d)� J�u+ �dist: (25)

A scalar measure of attitude error is given by the rotation angle �(t) about an eigenaxis needed to rotate
the spacecraft from its attitude R(t) to the desired attitude Rd(t), which is given by12

�(t) = cos�1( 1
2 [tr ~R(t)� 1]): (26)

IV. Controller Design

The following preliminary results are needed. Let I denote the identity matrix, whose dimensions are
determined by context, and let Mij denote the i; j entry of the matrix M: The following result is given in
ref.1

Lemma 1. Let A 2 R3�3 be a diagonal positive-de�nite matrix. Then the following statements hold for
a proper orthogonal matrix R:

i) For all i; j = 1; 2; 3; Rij 2 [�1; 1]:

ii) tr (A�AR) � 0:

iii) tr (A�AR) = 0 if and only if R = I:

For convenience we note that, if R is a rotation matrix and x; y 2 R3; then

(Rx)� = Rx�RT;

and, therefore,
R(x� y) = (Rx)�Ry:

Next we introduce the notation

Jsc! = L(!);

where  2 R6 is de�ned by


4
=
h
J11 J22 J33 J23 J13 J12

iT
and

L(!)
4
=

264 !1 0 0 0 !3 !2

0 !2 0 !3 0 !1

0 0 !3 !2 !1 0

375 :
Next, let Ĵsc 2 R3�3 denote an estimate of Jsc, and de�ne the inertia-estimation error

~Jsc
4
= Jsc � Ĵsc:
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Letting ̂; ~ 2 R6 represent Ĵsc; ~Jsc; respectively, it follows that

~ =  � ̂:

Likewise, let �̂dist 2 R3 denote an estimate of �dist; and de�ne the disturbance-estimation error

~�dist
4
= �dist � �̂dist:

We now summarize the assumptions upon which the following development is based:
Assumption 1. Jsc is constant but unknown.
Assumption 2. J� is constant, nonsingular, and known. That is, we have three orthogonal, symmetric

top wheels, and we know the moments of inertia about their spin axes.
Assumption 3. Each component of �dist is a linear combination of constant and harmonic signals, whose

frequencies are known but whose amplitudes and phases are unknown.
Assumption 3 implies that �dist can be modeled as the output of an autonomous system of the form

_d = Add; (27)

�dist = Cdd; (28)

where Ad 2 Rnd�nd and Cd 2 R3�nd are known matrices and Ad is a Lyapunov-stable matrix. In this model,
d(0) is unknown, which is equivalent to the assumption that the amplitude and phase of each harmonic
component of the disturbance is unknown. The matrix Ad is chosen to include eigenvalues of all frequency
components that may be present in the disturbance signal, where the zero eigenvalue corresponds to a con-
stant disturbance. In e�ect, the controller provides in�nite gain at the disturbance frequency, which results
in asymptotic rejection of harmonic disturbance components. In particular, an integral controller provides
in�nite gain at DC in order to reject constant disturbances. In the case of orbit-dependent disturbances, the
frequencies can be estimated from the orbital parameters. Likewise, in the case of disturbances originating
from on-board devices, the spectral content of the disturbances may be known. In other cases, it may be
possible to estimate the spectrum of the disturbances through signal processing. Assumption 3 implies that
Ad can be chosen to be skew symmetric, which we do henceforth. Let d̂ 2 Rnd denote an estimate of d; and
de�ne the disturbance-state estimation error

~d
4
= d� d̂:

Assumptions 1-3 are mathematical idealizations, which we state explicitly in order to provide a precise
foundation for the subsequent results. In practice, however, these assumptions can be viewed as approxima-
tions, whose validity can be assessed based on engineering judgment.

IV.A. Control Laws

Two controllers are presented in ref.1 The inertia-free control law given by (38) of ref.1 requires no
modi�cation for the case of reaction wheel actuation. As in ref.,1 de�ne the Lyapunov candidate

V (!; ~R)
4
= 1

2!
TJsc! +Kptr(A�A ~R); (29)

whereKp is a positive number andA 2 R3�3 is a diagonal positive-de�nite matrix given byA = diag(a1; a2; a3).
Let u be given by (38) of ref.,1 that is,

u = J�1� (KpS +Kv!); (30)

where Kv 2 R3�3 is positive de�nite, and S is de�ned as

S
4
=

3X
i=1

ai( ~RTei)� ei; (31)
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where, for i = 1; 2; 3; ei denotes the ith column of the 3 � 3 identity matrix. Taking the derivative of (29)
along the trajectories of (17) and (18) yields

_V (!; ~R) = !TJsc _! +Kp!
TS

= !T [(Jsc! + J��)� ! � J�u] +Kp!
TS

= !T (�KpS �Kv!) +Kp!
TS

= �!TKv!: (32)

Note that we substitute �J� for the input matrix B used in the inertia-free control law (38) of ref.1

When no disturbances are present, this controller achieves almost global stabilization of a constant desired
con�guration Rd, that is, a slew maneuver that brings the spacecraft to rest.

A more general control law that tracks a desired attitude trajectory in the presence of disturbances is
given by (21) of ref.1 This controller is modi�ed for reaction wheel actuators below.

Theorem 1. Let Kp be a positive number, let K1 2 R3�3; let Q 2 R6�6 and D 2 Rnd�nd be positive
de�nite matrices, let A = diag(a1; a2; a3) be a diagonal positive-de�nite matrix, and de�ne S as in (31).
Then the function

V (~!; ~R; ~; ~d)
4
= 1

2 (~! +K1S)TJsc(~! +K1S) +Kptr (A�A ~R) + 1
2 ~TQ~ + 1

2
~dTD ~d (33)

is positive de�nite, that is, V is nonnegative, and V = 0 if and only if ~! = 0; ~R = I; ~ = 0; and ~d = 0:

Proof. It follows from statement 2 of Lemma 1 that tr (A�A ~R) is nonnegative. Hence V is nonnegative.
Now suppose that V = 0: Then, ~! +K1S = 0; ~ = 0; and ~d = 0; and it follows from statement 3 of Lemma
1 that ~R = I; and thus S = 0: Therefore, ~! = 0:

Note that (33), which we intend to use as a Lyapunov function, is not positive in all the states, namely,
it makes no use of the relative angular velocity of the wheels since wheel-speed regulation is not a goal of
the control objective.

Theorem 2. Let Kp be a positive number, let Kv 2 R3�3; K1 2 R3�3; Q 2 R6�6; and D 2 Rnd�nd

be positive de�nite matrices, assume that AT
dD +DAd is negative semide�nite, let A = diag(a1; a2; a3) be a

diagonal positive-de�nite matrix, de�ne S and V as in Theorem 1, and let ̂ and d̂ satisfy

_̂ = Q�1[LT(!)!� + LT(K1
_S + ~! � ! � ~RT _!d)](~! +K1S); (34)

where

_S =

3X
i=1

ai[( ~RTei)� ~!]� ei; (35)

and

_̂
d = Add̂+D�1CT

d (~! +K1S); (36)

�̂dist = Cdd̂; (37)

so that �̂dist is the disturbance torque estimator. Furthermore, consider the control law

u = �J�1� (v1 + v2 + v3); (38)

where

v1
4
= �(Ĵsc! + J��)� ! � Ĵsc(K1

_S + ~! � ! � ~RT _!d); (39)

v2
4
= ��̂dist; (40)
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and

v3
4
= �Kv(~! +K1S)�KpS: (41)

Then,

_V (~!; ~R; ~; ~d) = �(~! +K1S)TKv(~! +K1S)�KpS
TK1S + 1

2
~dT(AT

dD +DAd) ~d (42)

is negative semide�nite.

Proof. Noting that

d

dt
tr (A�A ~R) = �trA _~R

= �trA( ~R!� � !�d ~R)

= �
3X
i=1

aie
T
i ( ~R!� � !�d ~R)ei

= �
3X
i=1

aie
T
i

~R(!� � ~RT!�d
~R)ei

= �
3X
i=1

aie
T
i

~R(! � ~RT!d)�ei

=

3X
i=1

aie
T
i

~Re�i ~!

= [�
3X
i=1

aiei� ~RTei]
T~!

= [

3X
i=1

ai( ~RTei)�ei]T~!

= ~!TS;
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we have

_V (~!; ~R; ~; ~d) = (~! +K1S)T(Jsc _~! + JscK1
_S)�KptrA _~R� ~TQ _̂ + ~dTD

_~d

= (~! +K1S)T[(Jsc! + J��)� ! + Jsc(~! � ! � ~RT _!d)� J�u+ �dist + JscK1
_S]

+Kp~!TS � ~TQ _̂ + ~dTD
_~d

= (~! +K1S)T[(Jsc! + J��)� ! + Jsc(K1
_S + ~! � ! � ~RT _!d)

+ v1 + v2 + v3 + �dist] +Kp~!TS � ~TQ _̂ + ~dTD
_~d

= (~! +K1S)T[( ~Jsc!)� ! + ~Jsc(K1
_S + ~! � ! � ~RT _!d)]

+ (~! +K1S)T~�dist � (~! +K1S)TKv(~! +K1S)�Kp(~! +K1S)TS

+Kp~!TS � ~TQ _̂ + ~dTD
_~d

= (~! +K1S)T[L(!)~ � ! + L(K1
_S + ~! � ! � ~RT _!d)~]

� (~! +K1S)TKv(~! +K1S)�KpS
TK1S � ~TQ _̂

+ ~dTCT
d (~! +K1S) + ~dTD[Ad ~d�D�1CT

d (~! +K1S)]

= �(~! +K1S)TKv(~! +K1S)�KpS
TK1S � ~TQ _̂

+ (~! +K1S)T[�!�L(!) + L(K1
_S + ~! � ! � ~RT _!d)]~

+ 1
2

~dT(AT
dD +DAd) ~d

= �(~! +K1S)TKv(~! +K1S)�KpS
TK1S

+ ~T[�Q _̂ + (LT(!)!� + LT(K1
_S + ~! � ! � ~RT _!d))(~! +K1S)]

+ 1
2

~dT(AT
dD +DAd) ~d

= �(~! +K1S)TKv(~! +K1S)�KpS
TK1S + 1

2
~dT(AT

dD +DAd) ~d:

Future work will complete the proof for almost global stabilization (that is, Lyapunov stability with
almost global convergence) of spacecraft tracking using reaction wheels. The proof will rely on partial
stability theory and invariance theorems.

V. Simulation

Simulation results are used to illustrate the e�ectiveness of controllers (30) and (38) in controlling the
spacecraft attitude and angular velocity using reaction-wheel actuators. To simulate the slew and spin
maneuvers, the following spacecraft parameters are assumed. The bus inertia matrix Jb is given by

Jb =

264 5 �0:1 �0:5

�0:1 2 1

�0:5 1 3:5

375 kg-m2; (43)

with principal moments of inertia 1:4947; 3:7997; and 5:2056 kg-m2. The axes of rotation of the three reaction
wheels are aligned with the spacecraft body-�xed frame unit vectors, and we assume that the wheel inertias
are given by Jw1

= diag(1; 0:75; 0:75) kg-m2, Jw2
= diag(0:75; 1; 0:75) kg-m2, and Jw3

= diag(0:75; 0:75; 1)
kg-m2.

Let Kp be given by

Kp =
�

trA
; (44)

and as in ref.,1 we let Kv = Kv(!) be given by

Kv = �

2664
1

1+j!1j 0 0

0 1
1+j!2j 0

0 0 1
1+j!3j

3775 ; (45)
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in order to better handle torque saturation.
Illustrative slew maneuvers and spin maneuvers are considered below.

V.A. Slew Maneuver Using Control Law (30) With No Disturbance

We use controller (30) for an aggressive slew maneuver, where the objective is to bring the spacecraft
from the initial attitude R0 = I3 and initial angular velocity

!(0) =
h

1 �1 0:5
iT

rad/sec

to rest (!d = 0) at the desired �nal orientation Rd = diag(1;�1;�1); which represents a rotation of 180
degrees about the x-axis. We assume that the reaction wheels are initially not spinning relative to the
spacecraft, that is,

�(0) =
h

0 0 0
iT

rad/sec:

We assume no disturbance is present and set � = � = 45.
Figures 2-4 show, respectively, the attitude error, angular velocity components, and wheel relative

angular-velocity components. The spacecraft attitude and angular velocity components are brought close to
the desired values in about 10 sec.
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Figure 2: Eigenaxis attitude error for the slew maneuver with momentum wheels.
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Figure 3: Spacecraft angular-velocity components for the slew maneuver with momentum wheels.
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Figure 4: Relative angular-velocity components of the reaction wheels for the slew maneuver.
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V.B. Slew Maneuver Using Control Law (38) Under Constant Disturbance

We now assume a constant nonzero disturbance torque, �dist = [0:7 � 0:3 0]
T

. The parameters of
controller (38) are chosen to be K1 = I3; A = diag(1; 2; 3), � = � = 1; D = I3; and Q = I6.

Figures 5-10 show, respectively, the attitude error, angular velocity components, wheel relative-angular-
velocity components, angular momentum, disturbance-estimate errors, and inertia-estimate errors. The
spacecraft attitude and angular velocity components are brought close to the desired values in about 50 sec.
Figure 7 indicates that the reaction wheel rotational speed grows unbounded, and thereby increases the total
angular momentum of the spacecraft (Figure 8). This behavior is due to the need to compensate for the
persistent disturbance torque.
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Figure 5: Eigenaxis attitude error for the slew maneuver with momentum wheels.
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Figure 6: Spacecraft angular-velocity components for the slew maneuver with momentum wheels.
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Figure 7: Relative angular-velocity components of the reaction wheels for the slew maneuver. Notice that
their spin grows unbounded due to the constant disturbance torque.
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Figure 8: Angular momentum of the spacecraft in the Earth inertial frame for the slew maneuver with
momentum wheels. Notice that total angular momentum is not conserved due to the constant disturbance
torque.
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Figure 9: Disturbance-estimate errors for the slew maneuver with momentum wheels.
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Figure 10: Inertia-estimate errors for the slew maneuver with momentum wheels.
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V.C. Spin Maneuver Using Using Control Law (38)

We now consider a spin maneuver with the spacecraft initially at rest and R(0) = I3: The speci�ed
attitude is given by Rd(0) = I3 with the desired constant angular velocity

!d =
h

0:5 �0:5 �0:3
iT

rad/sec;

and we assume zero torque disturbance. Figures 11-15 show, respectively, the attitude errors, angular velocity
components, wheel relative angular-velocity components, angular momentum, and inertia-estimate errors.
For this maneuver, the spin command consists of a speci�ed time history of rotation about a speci�ed body
axis aligned in a speci�ed inertial direction. The controller achieves the speci�ed tracking objective within
50 sec.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time, sec

E
ig

e
n

a
x
is

 A
tt

it
u

d
e

 E
rr

o
r,

 r
a

d

Figure 11: Eigenaxis attitude error for the slew maneuver with momentum wheels.
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Figure 12: Spacecraft angular-velocity components for the slew maneuver with momentum wheels.
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Figure 13: Relative angular-velocity components of the reaction wheels for the slew maneuver.
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Figure 14: Angular momentum of the spacecraft in the Earth inertial frame for the slew maneuver with
momentum wheels.
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Figure 15: Inertia-estimate errors for the slew maneuver with momentum wheels.
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VI. Scale-Factor Uncertainty in Sensors and Actuators

We now analyze scale-factor uncertainty in both the sensors and actuators. These uncertainties may arise
due to faulty calibration or mechanical failure. We consider the con�guration used in Section V.A.

VI.A. Sensor Scale-Factor Uncertainty

To account for a scale-factor uncertainty in the gyro measurements, we write the control law (30) as

u = �J�1� (KpS +Kv�!); (46)

where � is an unknown sensor scale-factor. Using (29) as the Lyapunov candidate, we obtain

_V (!; ~R) = !TJsc _! +Kp!
TS

= !T[(Jsc! + J��)� ! + J�u] +Kp!
TS

= !T(�KpS �Kv�!) +Kp!
TS

= �!TKv�!: (47)

Note that _V takes the same form as (32) with an additional scale-factor �. We can group � with the control
gain Kv, so that for positive values, we reach the same result as before. That is, when no disturbances are
present, this controller achieves almost global stabilization of that constant desired con�guration Rd, which
is a slew maneuver that brings the spacecraft to rest.

Figure 16 shows the eigenaxis attitude error and angular-velocity components for representative gyro
scale-factors.

VI.B. Actuator Scale-Factor Uncertainty

For a scale-factor uncertainty in the actuator, we rewrite (17) as

Jsc _! = (Jsc! + J��)� ! + J��u; (48)

where � is an unknown actuator scale-factor. We modify (29) to include the unknown factor,

V (!; ~R)
4
= 1

2!
TJsc! + �Kptr (A�A ~R): (49)

Then, using (30) as the control we obtain

_V (!; ~R) = !TJsc _! + �Kp!
TS

= !T[(Jsc! + J��)� ! + J��u] + �Kp!
TS

= !T(��KpS � �Kv!) + �Kp!
TS

= ��!TKv!: (50)

As with the case of a gyro scale-factor error, _V takes the same form as (32). Here � modi�es both control
gains Kv and Kp. For positive values of �, (49) is positive and the control gains remain valid selections.

Figure 17 shows the eigenaxis attitude error and angular-velocity components for representative actuator
scale-factors.

VI.C. Performance

We consider the performance metric

tm
4
= minfk > 50 : max [�(k � i)] < 0:1; i = 1; 2; : : : ; 50:g; (51)

where � is given by (26). Thus, tm de�nes the minimum time such that the previous 50 simulation steps all
have an eigenaxis attitude error of less than 0:1 rad. Figures 18 and 19 show the performance metric versus
sensor and actuator scale-factor uncertainty.
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(a) Eigenaxis attitude error with � = 0:1
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(b) Angular velocity with � = 0:1
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(c) Eigenaxis attitude error with � = 1
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(d) Angular velocity with � = 1
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(e) Eigenaxis attitude error with � = 10
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(f) Angular velocity with � = 10

Figure 16: Eigenaxis attitude errors and spacecraft angular-velocity components for gyro scale-factors 0.1,
1, and 10.
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(a) Eigenaxis attitude error with � = 0:1
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(b) Angular velocity with � = 0:1
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(c) Eigenaxis attitude error with � = 1

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

2

Time, sec

A
n

g
u

la
r 

V
e

lo
c
it
y
 C

o
m

p
o

n
e

n
ts

, 
ra

d
/s

e
c

ω1

ω2

ω3

(d) Angular velocity with � = 1
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(e) Eigenaxis attitude error with � = 10
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(f) Angular velocity with � = 10

Figure 17: Eigenaxis attitude errors and spacecraft angular-velocity components for actuator scale-factors
0.1, 1, and 10.
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Figure 18: Performance metric versus sensor scale-factor.
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Figure 19: Performance metric versus actuator scale-factor.

VII. Sensor Noise

We now present a numerical study of the robustness of the control law (38) to gyro noise. We simulate
the e�ects caused by constant, sinusoidal, and white noise added to the gyro measurement as given in (20).

VII.A. Constant Noise

Assume the gyro noise is given by
vrate = �[1; 1; 1]T

where � is a constant scalar. Figure 20 shows the eigenaxis attitude errors for various values of �, and Figure
21 shows angular-velocity components. Tracking performance degrades gracefully as the level of gyro noise
increases.
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Figure 20: Eigenaxis attitude error for constant noise in the gyro measurement.
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(a) Angular-velocity with � = 0:1
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(b) Angular-velocity with � = 0:5
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(c) Angular-velocity with � = 1
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(d) Angular-velocity with � = 1:5

Figure 21: Angular-velocity components for constant noise in the gyro measurement.
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VII.B. Sinusoidal Noise

We now assume that the gyro noise is given by

vrate = (� sin t)[1; 1; 1]T;

where � is a constant scalar. Figures 22-23 show simulation results for various values of �. Tracking
performance degrades gracefully as the level of gyro noise increases.
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Figure 22: Eigenaxis attitude errors for sinusoidal noise of various amplitude in the gyro measurement.

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time, sec

A
n
g
u
la

r 
V

e
lo

c
it
y
 C

o
m

p
o
n
e
n
ts

, 
ra

d
/s

e
c

ω1

ω2

ω3

(a) Angular velocity with � = 0:01
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(b) Angular velocity with � = 0:1
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(c) Angular velocity with � = 0:2
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(d) Angular velocity with � = 0:5

Figure 23: Angular-velocity components for sinusoidal noise of various amplitude in the gyro measurement.
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We now assume that the gyro noise is given by

vrate = (0:2 sin!noiset)[1; 1; 1]T;

where !noise is a constant scalar with units of [sec]�1. Figures 24-25 show simulation results for various
values of !noise. Attitude tracking performance improves as the frequency of the gyro noise increases.
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Figure 24: Eigenaxis attitude errors for sinusoidal noise of various frequencies in the gyro measurement.
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(a) Angular velocity with !noise = 1
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(b) Angular velocity with !noise = 0:5�
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(c) Angular velocity with !noise = �
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(d) Angular velocity with !noise = 2�

Figure 25: Angular-velocity components for sinusoidal noise of various frequencies in the gyro measurement.
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VII.C. White Gaussian Noise

Finally, we create white gaussian noise W with mean 0 and variance 1, and assume that the gyro noise
is given by

vrate = W [1; 1; 1]T;

where  is a constant scalar. Figures 26-27 show simulation results for various values of . Tracking
performance degrades signi�cantly in the presence of large amplitude white noise.
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Figure 26: Eigenaxis attitude errors for white noise in the gyro measurement.
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(a) Angular velocity with  = 0:01
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(b) Angular velocity with  = 0:1

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time, sec

A
n
g
u
la

r 
V

e
lo

c
it
y
 C

o
m

p
o
n
e
n
ts

, 
ra

d
/s

e
c

ω1

ω2

ω3

(c) Angular velocity with  = 0:2
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(d) Angular velocity with  = 0:4

Figure 27: Angular-velocity components for white noise in the gyro measurement.
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VIII. Conclusion

We extended the control laws of ref.1 to the case of reaction-wheel actuation. We do not require
knowledge of the spacecraft’s inertia, only that of the spin axis for each wheel. These results have practical
advantages relative to previous controllers that 1) require exact or approximate inertia information or 2) are
based on attitude parameterizations such as quaternions that require discontinuous control laws or fail to be
physically consistent (that is, specify di�erent control torques for the same physical orientation).

We simulated these controllers for various slew and spin maneuvers. Additionally, we explicitly considered
sensor and actuator scale-factor uncertainty and found that for positive scale-factors, controller (30) remains
asymptotically stable. Finally, we presented a numerical study on the e�ect of gyro measurement noise and
found that controller (38) is fairly robust to various sources of noise.
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