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1 Introduction 

Although there is no precise definition of adap- 
tive control, one can say intuitively that an adap- 
tive controller operates by adjusting parameters in 
response to the behavior of the plant. Adaptive con- 
trollers can be used to achieve stabilization, distur- 
bance rejection, and/or tracking objectives. The ul- 
timate objective of adaptive control is to achieve de- 
sired performance with minimal prior knowledge of 
the plant dynamics and disturbance spectrum. Al- 
though this objective is shared by robust control, 
the underlying approaches are distinct. Specifically, 
robust control is based entirely on prior modeling 
information and thus does not incorporate learning, 
while adaptive control is self adjusting in response 
to measured plant behavior. 

In direct adaptive control the gains are ad- 
justed without explicit parameter identification. Di- 
rect adaptive control algorithms have been devel- 
oped for both continuous-time and discrete-time sys- 
tems. Global stability for several discrete-time sys- 
tems have been established [1, 2, 3, 4, 5, 6]. How- 
ever, unlike the continuous-time case, the available 
discrete-time results are based on RLS or LMS al- 
gorithms rather than Lyapunov methods. The ap- 
proach developed in [1] is based on a convergence re- 
sult called the Key Technical Lemma (Lemma 6.2.1, 
pp. 181-182, [7]). This approach is extended to cer- 
tain classes of nonminimum phase plants in [8] and 
to plants with disturbances in [9]. Extensions of 
this approach to smooth stabilization with unknown 
high frequency gain, were addressed in [10, 11]. 

In this paper, we use a new method of analy- 
sis based on a modified Lyapunov technique and an 
adaptive step size. We begin by considering a one- 
step backward-horizon cost function, whose gradi- 
ent provides an update direction for modifying the 
feedback gain matrix. The step size in the gradi- 

ent direction is chosen to minimize the cost function 
along that direction. An analogous step size is used 
in [12]. Finally we use a modified Lyapunov tech- 
nique to prove convergence of the plant states to the 
origin. 

We present the main results in Section 2. 
Implementability issues are discussed in Section 3, 
some results from simulation studies are presented 
in Section 4, and Section 5 presents some conclu- 
sions. 

2 Adaptive  Stabilization Algorithm 

Consider the discrete-time system 

xk+l  = A x k  + B u k ,  (2.1) 

where xk E ~n=, Uk E ~n, and k = 0, 1 , . . .  denotes 
the time step. We assume that the pair (A, B) is 
stabilizable and rank(B) = nu. Furthermore, we 
assume there exists Ks E ~nu ×n= such that A + B K s  
is asymptotically stable and known. However, we 
assume that we do not have sufficient knowledge of 
A and B to determine Ks. Therefore our objective 
is to determine a full state feedback control law of 
the form 

uk = K k x ~  (2.2) 

such that the origin of the closed-loop system (2.1), 
(2.2) is attractive with respect to xk. The adaptive 
gain matrix Kk is updated at each time step k to 
yield the next gain matrix, Kk+l. 

In certain cases these assumptions can be sat- 
isfied with minimal knowledge of the system param- 
eters. For instance, for a single input system in com- 
panion form, we do not require knowledge of either 
the last row of A or the magnitude of the last entry 
in B. Additional details as well as a multiple input 
example are given in Section 3. 
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To derive an adaptively stabilizing control law, 
we consider the one-step cost function 

J (g) 1 T = ~e k Pek, (2.3) 

A 
where ek = x~+~(K) - Xk+l  (Ks) and Xk+l  (K)  = 
(A + B K ) x k ,  the state at time k + 1 when the gain 
matrix K is used at time k. We also define 

J k ( g )  A l[ g _ Ksll~. (2.4) 

Let am(A) denote the maximum singular value of A, 
let In denote the n × n identity matrix, and let Z + 
denote the set of nonnegative integers. 

L e m m a  1 Consider the gain update law 

OJk ~TkBw p~kxk T, (2.5) Kk+l = K~-~I~  ~ = K k -  
k 

where ~ E ~ and k E Z +. Then the following 
statements hold: 
i) I f  ek = O, then Kk+l = Kk for all ~1~ E ~.  
ii) I f  ~k # O, then ~ given by 

~ = []Ne~[[~2 (2.6) 

is positive and m i n i m i z e s  f fk(gk+l) with 

Jk(Kk+l)  = ,]~(g~) - [[gek[124 
[iBTpek Z lie ' . (2.7) 

ii 0 Suppose e~ # O. Then J~(Kk+i) < 3k(Kk) if 
and only if ~l~ E (0,20k). Furthermore, J~(Kk+i) = 
Jk(K~) if and only if either ~lk = 0 or ~ = 2~)k. 
Let {t/k}t, ez+ be a sequence of positive real numbers, 
let Ko E N~=xn=, let {K~}~__o be the sequence gen- 

erated by (2.5), and let S ~ {k e Z + : ek # 0}. 
Then the following statements hold 
iv) I f  S is empty, then xk --+ 0 as k ~ cx~. 
v) I f  S is not empty and 

supkes r/~ _ 1 < 1, (2.8) 

then I ~ l  ~ 0 as k oo. 

P r o o f :  To prove i) let e~ = 0. Then (2.5) 
implies Kk+l = K~ for all ~?a. 

To prove ii), define 

K~ ~ g k  - Ks, (2.9) 

and rewrite (2.5) as 

g k +  1 = R k -- ~ k B W  p e k x ~  ". 

Now using (2.1), (2.2) we can write 

x~+l (Kk) = (As + BR~)x~ ,  

which implies 

ek = BK'kxk. 

From (2.10) and (2.12) it follows that 

(2.10) 

(2.11) 

(2.12) 

= IIRk+zll ' 

= I lga  +nkBTp kx II  ' 

= 3 k ( K k ) + l l B T p B R k x k x k T I l ~  

= Jk(Kk) + IIBTP.B.Rkxkx~'II~,~7~ 
--211NB-R'kxkll  k 

T T 2 2 = 3k(Kk) + HB Peax  kl[F~k 

= Jk(Kk)  + (nk - 20DllBTpekx~ll~ 
- J k ( K k ) + ( ( ~ k  ^ 2 T T 2 - - ) l i B  Pekxk IIF 

^2 T T 2 -~kl[ B PekXk [IF" (2.13) 

To minimize Jk (Kk+l),  we proceed as follows. 
By (2.12), ek # 0 implies KkXa # 0 and Xk # O. 
Hence Kkxkxk  w # O. Since B T p B  and N are non- 
singular and B has full column rank, it follows that 
[[BTp¢kxkT[[~ = [[BWpBz~TkXkXkW[[~ # O. Therefore 
~) can be defined by 2.6 and 7/k = ~k minimizes 
Jk(gk+l )  with(2.7). 

To prove iii) assume Jk (gk+l )  - Jk(Kk)  < O. 
Then by (2.13) 

~k(~k -- 2~k)llBT pckxkT[[~ < 0, (2.14) 

which implies 0 < ~k < 2Ok. Conversely, 0 < 
~ < 2Ok implies (2.14), which implies Jk(Kt~+l) -- 
J k ( g k )  < 0 by (2.13). Setting ,]k(Zk+l) = J k ( g k )  
in (2.13) yields ~k = 0 or ~/k = 2 ~ .  

To prove iv) let ek = 0 f o r  a l l k  E Z +. This 
implies x~+l = Asxk for all k E Z +. Since As is 
asymptotically stable, it follows that  Xk -+ O. 

To prove v), define 

7 = sup - 1 (2.15) 
kES ~k 

By (2.8), 7 < 1, hence rlk E [(1 -- 7)9k, (1 + 7)9~1 C 
(0, 29k) for all k E S. Hence r/k # 0 and ~k # 29k. 
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Furthermore, as in the proof of ii), IIBTpe~xkTH3 # 
0 a n d  r/~ < 2 ~ .  Now let k E S. Using (2.6) and 
(2.13) we have 

liKe+all3 - IIKk113 = ~i~(~kIIBTpe~x~TII3 

-2llN~all~) 
= ~(~--2~)IIBTpe~x~TII 3 
< O. (2.16) 

Since S is non-empty, there exists n > 0 such 
that  e , (Kn)  # O. Let ro > h a n d ,  for a l l r  > r0, 

define the non-empty set Sr ~ {k : 0 < k < 
r and ek # 0}. For r > to, it follows from (2.16) 
that  

11 o113 

k=O 

= ~ ,~(20~--r~klllBTpekllg 
kES. 

> O. (2.17) 

Let r > r0, let k E St ,  and consider the 
quadratic function g(r/) = r/(2~k - r/) defined on the 
interval L = [(1 - -~)~, (1 + V)~k]. We have 

( 1 - - 7 ~ ) ~ = m ~ g ( o ) = g ( ( 1 - - 7 ) ~ k )  = g ( ( l + 7 ) ~ k ) -  

Since g(.) is quadratic, it follows that  

r](2~ - 7/) _> (1 - 7 2 ) ~  for all 7/C L. (2.18) 

Using (2.18), we can rewrite (2.17) as 

11 o113 
1 - -  ,72 -> E 

kES.  

: E 
kE,S. 

E 
kES~ 

-> E 
kES .  

IINe~ll~ 
IIBT pe~x~TII3 

IIN~kll~ 
IIBT pe~x~T NT N-Tll 3 

IINekll24 
IINBII31lNekl12211Nxk112211N-1113 

IIN~kll~ 
IINBII~IINxk I1~ IIN-Z I1~ 

o r  

llN~kll~ </y,  
l lNxk l l~ -  kESr 

where f~ ~ 11RolI31INBII311N-~tI~/(1 - ~ 2 ) .  Letting 
r --> cx~ yields 

IIN~kll~ 
IINxkll~ -< ~" (2.19) 

kE8 

Next, define the set S' ~ Z + \ S  and note that  
ek = 0 for all k E S' .  I f k  E S '  a n d x k  = 0 t h e n  
xt = 0 for a l l l  _> k. Hence assume that  Xk ~t 0 
for all k E S' .  For k E S' ,  we have ~ = 0. IINzull~ 
Therefore it follows from (2.19) tha t  

lim IINckll~ _ 0. (2.20) 
k---,~ IINxkll~ 

T h e o r e m  1 Assume there exists Ks E 
~n~×n= such that As ~ A + BKs  is asymptoti- 
cally stable, let R E !R n" ×n® be positive definite, let 
P E ~n= ×~= be the positive-definite solution to 

P = AsTpAs + R, (2.21) 

and let N E ~n. xn= satisfy N T N  = P. Let the 
control be given by (2.2) with the gain update (2.5) 
and with {r/k}kez+ satisfying (2.8}. Then 

lim Xk = O. (2.22) 
k-+oo 

Proof." If S is empty, the result follows from 
iv) of Lemma 1. Hence assume S is not empty and 
consider the Lyapunov candidate V(x~) = xkTpxk + 

IIRkll3. Let AV _A V(xk+l)  - V(xk) .  Then using 
(2.21) and iii) of Lemma 1, we have 

A V  = xkW+lpxk+l -- xkTpxk -t- I[-~k+l[[3 --[[Kk[]3 

_< xkT+zpxk+i -- x~PXk 

: (AsXk -I- ~k)Wp(AsXk -t- ~k) -- xkTpxk 

= xkT(AsTpAs- P)xk +ekTpek + 2e~Pxk 

= --xkTRxk + e~Pek + 2ekWpxk 

_< --xkT Rxk + 2HNek[]HNAsx~[[ -t-" IINckll 2 
= - z ~ R x k  + 211N~klllINA~N-~Nxkll 

+lINEkll 2 
_< -x~ 'Rxk  + 211N~k IllINA~N -~ IIlINxk [I 

+lIN~kll ~ 
_< -xkW Rxk 4- 2am(NA~N-~)llN6kllllNxkll  

+llN~kll 2. (2.23) 
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Now since N T N  = P, (2.21) implies 

1.. = A y A ,  + R, (2.24) 

where As ~ N A s N  -1 and/~ =~ N - T R N  -1 is posi- 
tive definite. Thus, am(As) < 1. Therefore, 

~Xw _< -x~'ttxk + 211NekllllNxkll 
+llgekll 2. (2.25) 

Let 5 > 0. By v) of Lemma 1, there exists k~ such 
that IINek][/llx~ll < 5 for all k > k~. Then for 
k > ka we can write 

A g  < --xkTRxk + 2~llgxkll 2 

+~211Yxklle 
< --xkW(n-- (25 + 52)P)xk. (2.26) 

Now choose 5 sufficiently small such that R - (2~ + 
~2)p is positive definite. Next, define the translated 

system with k k k~ and ~ Lx = - -  = Xk~+k 

X]¢+I = (A + BKk)~ic. (2.27) 

Using (2.26), it follows from the discrete version of 
Theorem 4.4 in [13] that for the translated system 
(2.27), with initial condition Xo = xk~ at k = 0, 
: ~ ( R  - (2d + ~2)P)~  k ---+ 0 as  k --+ o~. It follows 
that for the system (2.1), (2.2), (2.5) 

lim xk = O. 

R e m a r k  1 Lyapunov analysis for adaptive 
control is difficult in discrete time because the Lya- 
punov candidate cannot usually be chosen such that 
the derivative is linear in the error states, which 
makes it difficult to show negative definiteness. Our 
analysis uses a modified Lyapunov approach which 
provides convergence but not Lyapunov stability. 

The following result provides an alternative 
step size that guarantees decrease of the cost func- 
tion Jk(K~+~). This result provides a 1-step back- 
ward horizon interpretation for the gradient update 
scheme. 

Propos i t ion  1 Let ~k ~ 0 and define 

0; = IIBTp klI  (2.2s) 

Then 
O ~1~ is positive and minimizes Jk(Kk+l) with 

xZ= IIBTP¢ II  . . 

Jk(Kk+,) = Jk(Kk) - 2 II~BTp~kxkWll~'(2"29) 

ii) Jk(Kk+l) < Jk(Kk) if and only if ~l~ e (0,2~7~). 
Furthermore, Jk(Kk+l) = Jk(Kk) if and only if ei- 
ther ~lk = 0 or Ok = 271~. 
iii) I f  elk # O, then r]~ < ~k. 
iv) I f  ek ¢ 0 and n~ = 1, then rl~ = ~ .  

Proof:  The proofs of/) and i/) are analogous 
to the proofs of Lemma 1, parts i o and iii). To 

T A 
prove iii), let C = [ v B T p B v  ] where v = 
(BTpB)I /2h:kz~ .  Since det(CC T) > 0 we have 

(vTv)[uT(BT pB)2v] -- (vT BT p B v )  2 _> O. (2.30) 

Since ¢k ~ 0, it follows that Kkx~ ~ 0, Xk ~ 0 and 
v ~ 0. Therefore, 

vT BT p B v  v T v  

rl~ = (XkTXk)vT(BTpB)2 v _< ( x ~ x ~ ) v T B T p B  v = ~k. 
(2.31) 

To prove iv), let nu = 1. Then B T p B  is a 
scalar and (2.31) holds with equality. 

R e m a r k  2 Note that Kk+l is computed using 
the knowledge of Xk and xk+1 at time k + 1. The 
updated gain K~+i is used to propagating the state 
f rom Xk+ 1 to  Xk+ 2. 

To compute the updated gain matrix Kt¢+l we 
need the gradient direction of the cost function Jk, 
as well as a step size r/k to move along this direction. 
Convergence of plant states is proved for an open 
interval around a step size, ~)k that minimizes the 
norm of the distance between Kk+x and Ks. The 
smaller step size r/~ minimizes the one-step back- 
ward horizon cost Jtc(Kk+l), but convergence has 
not been shown for this case. 

3 I m p l e m e n t a t i o n  

The simplest application of Theorem 1, is a 
single-input system in companion form. The only 
quantity that needs to be known is the sign of the 
high-frequency gain. 

In general, we can implement the algorithm 
without knowledge of Ks for systems with decou- 
pled inputs. We require knowledge of the rows of A 
which are not assignable by any input. We also re- 
quire that B be of the form B = Ib]B0, where B0 is 
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Figure  1: Two Input Example 

known. An example of such a system is the double 
companion form with decoupled inputs and coupled 
states 

0,×1 1, 

a l ' "  
A= 

0,×1 I, 

a 2 " "  

On×n-I-1 

0n×n+l 
, B = Ibl 

0n--1 x2 
1 0 

0n--lx2 
0 1 

(3.1) 
This system can be stabilized without knowledge of 
the row vectors az, a2, the positive scalar Ibl or the 
matrix Ks. 

4 Numer i ca l  Resu l t s  

In this section we consider simulation results 
for a plant of the form (3.1) with 4 states and 2 
inputs. A is initially stable and suddenly becomes 
unstable at k = 30, and B is scaled by a scalar. 
The states are also perturbed at k = 30. Only the 
relative magnitudes of the various elements of B are 
known to the controller. The states, step size, one 
step decrement in cost and the norm of the controller 
error are shown in Figure 1. The step size y~ was 
used for the simulation. Though y~ has not been 
shown to satisfy (2.8), the simulation results show 
that ~ and ~k yield nearly identical trajectories. 

5 Conclus ions  

In this paper we derived a discrete-time adap- 
tive stabilization algorithm and proved closed-loop 

attractivity with respect to the plant states. An 
unstable and abruptly varying plant was simulated. 
Future work will focus on output feedback and dis- 
turbance rejection. 

Refe rences  

[1] G. C. Goodwin, P. J. Ramadge and P. 
E. Caines, "Discrete-Time Multivariable Adaptive 
Control," TAC, 25, 449-456, 1980. 

[2] G .C .  Goodwin and R. S. Long, "Generaliza- 
tion of Results on Multivariable Adaptive Control," 
TAC, 25, 1241-1245, 1980. 

[3] K . S .  Narendra and Y.-H. Lin, "Stable Dis- 
crete Adaptive Control," TAC, 25, 456-461, 1980. 

[4] J.-J. Fuchs, "Discrete Adaptive Control: A 
Sufficient Condition for Stability and Applications," 
TAC, 25, 940-945, 1980. 

[5] B. Egardt, "Unification of Some Discrete- 
Time Adaptive Control Schemes," TAC, 25, 693- 
697, 1980. 

[6] B. Egardt, "Stability Analysis of Discrete- 
Time Adaptive Control Schemes," TAC, 25, 710- 
715, 1980. 

[7] G . C .  Goodwin and K. S. Sin. Adaptive Fil- 
tering, Prediction and Control, Prentice-Hall, 1984. 

[8] G.C.  Goodwin and K. S. Sin, "Adaptive Con- 
trol of Nonminimum Phase Systems," TAC, 26,478- 
483, 1981. 

[9] G.C.  Goodwin and S. W. Chan, "Model Ref- 
erence Adaptive Control of Systems Having Purely 
Deterministic Disturbances," TAC, 28, 855-858, 
1980. 

[10] D. R. Mudgett and A. S. Morse, "Adaptive 
Stabilization of a Discrete Linear System with an 
Unknown High-Frequency Gain," TA C, 30, 798-799, 
1980. 

[11] T.-H Lee and K. S. Narendra, "Stable Discrete 
Adaptive Control with Unknown High-Frequency 
Gain," TAC, 31,477-479, 1980. 

[12] H. N. Nounou and K. M. Passino, "Stable 
Autotuning of the Adaptation Gain for Nonlinear 
Adaptive Control Systems," preprint. 

[13] H. K. Khalil. Nonlinear Systems, Prentice- 
Hall, 1996. 

1658 


