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We consider the problem of identifying unknown physical processes and estimating inac-
cessible parameters in the global ionosphere and thermosphere model (GITM). In previous
work, we took advantage of developments in the retrospective cost method to estimate
unknown thermal conductivity and rate coefficients in a one dimensional column in the
atmosphere. In the present work, we extend the application of this method to the identifi-
cation of unknown inaccessible parameters in 3D GITM, as well as the identification of the
unknown subsystem that governs the radiative nitrous oxide cooling process in 1D GITM.

I. Introduction

Large-scale computational models are typically based on spatially discretized physics. These models
may capture phenomena that occur over a wide range of spatial scales, and can be used for simulation, data
assimilation, or control. The accuracy of these models depends, however, on the accuracy of the physics
modeling as well as the accuracy of the initial state, parameters, boundary conditions, and inputs.

In recent work [1], we used retrospective cost subsystem identification (RCSI) to improve the fidelity
of a given initial model by using available data to identify a subsystem whose inputs and outputs are not
directly measurable. In this case, standard system identification methods are not effective. The application
considered in [1] involves the dynamics of the ionosphere and thermosphere, otherwise known as space
weather. This system is driven by the variable output of the Sun, and affects the drag of satellites and the
propagation of radio waves. The Global Ionosphere-Thermosphere Model is the basis of these results.

GITM is a three-dimensional spherical (global Earth) code that solves the Navier-Stokes equations
for the thermosphere. GITM is different from other models of the atmosphere [2–4] in that it solves the
full vertical momentum equation instead of assuming that the atmosphere is in hydrostatic equilibrium,
where the pressure gradient is balanced by gravity. While this assumption is valid for the majority of the
atmosphere, in the auroral zone, where significant energy is dumped into the thermosphere on short time
scales, vertical accelerations often occur. This heating causes strong vertical winds that can significantly lift
the atmosphere [4].

The grid structure within GITM is fully parallel and covers the entire surface of the Earth by using a
block-based two-dimensional domain decomposition in the horizontal coordinates [5]. The number of latitude
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and longitude blocks can be specified at run time in order to modify the horizontal resolution. GITM has
been run on up to 256 processors with a resolution as fine as 0.31◦ latitude by 2.5◦ longitude over the entire
globe with 50 vertical levels, covering a vertical domain from 100 km to roughly 600 km [6]. This flexibility
can be used to validate consistency by running model refinement at various levels of resolution.

An unknown subsystem in GITM can range from an unknown parameter to an unknown dynamical
system. The challenging aspect of estimating these parameters and dynamics is the fact GITM is a large-
scale, nonlinear computational fluid dynamics code, which cannot be represented analytically and thus cannot
be linearized. RCSI, however, does not require an analytical representation of the dynamics of the system
and thus is able to use GITM as the basis of subsystem identification.

The goal of this paper is to apply RCSI to GITM in a way that goes beyond earlier results. In
particular, [1] demonstrated estimation of two parameters and estimation of nitrous oxide (NO) cooling
dynamics at a single altitude for a one-dimensional version of GITM. In the present paper, we use recent
developments in the retrospective cost method to estimate unknown parameters in global three-dimensional
GITM as well as estimation of NO cooling dynamics at multiple altitudes in one-dimensional GITM. These
extensions are based on the improved retrospective cost algorithm given in [8], which requires less modeling
information than prior versions of this algorithm. This distinction is crucial for GITM, which is a highly
nonlinear simulation code, whereas RCSI was originally developed in [5] for linear models.

The contents of the paper are as follows. In section 2, we briefly outline the RCSI method. In section
3, we give three numerical examples, one for parameter ID in 3D GITM, and two for subsystem ID in 1D
GITM. Finally, in section 4, we give conclusions.

II. Review of Retrospective Cost System Identifiation for Subsystems with

Inaccessible Outputs

We use the RCSI identification algorithm described in [5]. A brief outline of the method is as follows.
Consider the MIMO discrete-time main system

x(k + 1) = f [x(k)] + gu[u(k)] + gw[w(k)], (1)

y(k) = hy[x(k)],

y0(k) = hy0
[x(k), v(k)], (2)

where x(k) ∈ R
n, y(k) ∈ R

ly , y0(k) ∈ R
ly0 , u(k) ∈ R

lu , w(k) ∈ R
lw , and k ≥ 0. The main system (1)–(2) is

interconnected with the unknown subsystem modeled by

u(k) = Gs(q)y(k), (3)

where q is the forward shift operator. The system (1)–(3) represents the true system. We assume that the
excitation signal w(k) is known. v(k) denotes measurement noise.

Next, we assume a model of the main system of the form

x̂(k + 1) = f̂ [x̂(k)] + ĝu[û(k)] + ĝw[w(k)], (4)

ŷ(k) = ĥy[x̂(k)],

ŷ0(k) = ĥy0
[x̂(k)], (5)

where x̂(k) ∈ R
n̂, ŷ(k) ∈ R

lŷ , ŷ0(k) ∈ R
ly0 , û(k) ∈ R

lû . The model of the main system is interconnected
with the subsystem model

û(k) = Ĝs(q)ŷ(k).
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The goal is to estimate a subsystem model Ĝs(q) that minimizes a cost function based on the performance
variable

z(k)
△
= ŷ0(k)− y0(k) ∈ R
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Figure 1. Model-refinement architectures. The switches s0, s1 and s2 are used to define various architectures. For

GITM, only the switch s1 is in the ”on” position.

We estimate the subsystem by estimating the inaccessible subsystem output û(k) by minimizing the
cost function

J(Ũ∗(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k) + η(k)R2Ũ

∗T(k − 1)Ũ∗(k − 1), (6)

where η(k) ≥ 0, R2 ∈ R
ˆ̃
U ≥ 0 and

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃Ũ∗(k − 1). (7)

Furthermore,

Ẑ(k)
△
=









ẑ(k − k1)
...

ẑ(k − ks)









∈ R
slz , (8)

Z(k)
△
=









z(k − k1)
...

z(k − ks)









∈ R
slz , (9)

Ũ
△
=









û(k − k1)
...

û(k − ks)









∈ R
slu , (10)

Ũ∗ △
=









u∗(k − k1)
...

u∗(k − ks)









∈ R
slu , (11)
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and H̃ contains the appropriate Markov parameter estimates dependent on the choice of entries in Ũ∗. Next,
substituting (7) into (6) yields

J(Ũ∗(k − 1), k) = ŨT∗(k − 1)A(k)Ũ∗(k − 1) + Ũ∗T(k − 1)BT(k) + C(k), (12)

where

A(k)
△
= H̃

TR(k)H̃ + η(k)R2IlŨ , (13)

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)], (14)

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1). (15)

If either H̃ has full column rank or η(k) > 0 and R2 > 0 , then A(k) is positive definite. In this case,
J̄(Ũ∗(k − 1), k) has the unique global minimizer

Ũ∗(k − 1) = −
1

2
A

−1(k)B(k). (16)

II.A. Subsystem Model Construction

The subsystem output u(k) is given by the strictly proper time-series model of order nc given by

û(k) =

nc
∑

i=1

Mi(k)û(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (17)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
lu×lu and Ni(k) ∈ R

lu×ly . The subsystem output (17) can be expressed
as

û(k) = θ(k)φ(k − 1), (18)

where

θ(k)
△
= [M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k)] ∈ R

lu×nc(lu+ly) (19)

and

φ(k − 1)
△
=























û(k − 1)
...

û(k − nc)

y(k − 1)
...

y(k − nc)























∈ R
nc(lu+ly). (20)

II.B. Recursive Least Squares Update of θ(k)

Let d be a positive integer such that Ũ(k − 1) contains u(k − d). Next, we define the cumulative cost
function

JR(θ(k))
△
=

k
∑

i=d+1

λk−i‖φT(i − d− 1)θT(k)− u∗T(i− d)‖2 + λk(θ(k) − θ(0))P−1(0)(θ(k) − θ(0))T, (21)
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where ‖ · ‖ is the Euclidean norm, and λ(k) ∈ (0, 1] is the forgetting factor. Minimizing (21) yields

θT(k)
△
= θT(k − 1) + γ(k)P (k − 1)φ(k − d− 1)[φT(k − d− 1)P (k − 1)φ(k − d− 1) + λ(k)]−1

· [φT(k − d− 1)θT(k − 1)− u∗T(k − d)], (22)

where γ(k) is either 0 or 1. When β(k) is 1, the subsystem model is allowed to adapt, when γ(k) is 0, the
subsystem model adaption is off. The covariance matrix is updated by

P (k)
△
= (1− γ(k))P (k − 1) + γ(k)λ−1(k)P (k − 1)− β(k)λ−1(k)P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d− 1) + λ(k)]−1φT(k − d− 1)P (k − 1). (23)

We initialize the covariance matrix as P (0) = βI, where β > 0.

III. Numerical results

In this section, we consider the problem of using upper atmosphere mass-density measurements to
identify parameters in the thermal conductivity model in 3D GITM, as well as the problem of identifying
the subsystem that governs the NO radiative cooling in 1D GITM. The NO cooling subsystem identification
is further divided into two cases. For the first case, we simplify GITM by setting the NO cooling profile to
be a piecewise linear function of altitude. For the second case, we do not make this simplification, and allow
the physics in GITM to determine the profile of NO cooling. In all simulations, the time step is fixed at 3
seconds.

III.A. Parameter identification in 3D GITM

The thermal conductivity model in GITM is

κ(h, k) = (FO2
(h, k) + FN2

(h, k))AT 0.69(h, k) + FO(h, k)5.6× 10−4T 0.69(h, k), (24)

where A is the unknown thermal conductivity coefficient, h is the altitude, k is the time step, and FO2
, FN2

,
FO are fractional compositions of O2, N2, and O, respectively. The values of these fractional compositions
are provided by GITM and are known. The true value of the coefficient is A = 3.6 × 10−4 and is identical
for all altitudes, latitudes, and longitudes. We define the “truth model” as GITM with the parameter of the
thermal conductivity model fixed to the true value. We use this truth model to simulate the chemistry and
fluid dynamics in the global three-dimensional ionosphere-thermosphere of Earth and generate mass-density
measurements at an altitude of 400 km above the Earth at a fixed latitude and longitude. This mass-density
measurement is the “truth data”, which we label as y0(k).

Next, we assume that the parameter A of the thermal conductivity model is unknown. We combine
GITM with RCSI, and use RCSI to estimate A at each time step, and apply it to the thermal conductivity
model in GITM at all altitudes, latitudes, and longitudes. The mass-density data at the altitude of 400 km
generated from the combination of GITM and RCSI is labeled as ŷ0(k).

Note that since we are identifying a parameter directly, the output û(k) from the unknown subsystem
model (shown in Figure 1) is the estimated value of the parameter. Furthermore, for parameter identification,
we set ŷ(k) = 1 for all k ≥ 0.

The setup of RCSI for this case uses nc = 1, H̃ = −1000, η̄ = 0, and β = 10. The initial values of the
coefficients of the subsystem model are set to zero. Furthermore, the initial value of the parameter estimate
is set to zero. Moreover, in RCSI, we set bounds on the value of the reconstructed signal Ũ∗(k), which is
used to update the model of the subsystem. The bounds on Ũ∗(k) for this case are 0 ≤ Ũ∗(k) ≤ 1 × 10−2,
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for all k ≥ 0. These bounds are specified so that the nonlinear GITM model does not yield nonphysical
states, such as negative temperature values, and become unstable. Finally, RCSI is turned on after 350 time
steps. Figure 2 shows the estimate of the parameter A. The estimated value converges to the true value
within 2 × 104 time steps. Figure 3 shows the output from the truth model y0(k) and the output from the
combined GITM and RCSI model ŷ0(k), and Figure 4 shows the performance z(k).
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Figure 2. True and estimated coefficient A for Example III.A.
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Figure 3. Comparison of the output y0(k) from the truth model and the output ŷ0(k) from the combined GITM and

RCSI model for Example III.A.

III.B. NO Cooling subsystem identification for GITM with linear NO Cooling profile

In this section, we consider the identification of the subsystem that governs NO radiative cooling in
GITM. For this example, we force NO cooling in GITM to be piecewise linear in altitude, zero at 0 km, and
zero at 600 km (maximum height). First, we assume that the NO cooling process at each altitude is known,
and simulate the chemistry and fluid dynamics in a one-dimensional column in the ionosphere-thermosphere
and generate mass-density measurements at an altitude of 236 km and 388 km above the Earth. These
mass-density measurements are the “truth data” and are labeled y0(k).

Next, we assume that the NO cooling processes are unknown, and combine GITM with RCSI to
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Figure 4. Performance z(k) for Example III.A.

identify the NO cooling subsystems at altitudes of 236 km and 388 km at each time step k. Once we have
reconstructed the NO cooling at 236 km and 388 km at k, we fit a piecewise linear function to this data such
that NO cooling is zero at 0 km and 600 km. Using this function, we obtain the NO cooling at all other
altitudes. The inputs to the NO cooling subsystems at 236 km and 388 km are the respective temperatures
at these altitudes.

The setup of RCSI for this case uses nc = 8, H̃ = −I2×2, η̄ = 1 × 10−5, and β = 0.001. The initial
values of the coefficients of the subsystem model are set to zero. Furthermore, the initial value of output
of the subsystems is set to zero. The bounds on Ũ∗(k) for this case are 0 ≤ Ũ∗(k) ≤ 8.0, for all k ≥ 0.
Finally, RCSI is turned on after 400 time steps. Figure 5 shows the output from the truth model y0(k) and
the output from the combined GITM and RCSI model ŷ0(k). Figure 6 shows the performance z(k). Figure
7 compares the NO cooling at 236 km and 388 km to the output from the identified NO cooling process.
Finally, Figure 8 compares the true and identified NO cooling at all altitudes for four time slices.
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Figure 5. Comparison of the output y0(k) from the truth model and the output ŷ0(k) from the combined GITM and

RCSI model for Example III.B.
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Figure 7. Comparison of the true NO cooling u(k) and the output of the identified NO cooling process û(k) for Example

III.B.
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Figure 8. Comparison of the true and identified NO cooling at all altitudes for four time slices for Example III.B.

III.C. NO Cooling subsystem identification for GITM with true NO Cooling profile

In this section, we consider the identification of the subsystem that governs NO radiative cooling in
GITM, but do not force the NO cooling profile in GITM to be piecewise linear in altitude, as was done in the
second example. In this example, we allow the physics in GITM to determine the profile of NO cooling at
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each time step. However, similar to the second example, when the NO cooling subsystems are unknown, we
attempt to reconstruct the NO cooling at two altitudes and fit a piecewise linear profile to the NO cooling
processes.

First, we assume that the NO cooling processes are known, and simulate the chemistry and fluid
dynamics in a one-dimensional column in the ionosphere-thermosphere and generate mass-density measure-
ments at an altitude of 138 km and 160 km above the Earth. These mass-density measurements are the
“truth data”

Next, we assume that the NO cooling processes are unknown, and combine GITM with RCSI to
identify the NO cooling subsystems at altitudes of 138 km and 160 km. Once we have reconstructed the NO
cooling at 138 km and 160 km at time step k, we fit a piecewise linear function to this data such that NO
cooling is zero at altitudes less than 110 km and at altitudes greater than 350 km. Using this function, we
obtain the NO cooling at all other altitudes. The inputs to the NO cooling subsystems at 138 km and 160
km are the respective temperatures at these altitudes.

The setup of RCSI for this case uses nc = 6, H̃ = −0.3I2×2, η̄ = 1× 10−5, and β = 0.01. The initial
values of the coefficients of the subsystem model are set to zero. Furthermore, the initial output of the
unknown subsystems is set to zero. The bounds on Ũ∗(k) for this case are 0 ≤ Ũ∗(k) ≤ 8.0, for all k ≥ 0.
Finally, RCSI is turned on after 400 time steps. Figure 9 shows the output from the truth model y0(k) and
the output from the combined GITM and RCSI model ŷ0(k). Figure 10 shows the performance z(k). Figure
11 compares the NO cooling at 138 km and 160 km to the output from the identified NO cooling process.
Finally, Figure 12 compares the true and identified NO cooling at all altitudes for four time slices. Since
the true NO cooling profile is nonlinear and we are using a linear approximation, the error z(k) for this
example is larger than in Example III.B. This also introduces a large amount of noise into the reconstructed
subsystem outputs Ũ∗(k) as can be seen in Figure 11.
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RCSI model for Example III.C.
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Figure 12. Comparison of the true and identified NO cooling at all altitudes for four time slices for Example III.C.

IV. Conclusions

In this paper, we used RCSI to estimate unknown parameters and identify inaccessible subsystems in
GITM. As in previous work, we use one simulation of GITM as a truth model, and another copy of GITM
with the unknown parameter or unknown process set to zero as the initial model.

We then apply RCSI to estimate the unknown parameter or identify the unknown subsystem using the
residual between the truth model and the initial model. In the present work, we demonstrated this method
by estimating the unknown thermal conductivity coefficient in 3D GITM, and identifying the NO cooling
subsystem at two altitudes in 1D GITM. We note that RCSI does not require an analytical representation
of GITM.

References

1A. M. D’Amato, A. J. Ridley, and D. S. Bernstein, “Retrospective-cost-based adaptive model refinement for the
ionosphere and thermosphere,” Statistical Analysis and Data Mining, vol. 4, pp. 446-458, 2011.

2E. Yigit and A. J. Ridley, “Effects of high-latitude thermosphere heating at various scale sizes simulated by a nonhy-
drostatic global thermosphere-ionosphere model”, J. Atmos. Sol-Terr. Phys., Vol. 73, pp. 592-600, 2010.

3R. G. Roble, E. C. Ridley, A. D. Richmond, and R. E. Dickinson, “A coupled thermosphere/ionosphere general
circulation model”, Geophys. Res. Lett. Vol. 15, No. 12, pp. 1325–1328, 1988.

4T.J. Fuller-Rowell and D. Rees, “A three-dimensional, time-dependent, global model of the thermosphere”, J. Atmos.

Sci., Vol. 37, pp. 2545–2567, 1980.
5Y. Deng, A. D. Richmond, A. J. Ridley, and H.-L. Liu, “Assessment of the non-hydrostatic effect on the upper

atmosphere using a general circulation model (gcm)”, Geophys. Res. Lett., Vol. 35, L01104, 2008.
6A. J. Ridley, Y. Deng, and G. T’oth, “The global ionosphere/thermosphere model”, J. Atmos. Sol-Terr. Phys.,

Volume 68, Issue 8, pp. 839–864, 2006.
7A. M. Morozov, A. A. Ali, M. D’Amato, A. J. Ridley, S. L. Kukreja, and D. S. Bernstein, “Retrospective-cost-based

model refinement for system emulation and subsystem identification,” Proc. Conf. Dec. Contr., pp. 2142–2147, Orlando, FL,
December 2011.

8A. M. D’Amato, E. D. Sumer, and D. S. Bernstein, “Retrospective-cost adaptive control for systems with unknown
nonminimum-phase zeros,” AIAA Guid. Nav. Contr. Conf., Portland, OR, August 2011, AIAA-2011-6203

12 of 12

American Institute of Aeronautics and Astronautics


