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Abstract— We present a direct adaptive controller for
discrete-time (and thus sampled-data) systems that are possibly
nonminimum phase. The adaptive control algorithm requires
limited model information, specifically, knowledge of the first
nonzero Markov parameter and the nonminimum-phase zeros
(if any) of the transfer function from the control to the
performance. This adaptive control algorithm is effective for
stabilization as well as for command following and disturbance
rejection, where the command and disturbance spectra are
unknown. The novel aspect of this controller is the use of a
retrospective performance, which is minimized using either an
instantaneous or cumulative retrospective cost function.

I. INTRODUCTION

One of the major challenges in direct adaptive control
is the existence of nonminimum-phase zeros – many direct
adaptive control methodologies rely on the assumption that
the plant is minimum phase [1]–[5]. Another challenge
in adaptive control is command following and disturbance
rejection, where the command and disturbance spectra are
unknown and the disturbances are unmeasured. In addition,
for disturbance rejection problems, some adaptive control
methods require that the range of the disturbance input matrix
is contained in the range of the control input matrix, meaning
that the disturbance can be rejected directly by the input
without using the system dynamics [5], [6].

In this paper and its companion paper [7], we present
a discrete-time adaptive control algorithm that addresses
several of these common challenges. In particular, we present
an adaptive controller that is effective for plants that are
nonminimum phase, provided that we have estimates of
the nonminimum-phase zeros. Furthermore, this adaptive
controller does not require that the disturbance input matrix
be matched to the control input matrix. Finally, this adaptive
controller is effective for command following and distur-
bance rejection where the spectrum of the commands and
disturbances is unknown and the disturbance is unmeasured.

The discrete-time adaptive control literature includes [2],
[4], [8]–[12]. In [4], [9], discrete-time adaptive control laws
are presented for stabilization and command following of
minimum-phase systems. An extension is given in [11],
which addresses the combined stabilization, command fol-
lowing, and disturbance rejection problem. The results of
[4], [9], [11] are restricted to minimum-phase systems.

Another class of discrete-time adaptive controllers use
a retrospective cost [13]–[15]. Retrospective cost adaptive
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control uses a retrospective performance measure, in which
the performance measurement is modified based on the
difference between the actual past control inputs and the
recomputed past control inputs, assuming that the current
controller had been used in the past. These retrospective cost
adaptive controllers have been demonstrated to be effective
for nonminimum-phase systems; however, a proof of the
closed-loop stability properties has been an open problem.
A similar controller construction is used in [16] to control
continuous-time minimum-phase systems, which have real
nonminimum-phase zeros that arise from sampling.

This paper is the first part of a pair of papers, which
together present the retrospective cost adaptive controller
and stability analysis. This paper is intended to be read
in conjunction with [7]. This first paper focuses on the
existence and properties of an ideal control law as well as
the construction of a closed-loop error system (i.e., a system
constructed by taking the difference between the closed-loop
system with the ideal controller in feedback and the closed-
loop system with an adaptive controller in feedback). The
results in this paper are essential to the development of the
adaptive law and the closed-loop stability analysis presented
in [7]. II. PROBLEM FORMULATION

Consider the discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)
y(k) = Cx(k) +D2w(k), (2)

where x(k) ∈ Rn, y(k) ∈ R, u(k) ∈ R, w(k) ∈ Rlw ,
and k ≥ 0. Our goal is to develop an adaptive output
feedback controller, which generates a control signal u that
drives the performance variable y to zero in the presence of
the exogenous signal w. Note that w can represent either a
command signal to be followed, an external disturbance to
be rejected, or both.

Next, define the transfer function Gyu(z)
4
= C(zI −

A)−1B =
∑∞
i=d z−iHi, where the relative degree d ≥ 1

is the smallest positive integer i such that the ith Markov
parameter Hi

4
= CAi−1B is nonzero. We make the following

assumptions.
(A1) The triple (A,B,C) is controllable and observable.

(A2) If λ ∈ C, |λ| ≥ 1, and rank
[
A− λI B
C 0

]
< n+1,

then λ is known.
(A3) d is known.
(A4) The first nonzero Markov parameter Hd is known.
(A5) There exists an integer n̄ such that n ≤ n̄ and n̄ is

known.
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(A6) y(k) is measured and available for feedback.
(A7) The exogenous signal w(k) is generated by

xw(k + 1) = Awxw(k), w(k) = Cwxw(k), (3)

where xw ∈ Rnw and Aw has distinct eigenvalues, all
of which are on the unit circle, and none of which
coincide with a zero of (A,B,C).

(A8) There exists an integer n̄w such that nw ≤ n̄w and n̄w
is known.

(A9) A, B, C, D1, D2, Aw, Cw, n, and nw are not known.
Next, let the transfer function Gyu(z) be given by

Gyu(z) = Hd
β(z)
α(z) , where α(z) = zn + α1zn−1 + · · · + αn

and β(z) = zn−d + βd+1zn−d−1 + · · · + βn are coprime
monic polynomials, and α1, . . . , αn, βd+1, . . . , βn ∈ R.

Next, consider the factorization of β(z) given by β(z) =
βu(z)βs(z), where βu(z) and βs(z) are monic polynomi-
als and the roots of β(z) that lie on or outside the unit
circle are the roots of βu(z). More precisely, if λ ∈
C, |λ| ≥ 1, and β(λ) = 0, then βu(λ) = 0 and
βs(λ) 6= 0. Furthermore, we can write βu(z) = znu +
βu,1znu−1 + · · ·+βu,nu−1z+βu,nu and βs(z) = zn−nu−d+
βs,1zn−nu−d−1 + · · · + βs,n−nu−d−1z + βs,n−nu−d, where
βu,1, . . . , βu,nu , βs,1, . . . , βs,n−nu−d ∈ R, and nu ≤ n− d is
the degree of βu(z).

Next, we define the transfer function matrix Gyw(z)
4
=

C(zI − A)−1D1 + D2, and let Gyw have a matrix-fraction
description of the form Gyw = 1

α(z)γ(z), which is not
necessarily coprime, where γ(z) = znγ0+zn−1γ1+· · ·+γn,
and γ0, . . . , γn ∈ R1×lw . Therefore, for k ≥ n, the state-
space system (1), (2) has the time-series representation

y(k) =
n∑
i=1

−αiy(k − i) +
n∑
i=d

βiu(k − i) +
n∑
i=0

γiw(k − i).

(4)

Since, by assumption (A1), (A,B,C) is minimal, it fol-
lows that the nonminimum-phase zeros of (A,B,C) are
exactly the roots of βu(z). Therefore, assumption (A2) is
equivalent to the assumption that the polynomial βu(z) is
known and the degree nu of βu(z) is known.

Assumption (A9) implies that the spectrum of the com-
mand and disturbance signals is unknown. Furthermore, we
stress that y(k) is the only signal available for feedback,
that is, a direct measurement of w(k) is not assumed to be
available.

III. NONMINIMAL-STATE-SPACE REALIZATION

We use a nonminimal-state-space realization of the time-
series model (4) whose state consists entirely of mea-
sured information, specifically, y and u. To construct the
nonminimal-state-space realization of the time-series system
(4), we introduce the following notation. For a positive
integer p, define

Ep
4
=
[

1
0(p−1)×1

]
, Np

4
=


0 · · · 0 0
1 0 0
...

. . .
...

...
0 · · · 1 0

 ∈ Rp×p,

-
-

-

��uim

w y∗

u∗

Plant
[
Gyw Gyu

]

Ideal Fixed-Gain Controller

Precompensator Gpc Internal Model Gim

Fig. 1. Closed-loop system with the ideal fixed-gain controller.

Now, let nc ≥ n, and, for all k ≥ nc, consider the 2nth
c -

order nonminimal-state-space realization of (4) given by

φ(k + 1) = Aφ(k) + Bu(k) + D1W (k), (5)
y(k) = Cφ(k) + D2W (k), (6)

where

A
4
= Anil + E2ncC, B

4
=
[

0nc×1

Enc

]
, (7)

C
4
=
[
−α1 · · · −αn 01×(nc−n)

01×(d−1) βd · · · βn 01×(nc−n)

]
, (8)

D1
4
= E2ncD2, D2

4
=
[
γ0 · · · γn

]
, (9)

Anil
4
=
[

Nnc 0nc×nc

0nc×nc Nnc

]
, (10)

φ(k)
4
=
[
y(k − 1) · · · y(k − nc)

u(k − 1) · · · u(k − nc)
]T
, (11)

W (k)
4
=
[
wT(k) · · · wT(k − n)

]T
. (12)

The triple (A,B,C) is stabilizable and detectable but is
neither controllable nor observable. In particular, (A,B) has
nc − n uncontrollable eigenvalues at 0, while (A,C) has
2nc − n unobservable eigenvalues at 0. Note that in this
basis, the state φ(k) contains only past values of y and u.

IV. IDEAL FIXED-GAIN CONTROLLER

In this section, we prove the existence of an ideal fixed-
gain controller for the open-loop system (1), (2). This
controller, whose structure is illustrated in Figure 1, is
used in the next section to construct an error system for
analyzing the closed-loop adaptive system. An ideal fixed-
gain controller consists of two distinct parts, specifically,
a precompensator, which cancels the stable zeros of the
open-loop transfer function Gyu(z), and an internal model
controller, which operates in feedback on the observable
states of the precompensator cascaded with the open-loop
system. For all k ≥ nc, consider the strictly proper ideal
fixed-gain controller

u∗(k) =
nc∑
i=1

Mi,∗u∗(k − i) +
nc∑
i=1

Ni,∗y∗(k − i), (13)

where, for all i = 1, . . . , nc, Mi,∗ ∈ R and Ni,∗ ∈ R, and
the ideal performance y∗(k) is the output of the system (1),
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(2) with u(k) = u∗(k) for all k ≥ nc. For all k ≥ nc, the
ideal control u∗(k) can be written as

u∗(k) = φT
∗ (k)θ∗, (14)

where θ∗(k)
4
=
[
N1,∗ · · · Nnc,∗ M1,∗ · · · Mnc,∗

]T
, and

φ∗(k)
4
=
[
y∗(k − 1) · · · y∗(k − nc)

u∗(k − 1) · · · u∗(k − nc)
]T
.

Therefore, for all k ≥ nc, the ideal closed-loop system
consisting of (5)-(10) and the ideal fixed-gain controller (14)
is given by

φ∗(k + 1) = A∗φ∗(k) + D1W (k), (15)
y∗(k) = Cφ∗(k) + D2W (k), (16)

where A∗
4
= A + BθT

∗ = Anil +
[
EncC

Encθ
T
∗

]
.

Let q and q−1 denote the forward-shift and backward-shift
operators, respectively.

Theorem IV.1. Let

nc ≥ 2n+ 2nw − nu − d, (17)

and let d∗(z) be an asymptotically stable monic polynomial
of degree n∗

4
= nc + nu + d. Then there exists an ideal

fixed-gain controller (13) of order nc such that the following
statements hold for the ideal closed-loop system consisting
of (15), (16):

(i) A∗ is asymptotically stable.
(ii) For all initial conditions xw(0) and φ∗(nc) of the

closed-loop system (15) and (16) with the exogenous
input w(k), which is given by (3), limk→∞ y∗(k) = 0.

(iii) For all initial conditions xw(0) and φ∗(nc) of the
closed-loop system (15) and (16) with the exogenous
input w(k), which is given by (3), and, for all k ≥
k0
4
= n∗ + nc = 2nc + nu + d,

D∗(q−1)y∗(k) = 0, (18)

where D∗(q−1)
4
= q−n∗d∗(q).

(iv) The transfer function G∗(z)
4
= C (zI −A∗)

−1
B is

given by
G∗(z) =

Hdβu(z)znc

d∗(z)
. (19)

Proof. We construct a time-series representation of the
ideal fixed-gain controller depicted in Figure 1 and show
that it satisfies (i)-(iv). To construct this controller, define
npc

4
= n − nu − d ≥ 0, and consider the strictly proper

precompensator, with input uim, given by

u∗(k) = −
npc∑
i=1

βs,iu∗(k − i) + uim(k − npc), (20)

which has a minimal state-space realization of the form

xpc(k + 1) = Apcxpc(k) +Bpcuim(k), (21)
u∗(k) = Cpcxpc(k), (22)

where xpc ∈ Rnpc . If npc = 0, then the precompensator is
absent. Next, cascading the precompensator (21), (22) with
the open-loop system (1), (2) yields[

x∗(k + 1)
xpc(k + 1)

]
=
[
A BCpc

0 Apc

] [
x∗(k)
xpc(k)

]
+
[

0
Bpc

]
uim(k) +

[
D1

0

]
w(k),

y∗(k) =
[
C 0

] [ x∗(k)
xpc(k)

]
+D2w(k), (23)

where x∗(k) is the state of (1), (2) with u(k) = u∗(k).
It follows from (20) that the transfer function from uim

to u∗ is Gpc(z)
4
= Cpc(zI − Apc)−1Bpc = 1

βs(z) , which
implies that the poles of Gpc(z) are exactly the asymptot-
ically stable zeros of Gyu(z). Therefore, the cascade (23)
has the transfer function representation Gyu(z)Gpc(z) =
Hd

βu(z)βs(z)
α(z)

1
βs(z) = Hd

βu(z)
α(z) , which entails asymptotically

stable pole-zero cancellation. Since the poles of Gpc(z)
cancel the minimum-phase zeros of Gyu(z), it follows that([

A BCpc

0 Apc

]
,

[
0
Bpc

]
,
[
C 0

])
(24)

is not minimal. However, we show that (24) is controllable.
Since (A,B) is controllable and (Apc, Bpc, Cpc) has no
zeros, it follows that, for all λ ∈ C,

rank
[
λIn −A BCpc 0

0 λInpc −Apc Bpc

]
= rank

([
λIn −A B 0

0 0 Inpc

]

×

 In 0 0
0 0 Cpc

0 Bpc λInpc −Apc

 = n+ npc.

Thus, the cascade (23) is controllable but not observable.
In fact, it follows from the pole-zero cancellations between
Gpc(z) and Gyu(z) that the unobservable modes of (24) are
exactly the poles of Gpc(z), all of which are asymptotically
stable. Therefore, it follows from the Kalman decomposition
that there exists a nonsingular matrix T ∈ R(n+npc)×(n+npc)

such that

T

[
A BCpc

0 Apc

]
T−1 =

[
Ao 0
A21 Aō

]
,[

C 0
]
T−1 =

[
Co 0

]
,

where Ao ∈ Rn×n, (Ao, Co) is observable, and Aō ∈
Rnpc×npc is asymptotically stable.

Now, defining
[
xo(k)
xō(k)

]
4
= T

[
x(k)
xpc(k)

]
, where

xo(k) ∈ Rn and xō(k) ∈ Rnpc , and applying this change
of basis to the cascade (23) yields[

xo(k + 1)
xō(k + 1)

]
=
[
Ao 0
A21 Aō

] [
xo(k)
xō(k)

]
+
[
Bo

Bō

]
uim(k) +

[
D1,o

D1,ō

]
w(k),

(25)
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and

y∗(k) =
[
Co 0

] [ xo(k)
xō(k)

]
+D2w(k), (26)

where
[
Bo

Bō

]
= T

[
0
Bpc

]
and

[
D1,o

D1,ō

]
= T

[
D1

0

]
.

Next, define nim
4
= nc−npc = nc−n+nu + d, and note

that it follows from (17) that nim ≥ n+2nw. Let xim ∈ Rnim

and consider the controller

xim(k + 1) = Aimxim(k) +Bimy∗(k), (27)
uim(k) = Cimxim(k), (28)

which is an internal model controller for the observable states
of (25), (26) given by

xo(k + 1) = Aoxo(k) +Bouim(k) +D1,ow(k), (29)
y∗(k) = Coxo(k) +D2w(k). (30)

Therefore, the closed-loop system (27)-(30) is given by

x̃o(k + 1) = Ãox̃o(k) + D̃ow(k), (31)

y∗(k) = C̃ox̃o(k) +D2w(k), (32)

where

Ão
4
=
[

Ao BoCim

BimCo Aim

]
, D̃o

4
=
[

D1,o

BimD2

]
,

C̃o
4
=
[
Co 0

]
, x̃o(k)

4
=
[
xo(k)
xim(k)

]
.

Note that the dimension of the closed-loop system (31), (32)
is n+ nim = n+ nc − npc = nc + nu + d = n∗.

Since, by assumption (A7), the zeros of (Ao, Bo, Co),
which are the roots of βu(z), do not coincide with the
eigenvalues of Aw; (Ao, Bo, Co) is minimal; and the di-
mension of y equals the dimension of u, it follows from
[17, Theorem 4.1] that there exists an internal model con-
troller (27), (28) such that Ão is asymptotically stable,
det(zIn∗ − Ão) = d∗(z), and, for all initial conditions
(xo(0), xō(0), xim(0), xw(0)), limk→∞ y∗(k) = 0.

Next, the closed-loop system (25)-(28), which includes the
unobservable states xō, is given by

x̃(k + 1) = Ãx̃(k) + D̃w(k), (33)

y∗(k) = C̃x̃(k) +D2w(k), (34)

where

Ã
4
=
[
Ão 0
Ã21 Aō

]
, D̃

4
=
[

D̃o

D1,ō

]
,

C̃
4
=
[
C̃o 0

]
, x̃(k)

4
=
[
x̃o(k)
xō(k)

]
, (35)

and Ã21
4
= [ A21 BōCim ]. Since Ão and Aō are asymp-

totically stable, it follows that Ã is asymptotically stable.
To show (i) and (ii), we show that, for all k ≥ nc, the ideal

fixed-gain controller, which is the cascade of the precompen-
sator (21), (22) and the internal model controller (27), (28),
can be expressed as the time-series controller (13). First, we
denote the transfer function of the internal model controller

(27), (28) by Gim(z)
4
= Cim(zI − Aim)−1Bim = Nim(z)

Mim(z) ,
where Mim(z) = znim +Mim,1znim−1 + · · ·+Mim,nim and
Nim(z) = Nim,1znim−1 + Nim,2znim−2 + · · · + Nim,nim ,
where, for i = 1, . . . , nim, Mim,i ∈ R and Nim,i ∈ R.
Therefore, the ideal fixed-gain controller is given by the
transfer function

Gc,∗(z)
4
= Gpc(z)Gim(z) =

N∗(z)
M∗(z)

, (36)

where M∗(z)
4
= βs(z)Mim(z) and N∗(z)

4
= Nim(z). Thus,

M∗(z) and N∗(z) are given by

M∗(z) = znc −M1,∗znc−1 − · · · −Mnc,∗, (37)

N∗(z) = N1,∗znc−1 +N2,∗znc−2 + · · ·+Nnc,∗, (38)

where, for all i = 1, 2, . . . , nc,

Mi,∗
4
= −βs,i −Mim,i −

i−1∑
j=1

βs,jMim,i−j , (39)

Ni,∗
4
= Nim,i−nc+nim , (40)

where, for all j > npc, βs,j = 0, for all j > nim, Mim,j = 0,
and, for all j ≤ 0, Nim,j = 0. Therefore, the ideal time-series
controller is given by (13) with parameters (39) and (40).

To show (i), note that, for all k ≥ nc, the closed-loop
system (15), (16) is a 2nth

c -order nonminimal-state-space
realization of the closed-loop system (33), (34). Thus, the
spectrum of A∗ consists of the nc + n eigenvalues of Ã as
well as nc−n uncontrollable eigenvalues located at 0, which
are exactly the uncontrollable eigenvalues of the open-loop
dynamics, that is, the uncontrollable eigenvalues of (A,B).
Therefore, since Ã is asymptotically stable, it follows that
A∗ is asymptotically stable. Thus, we have verified (i).

Next, since, for all k ≥ nc, (15), (16) is a nonminimal
representation of (33), (34), it follows that, for all initial
conditions φ∗(nc) and xw(0), limk→∞ y∗(k) = 0. Thus, we
have verified (ii).

To show (iii), for all k ≥ nc, the closed-loop system (33),
(34) with the exogenous input w(k), which is given by (3),
can be written as[

x̃(k + 1)
xw(k + 1)

]
=
[
Ã D̃Cw
0 Aw

] [
x̃(k)
xw(k)

]
,

y∗(k) =
[
C̃ D2Cw

] [ x̃(k)
xw(k)

]
.

Since limk→∞ y∗(k) = 0 and Ã is asymptotically stable,
it follows from [17, Lemma 2.1] that there exists S ∈
R(n+nc)×nw such that ÃS−SAw = D̃Cw and C̃S = D2Cw.

Therefore, define Q
4
=
[
In+nc S

0 Inw

]
, and consider the

change of basis

x̃Q(k)
4
= Q

[
x̃(k)
xw(k)

]
=
[
x̃(k) + Sxw(k)

xw(k)

]
, (41)

ÃQ
4
= Q

[
Ã D̃Cw
0 Aw

]
Q−1 =

[
Ã 0
0 Aw

]
, (42)

C̃Q
4
=
[
C̃ D2Cw

]
Q−1 =

[
C̃ 0

]
, (43)
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which implies that, for all k ≥ nc,

x̃Q(k + 1) = ÃQx̃Q(k), y∗(k) = C̃Qx̃Q(k).

Next, define k0
4
= n∗ + nc, where n∗ is the degree

of the polynomial d∗(z). Therefore, it follows from
(41)-(43) that, for all k ≥ k0, D∗(q−1)y∗(k) =
C̃QD∗(q−1)x̃Q(k) = C̃Qd∗(ÃQ)x̃Q(k − n∗) =
C̃d∗(Ã) [x̃(k − n∗) + Sxw(k − n∗)], and using (35)
yields, for all k ≥ k0,

D∗(q−1)y∗(k) =
[
C̃o 0

] [ d∗(Ão) 0
] d∗(Aō)

]
× [x̃(k − n∗) + Sxw(k − n∗)]

=
[
C̃od∗(Ão) 0

]
× [x̃(k − n∗) + Sxw(k − n∗)] ,

where ] denotes an inconsequential entry. Since det(zIn∗ −
Ão) = d∗(z), the Cayley-Hamilton theorem implies that
d∗(Ão) = 0. Therefore, for all k ≥ k0, D∗(q−1)y∗(k) = 0.

To show (iv), consider the transfer function representation
of the open-loop system, which is given by

y = Gyu(z)u+Gyw(z)w, (44)

and let u(k) = uc(k) + e(k), where e(k) is an arbitrary sig-
nal, and uc(k) is the output of the ideal fixed-gain controller
(13) with parameters (39) and (40) and the input y(k), that
is, uc = Gc,∗(z)y. It follows from (36) and (44) that the
closed-loop system is given by y = G̃ye(z)e + G̃yw(z)w,
where

G̃ye(z)
4
=
Hdβu(z)M∗(z)

d∗(z)
, (45)

G̃yw(z)
4
= Mim(z)γ(z)

d∗(z) , and d∗(z) = det(zIn∗ − Ão) =
α(z)Mim(z)−Hdβu(z)Nim(z).

Next, consider the 2nth
c -order nonminimal-state-space re-

alization of uc = Gc,∗(z)y given by

φc(k + 1) = Acφc(k) + Bcy(k), (46)
uc(k) = Ccφc(k), (47)

where

Ac
4
=Anil +

[
0nc×2nc

Encθ
T
∗

]
, Bc

4
=
[

Enc

0nc×1

]
, Cc

4
= θT
∗ ,

φc(k)
4
=
[
y(k − 1) · · · y(k − nc)

uc(k − 1) · · · uc(k − nc)
]T
.

Noting that Ac = A + BCc − BcC, the closed-loop system
(5)-(10) and (46)-(47) is[

φ(k + 1)
φc(k + 1)

]
=
[

A BCc

BcC Ac

] [
φ(k)
φc(k)

]
+
[

B

0

]
e(k) +

[
D1

BcD2

]
W (k),

y(k) =
[

C 0
] [ φ(k)

φc(k)

]
+ D2W (k),

and the closed-loop transfer function from e to y is given by

G̃ye(z) =
[

C 0
](

zI4nc −
[

A BCc

BcC Ac

])−1 [
B

0

]
.

Next, with the change of basis[
A∗ BCc

0 Anil

]
=
[

I 0
−I I

] [
A BCc

BcC Ac

] [
I 0
I I

]
,[

B

−B

]
=
[

I 0
−I I

] [
B

0

]
,

[
C 0

]
=
[

C 0
] [ I 0

I I

]
,

it follows that

G̃ye(z) =
[

C 0
] [ zI −A∗ −BCc

0 zI −Anil

]−1 [
B

−B

]
= C(zI −A∗)−1B

− C(zI −A∗)−1BCc(zI −Anil)−1B,

= G∗(z)
[
1− Cc(zI −Anil)−1B

]
. (48)

Since Cc = θT
∗ , it follows from the structure of Anil and B

and (37) that M∗(z)
znc = 1− Cc(zI2nc −Anil)−1B, and thus

G̃ye(z) = G∗(z)
M∗(z)
znc

. (49)

Finally, comparing (45) and (49) yields (19), verifying (iv).

V. ERROR SYSTEM

We now construct an error system using the ideal fixed-
gain controller (which is not implemented) and a controller
whose gains are updated by an adaptive law, which is
presented in [7]. Since n and nw are unknown, the lower
bound for the controller order nc given by (17) is unknown.
However, since, by assumptions (A5) and (A8), n ≤ n̄ and
nw ≤ n̄w, it follows that the modified lower bound

nc ≥ 2n̄+ 2n̄w − nu − d, (50)

implies (17). Furthermore, assumptions (A2), (A3), (A5), and
(A8) imply that the lower bound on nc given by (50) is
known. Therefore, we let nc satisfy the known lower bound
(50).

Next, for all k ≥ nc, consider the time-varying controller

u(k) =
nc∑
i=1

Mi(k)u(k − i) +
nc∑
i=1

Ni(k)y(k − i), (51)

where, for all i = 1, . . . , nc, Mi : N → R and Ni : N → R
are given by the adaptive law presented in the following
section. For all k ≥ nc, the controller (51) can be expressed
as

u(k) = φT(k)θ(k), (52)

where θ(k)
4
=
[
N1(k) · · · Nnc(k) M1(k) · · · Mnc(k)

]T
,

and, for all k ≥ nc, φ(k) is defined by (11). Furthermore, for
all nonnegative integers k < nc, let u(k) be given by (52),
where, for all nonnegative integers k < nc, φ(k) ∈ R2nc .
Inserting (52) into (5) yields, for all k ≥ nc

φ(k + 1) = Aφ(k) + BφT(k)θ(k) + D1W (k). (53)
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Next, define n∗
4
= nc + nu + d, and let d∗(q) be

an asymptotically stable monic polynomial of degree n∗.
Furthermore, let θ∗ ∈ R2nc be the ideal fixed-gain controller
given by Theorem IV.1, and, for all k ≥ nc, let φ∗(k) be
the state of the ideal closed-loop system (15), (16), where
the initial condition is φ∗(nc) = φ(nc). Finally, define
D∗(q−1)

4
= q−n∗d∗(q), β∗(q−1)

4
= q−nu−dβu(q), and

k0
4
= nc + n∗.
Next, defining θ̃(k)

4
= θ(k)− θ∗, and substituting θ(k) =

θ̃(k) + θ∗ into (53), for all k ≥ nc, the closed-loop system
consisting of (5), (6), and (52) becomes

φ(k + 1) = A∗φ(k) + BφT(k)θ̃(k) + D1W (k), (54)
y(k) = Cφ(k) + D2W (k). (55)

Now, we construct an error system by combining the ideal
closed-loop system (15), (16) with the closed-loop system
(54), (55). Define the error state φ̃(k)

4
= φ(k)− φ∗(k), and

subtract (15), (16) from (54), (55) to obtain, for all k ≥ nc,

φ̃(k + 1) = A∗φ̃(k) + BφT(k)θ̃(k), (56)

ỹ(k) = Cφ̃(k), (57)

where ỹ(k)
4
= y(k)− y∗(k).

Now, for all k ≥ 0, we define the filtered perfor-
mance yf(k)

4
= D∗(q−1)y(k). Note that yf(0) depends

on y(−1), . . . , y(−n∗), which can be chosen arbitrarily. In
addition, for all k ≥ k0, define the ideal filtered performance
yf,∗(k)

4
= D∗(q−1)y∗(k) and the filtered performance error

ỹf(k)
4
= yf(k) − yf,∗(k) = D∗(q−1)ỹ(k). Recall that the

control objective is to drive y to zero. Since d∗(q) =
qn∗D∗(q−1) is an asymptotically stable polynomial it fol-
lows that y tends to zero if and only if yf tends to zero.
Furthermore, note that yf(k) is computable from y(k) and
the known asymptotically stable polynomial d∗(z).

Note that the transfer function of the error system (56),
(57) is G∗(z), as given by (19). The following result relates
ỹf(k) and yf(k) to the estimation error θ̃(k).

Lemma V.1. Consider the error system (56), (57) with
initial conditions θ(0) and φ(nc). Then, for all k ≥ k0,

yf(k) = ỹf(k) = Hdβ∗(q−1)
[
φT(k)θ̃(k)

]
. (58)

Proof. For all k ≥ k0, it follows from the error system
(56), (57) that ỹ(k) is given by

ỹ(k) = CAk−nc
∗ φ̃(nc) +

k−nc∑
i=1

CAi−1
∗ BφT(k − i)θ̃(k − i).

Since φ∗(nc) = φ(nc) it follows that φ̃(nc) = 0, and thus,
for all k ≥ k0,

ỹ(k) =
k−nc∑
i=1

CAi−1
∗ BφT(k − i)θ̃(k − i),

which is the forced solution of (56), (57), and thus equiva-
lent to ỹ(k) = G∗(z)

[
φT(k)θ̃(k)

]
. Next, it follows from

(iv) of Theorem IV.1 that, for all k ≥ k0, ỹ(k) =
Hdβu(z)znc

d∗(z)

[
φT(k)θ̃(k)

]
, which implies d∗(q)ỹ(k) =

Hdβu(q)qnc

[
φT(k)θ̃(k)

]
. Multiplying both sides by q−n∗

yields ỹf(k) = Hdβ∗(q−1)
[
φT(k)θ̃(k)

]
. Furthermore, it

follows from (iii) of Theorem IV.1 that, for all k ≥ k0,
yf,∗(k) = 0, which implies that yf(k) = ỹf(k) + yf,∗(k) =
ỹf(k), thus verifying (58).

Lemma V.1 relates the filtered performance yf(k) to the
estimation error θ̃(k). This relationship, given by (58), is
not a linear regression in the estimation error θ̃(k); however,
it is possible to define a surrogate measure of the filtered
performance, which is a linear regression in θ̃(k). This
surrogate measure is called the retrospective performance
measure. We define the retrospective performance in [7], and
use it to develop adaptive laws for the controller (52). The
results from the present paper, specifically, Theorem IV.1 and
Lemma V.1, are used in the construction and analysis of the
retrospective cost adaptive controllers presented in [7].
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