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Abstract— We demonstrate that the retrospective cost adap-
tive control algorithm can improve the tracking error when
following square-wave and triangle-wave commands in the pres-
ence of amplitude and rate saturation, respectively, provided
that the saturation level is known. Specifically, the retrospective
cost adaptive control algorithm does not experience integrator
windup, which is a common problem under amplitude and rate
saturation for fixed-gain controllers with integral action.

I. INTRODUCTION

Actuator saturation is unavoidable in control-system im-

plementation due to physical constraints on stroke and power

[1]. These constraints are responsible for amplitude satura-

tion, which imposes limitations on the range of operation,

and rate saturation, which imposes limitations on controller

bandwidth. The extensive literature on saturation attests

to the considerable effort devoted to this challenging and

fundamental problem [2], [3].

In addition to the performance limitations of amplitude

and rate saturation, linear control laws that are implemented

without regard to saturation effects can result in unexpectedly

adverse behavior. In particular, [4] shows that a stable closed-

loop system may be rendered unstable by amplitude satura-

tion. In addition, integral control for tracking or rejecting

steps can experience integrator windup, which is a destabi-

lizing effect [2], [3]. Consequently, an extensive literature

has been devoted to antiwindup strategies, which typically

disable the integrator during amplitude saturation [5]–[7].

An alternative approach to addressing the effects of sat-

uration is to design a nonlinear controller that accounts for

the presence of a saturation nonlinearity [6], [8]–[11]. In

particular, a chain of three or more integrators cannot be sta-

bilized by a saturated linear controller [12]; for such systems

a nested saturation control [6] is needed. Not surprisingly, the

sufficient conditions given in [13] for stability of a saturated

linear control fail for plants with triple integrator dynamics.

The difficulties presented by saturation for fixed-gain

controllers are exacerbated within the context of adaptive

control, especially when the adaptation mechanism is not

aware that saturation is present [14].

In the present paper, we consider both amplitude and rate

saturation within the context of retrospective cost adaptive

control (RCAC). RCAC uses a retrospective performance

measure that facilitates controller adaptation with minimal
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assumptions about the plant and exogenous signals. In partic-

ular, RCAC is effective for adaptive control of nonminimum-

phase systems provided that the nonminimum-phase zeros

are known [15]–[17]. In this paper, we adopt the cumulative

(i.e., recursive-least-squares) RCAC algorithm presented in

[16]. A stability analysis of the algorithm is given in [17].

The goal of the present paper is to examine the stability

and performance of RCAC in the presence of amplitude and

rate saturation. To do this, we consider command following

problems for square waves and triangle waves. We expect

that RCAC will converge to an internal-model-type con-

trol law that incorporates either single-integrator or double-

integrator dynamics. We stress that the adaptive controller

will not be able to follow the commands with zero steady-

state error because the amplitude and rate saturation makes

this impossible. However, we intend to compare the steady-

state performance of the adaptive controller to the steady-

state performance of fixed-gain linear controllers. The goal

of these investigations is to determine whether RCAC is

susceptible to the destabilizing effects of integrator windup.

The adaptive controller that we examine assumes that the

saturation nonlinearity is known; the value of the saturated

input is then used within the RCAC algorithm. Consequently,

when the adaptive controller converges, the resulting fixed

gain controller is a nonlinear compensator.

II. COMMAND FOLLOWING AND DISTURBANCE

REJECTION PROBLEM

Consider the multi-input, multi-output system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k) +D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu ,

w(k) ∈ R
lw , and k ≥ 0. Our goal is to develop an output

feedback controller that generates a control signal u that min-

imizes the performance z in the presence of the exogenous

signal w. We assume that measurements of the output y and

the performance z are available for feedback; however, we

assume that a direct measurement of the exogenous signal w
is not available. Note that w can represent either a command

signal to be followed, an external disturbance to be rejected,

or both. In this paper, w represents a command signal. Let uc

be the commanded control signal, that is, the output of the

feedback controller. In this paper, we consider the case where

there is no saturation (i.e., u = uc) and the case where the

commanded control uc is either rate or amplitude saturated

(i.e., u 6= uc).
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III. COMMAND FOLLOWING FOR SQUARE AND

TRIANGLE WAVES USING FIXED-GAIN CONTROL

In this section, we present numerical examples to demon-

strate single-integator and double-integrator windup using

fixed-gain control. We demonstrate single-integrator windup

using a controller with single-integral action to follow a

square wave and double-integrator windup using a controller

with double-integral action to follow a triangle wave. The

numerical examples are constructed as follows:

(i) The exogenous commands w(k) are either square

waves or triangle waves. For k ≥ 0, and N =
0, 1, 2, . . ., we define the square wave

ws(k)
△
=

{

+As

2 , TsN ≤ k < TsN + 1
2Ts

−As

2 , TsN + 1
2Ts ≤ k < TsN + Ts,

and the triangle wave

wt(k)
△
=























+As

[

2
Ts

(k − TsN)
]

,

if TsN − 1
4Ts ≤ k < TsN + 1

4Ts,

−As

[

2
Ts

(k − TsN)− 1
]

,

if TsN + 1
4Ts ≤ k < TsN + 3

4Ts,

where Ts = 2000 time steps and As = 2.

(ii) We assume that z = y.

(iii) (A,B,E1) is a controllable canonical realization of

the transfer function from u to z, D1 = 0n×1, and

E0 = −1. Therefore, (1)-(3) becomes x(k + 1) =
Ax(k) + Bu(k) and z(k) = E1x(k) − w(k), where

objective is to have yout
△
= E1x follow w.

A. Square-wave command following for a minimum-phase

plant with amplitude saturation

Consider the asymptotically stable, minimum-phase trans-

fer function from u to z, given by

Gzu(z) =
(z+ 0.2 + 0.5)(z+ 0.2− 0.5)

(z+ 0.5 + 0.5)(z+ 0.5− 0.5)(z− 0.9)
. (4)

The control objective is to have yout follow the square-wave

command w = ws. We consider the fixed-gain feedback uc =
GPI(z)z, where

GPI(z)
△
= 0.2 +

0.02

z− 1
= 0.2

z− 0.9

z− 1
. (5)

The controller (5) is implemented in feedback with the plant

(4), where uc may experience amplitude saturatation, that is,

u(k) = sgn(uc(k))min(|uc(k)|, um), (6)

where um > 0 is the amplitude saturation level. We consider

the unsaturated case (i.e., um = ∞) as well as four levels of

amplitude saturation. Let uss be the steady-state command

value required to achieve zero steady-state error. For the

plant (4), uss ≈ 0.15. Next, we define four saturation levels,

specifically, um,10% = 0.9uss, um,20% = 0.8uss, um,40% =
0.6uss, and um,80% = 0.2uss. Note that um,10%, um,20%,

um,40%, and um,80% are selected such that the unsaturated

control signal uc experiences approximately 10%, 20%, 40%,

and 80% saturation, respectively, in comparison to uss.

Figure 1 shows the time history of w, yout, uc, and

u for the case without amplitude saturation as well as

the cases where um equals um,10%, um,20%, um,40%, and

um,80%. For the case without amplitude saturation, each

time w changes sign, yout experiences a transient and then

approaches w, resulting in zero steady-state error. For the

cases with amplitude saturation, Figure 1 shows that the am-

plitude saturation prevents yout from following w with zero

steady-state error. Furthermore, the unsaturated control signal

uc exhibits integrator windup. In particular, the integrator

windup results in a phase lag in yout changing direction to

match the direction of the command w. Note that the effect

of integrator windup increases as the amplitude saturation

increases from 10% to 80%.

0 2000 4000 6000 8000

−1

0

1

N
o

 
S

at
.

Command  w(k) (dashed)
and output  y

out
(k) (solid)

0 2000 4000 6000 8000
−0.5

0

0.5

Saturated control  u(k) (solid) and
unsaturated control  u

 c
(k) (dashed)	

0 2000 4000 6000 8000

−1

0

1

1
0

%
 

S
at

.

0 2000 4000 6000 8000
−10

0

10

0 2000 4000 6000 8000

−1

0

1

2
0

%
 

S
at

.
0 2000 4000 6000 8000

−10

0

10

0 2000 4000 6000 8000

−1

0

1

4
0

%
 

S
at

.

0 2000 4000 6000 8000
−10

0

10

0 2000 4000 6000 8000

−1

0

1

8
0

%
 

S
at

.

Time steps  k
0 2000 4000 6000 8000

−10

0

10

Time steps  k

Fig. 1. Square-wave command following for a minimum-phase plant

with a proportional-integral controller. The proportional-integral controller
(5) is connected in feedback with (4). Five cases are considered from
top to bottom, where the control signal has 0%, 10%, 20%, 40%, and
80% amplitude saturation. For the case without amplitude saturation, yout
follows w with zero steady-state error. For the cases with amplitude
saturation, yout is unable to follow w, and the unsaturated control signal
uc exhibits windup, which causes a phase lag in yout relative to w.

B. Square-wave command following for a nonminimum-

phase plant with amplitude saturation

Consider the asymptotically stable, nonminimum-phase

transfer function from u to z, given by

Gzu(z) =
(z+ 1.1)(z− 0.2)

(z− 0.5 + 0.5)(z− 0.5− 0.5)(z+ 0.7)
. (7)

The control objective is to have yout follow w = ws. We

consider the fixed-gain feedback uc = GPI(z)z, where

GPI(z)
△
= 0.2 +

0.08

z− 1
= 0.2

z− 0.6

z− 1
. (8)

The controller (8) is implemented in feedback with (7),

where the control signal uc may be amplitude saturated, as

given by (6), where uss ≈ 0.5 for the plant (7).

Figure 2 shows the time history of w, yout, uc, and u for

the cases with and without amplitude saturation. The results

are similar to those shown in Figure 1.
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Fig. 2. Square-wave command following for a nonminimum-phase plant

with a proportional-integral controller. The proportional-integral controller
(8) is connected in feedback with (7). Five cases are considered from
top to bottom, where the control signal has 0%, 10%, 20%, 40%, and
80% amplitude saturation. For the case without amplitude saturation, yout
follows w with zero steady-state error. For the cases with amplitude
saturation, yout is unable to follow w, and the unsaturated control signal
uc exhibits windup, which causes a phase lag in yout relative to w.

C. Triangle-wave command following for a minimum-phase

plant with rate saturation

In this section, we reconsider (4), where the objective is

to have yout follow the triangle-wave command w = wt. We

consider the feedback uc = GPII(z)z, where

GPII(z)
△
= 0.2 +

0.2(z− 0.91)

(z − 1)2
. (9)

The controller (9) is implemented in feedback with (4),

where the control signal uc may be rate saturated, that is,

u(k) =

{

uc(k), |δ(k)| ≤ ∆um

u(k − 1) + sgn(δ(k))∆um, |δ(k)| > ∆um,
(10)

where δ(k)
△
= uc(k) − u(k − 1) and ∆um > 0 is the rate

saturation level, that is, the maximum allowable control-

signal move size. We consider the unsaturated case (i.e.,

∆um = ∞) as well as four levels of rate saturation. Let ∆uss

be the steady-state rate required by the command to achieve

zero steady-state tracking error. For the plant (4), ∆uss ≈
0.0003. Next, we define four saturation levels, specifically,

∆um,10% = 0.9∆uss, ∆um,20% = 0.8∆uss, ∆um,40% =
0.6∆uss, and ∆um,80% = 0.2∆uss. Note that ∆um,10%,

∆um,20%, ∆um,40%, and ∆um,80% are selected such that

the unsaturated control signal uc experiences approximately

10%, 20%, 40%, and 80% rate saturation, respectively, in

comparison to ∆uss.

Figure 3 shows the time history of w, yout, uc, and u for

the case without rate saturation as well as the cases where

∆um equals ∆um,10%, ∆um,20%, ∆um,40%, and ∆um,80%.

For the case without rate saturation, yout follows w with zero

steady-state error. For the cases with rate saturation, Figure 3

shows that the closed-loop system is internally unstable due

to double-integrator windup. More specifically, uc diverges.
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Fig. 3. Triangle-wave command following for a minimum-phase plant with

a proportional-double-integral controller. The proportional-double-integral
controller (9) is connected in feedback with (4). Five cases are considered
from top to bottom, where the control signal has 0%, 10%, 20%, 40%, and
80% rate saturation. For the case without rate saturation, yout follows w

with zero steady-state error. For the cases with rate saturation, the closed-
loop system is internally unstable due to double-integrator windup, that is,
uc diverges.

D. Triangle-wave command following for a nonminimum-

phase plant with rate saturation

In this section, we reconsider (7), where the control

objective is to have yout follow w = wt. We consider the

feedback uc = GPII(z)z, where

GPII(z)
△
= 0.4 +

0.36(z− 2/3)

(z − 1)2
. (11)

The controller (11) is implemented in feedback with (7),

where the control signal uc may be rate saturated, as given

by (10), where ∆uss ≈ 0.001 for the plant (7).

Figure 4 shows the time history of w, yout, uc, and u for

the cases with and without rate saturation. The results are

similar to those shown in Figure 3.

IV. RETROSPECTIVE COST ADAPTIVE CONTROL

In this section, we review the cumulative retrospective cost

adaptive control (RCAC) algorithm presented in [16], [17].

First, we represent (1) and (3) as the time-series model

z(k) =

n
∑

i=1

−αiz(k − i) +

n
∑

i=d

βiu(k − i) +

n
∑

i=0

γiw(k − i),

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ R
lz×lu , γ0, . . . , γn ∈

R
lz×lw , and the relative degree is d > 0.

Next, consider the time-series controller given by

uc(k) =

nc
∑

i=1

Mi(k)uc(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (12)

where, for all i = 1, . . . , nc, Mi : N → R
lu×lu and

Ni : N → R
lu×ly are determined by the adaptive control
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Fig. 4. Triangle-wave command following for a nonminimum-phase plant

with a proportional-double-integral controller. The proportional-double-
integral controller (11) is connected in feedback with (7). Five cases are
considered from top to bottom, where the control signal has 0%, 10%, 20%,
40%, and 80% rate saturation. For the case without rate saturation, yout
follows w with zero steady-state error. For the cases with rate saturation, the
closed-loop system is internally unstable due to double-integrator windup,
that is, uc diverges.

law presented below. The control (12) can be expressed as

uc(k) = θc(k)φ(k), where

θc(k)
△
=
[

N1(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
]

,

φ(k)
△
=
[

yT(k − 1) · · · yT(k − nc)

uT
c (k − 1) · · · uT

c (k − nc)
]T

. (13)

Next, we define the retrospective performance

ẑ(θ̂c, k)
△
= z(k) +

ν
∑

i=d

β̄i

[

θ̂c − θc(k − i)
]

φ(k − i),

where ν ≥ d, θ̂c ∈ R
lu×(nc(ly+lu)) is an optimization

variable used to derive the adaptive law, and β̄d, . . . , β̄ν ∈
R

lz×lu . The parameters ν and β̄d, . . . , β̄ν must capture the

information included in the first nonzero Markov param-

eter and the nonminimum-phase zeros from u to z [16].

In this paper, we let β̄d, . . . , β̄ν be the coefficients of

the portion of the numerator polynomial matrix β(z)
△
=

z
n−dβd+ z

n−d−1βd+1+ · · ·+ zβn−1+βn that includes the

nonminimum-phase transmission zeros. Specifically, let β(z)
have the polynomial matrix factorization β(z) = βu(z)βs(z),
where βu(z) is an lz × lu polynomial matrix of degree

nu ≥ 0 whose leading matrix coefficient is βd, βs(z) is a

monic lu × lu polynomial matrix of degree n− nu − d, and

each Smith zero of β(z) counting multiplicity that lies on or

outside the unit circle is a Smith zero of βu(z). Next, we can

write βu(z) = βu,0z
nu +βu,1z

nu−1+ · · ·+βu,nu−1z+βu,nu
,

where βu,0
△
= βd. In this case, we let ν = nu + d and for

i = d, . . . , nu + d, β̄i = βu,i−d.

Defining Θ̂c
△
= vec θ̂c ∈ R

nclu(ly+lu) and Θc(k)
△
=

vec θc(k) ∈ R
nclu(ly+lu), it follows that

ẑ(Θ̂c, k) = z(k)−

ν
∑

i=d

ΦT
i (k)Θc(k − i) + ΨT(k)Θ̂c,

where, for i = d, . . . , ν, Φi(k)
△
= φ(k − i) ⊗ β̄T

i ∈
R

(nclu(ly+lu))×lz , where ⊗ represents the Kronecker prod-

uct, and Ψ(k)
△
=

∑ν

i=d Φi(k).
Now, define the cumulative retrospective cost function

J(Θ̂c, k)
△
=

k
∑

i=0

λk−iẑT(Θ̂c, i)Rẑ(Θ̂c, i)

+ λk(Θ̂c −Θc(0))
TQ(Θ̂c −Θc(0)), (14)

where λ ∈ (0, 1], and R ∈ R
lz×lz and Q ∈

R
(nclu(ly+lu))×(nclu(ly+lu)) are positive definite.

The cumulative retrospective cost function (14) is mini-

mized by a recursive least-squares (RLS) algorithm with a

forgetting factor. Therefore, for each k ≥ 0, J(Θ̂c, k) is

minimized by the adaptive law

Θc(k + 1) = Θc(k)− P (k)Ψ(k)Ω(k)−1zR(k), (15)

P (k + 1) =
1

λ

[

P (k)− P (k)Ψ(k)Ω(k)−1ΨT(k)P (k)
]

,

(16)

where Ω(k)
△
= λR−1 + ΨT(k)P (k)Ψ(k), P (0) = Q−1,

Θc(0) ∈ R
nclu(ly+lu), and zR(k)

△
= ẑ(Θc(k), k). The

cumulative RCAC algorithm is thus given by (15), (16), and

uc(k) = θc(k)φ(k) = vec −1(Θc(k))φ(k). (17)

V. RCAC WITH RATE AND AMPLITUDE SATURATION

We adjust RCAC (15)-(17) to account for rate and ampli-

tude saturation. More specifically, we assume that the adap-

tive algorithm has a measurement of the saturated control u.

In this case, the saturated control u is used to construct φ
in place of the unsaturated control uc. More specifically, we

replace φ given by (13) with

φ(k)
△
=
[

yT(k − 1) · · · yT(k − nc)

uT(k − 1) · · · uT(k − nc)
]T

.

No additional alterations to the controller construction are

required. Note that it follows from (17) that the resulting

control law is nonlinear even in the case where the adaptive

gains θ(k) have converged and are constant.

VI. COMMAND FOLLOWING USING RCAC

In this section, we revisit the square-wave and triangle-

wave command following problems presented in Section

III, using RCAC rather than a fixed-gain controller. We

demonstrate that RCAC can mitigate the effect of windup.

The adaptive controller is not able to follow the commands

with zero steady-state error because the amplitude and rate

saturation makes this impossible. However, numerical sim-

ulations demonstrate that the internal states of the adaptive

controller remain bounded unlike the fixed-gain controllers
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of Section III, where integrator windup caused uc to diverge

in some instances. The numerical examples in this section

are constructed under assumptions (i)-(iii) from Section III.

In addition, θ(0) = 0 and λ = 1.

A. Square-wave command following for a minimum-phase

plant with amplitude saturation

Reconsider the square-wave command following problem

given in Section III-A for (4). The adaptive controller (15)-

(17) is implemented in feedback with nc = 10 and P (0) =
I20. Since (4) is minimum phase, we let ν = d = 1 and β̄1 =
β1 = 1. Figure 5 shows the time history of w, yout, uc, and u
for the case without amplitude saturation as well as the cases

where um equals um,10%, um,20%, um,40%, and um,80%. For

the case without amplitude saturation, there is zero steady-

state error, and the performance is comparable to that of the

fixed-gain controller (5) shown in Figure 1. For the cases

with amplitude saturation, Figure 5 shows that the amplitude

saturation prevents yout from following w with zero steady-

state error. However, uc does not exhibit integrator windup,

and yout is able to shift direction to match the direction of w
without phase lag. This compares favorably with the fixed-

gain proportional-integral controller used in Figure 1.
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Fig. 5. Square-wave command following for a minimum-phase plant

with RCAC. The adaptive control (15)-(17) with nc = 10 and P (0) =
I20 is connected in feedback with (4). Five cases are considered from
top to bottom, where the control signal has 0%, 10%, 20%, 40%, and
80% amplitude saturation. For the case without amplitude saturation, yout
follows the command w with zero steady-state error. For the cases with
amplitude saturation, yout is unable to follow w. However, uc does not
exhibit integrator windup, and yout is able to shift direction to match the
direction of w without phase lag.

B. Square-wave command following for a nonminimum-

phase plant with amplitude saturation

Reconsider the square-wave command following problem

given in Section III-B for (7). RCAC is implemented in

feedback with nc = 10 and P (0) = I20. Since (7) is

nonminimum phase, we let ν = d+nu = 2 and β̄1 = β1 = 1,

and β̄2 = βu,1 = −1.1. Figure 6 shows the time history of

w, yout, uc, and u for the cases with and without amplitude

saturation. For the case without amplitude saturation, there is

zero steady-state error, and the performance is comparable

to that of the fixed-gain controller (8) shown in Figure 2.

For the cases with amplitude saturation, yout is unable to

follow w with zero steady-state error. However, uc does not

exhibit integrator windup, and yout is able to shift direction

to match the direction of w without phase lag. This compares

favorably with the fixed-gain controller used in Figure 2.
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Fig. 6. Square-wave command following for a minimum-phase plant
with RCAC. The adaptive control (15)-(17) with nc = 10, and P (0) =
I20 is connected in feedback with (7). Five cases are considered from
top to bottom, where the control signal has 0%, 10%, 20%, 40%, and
80% amplitude saturation. For the case without amplitude saturation, yout
follows the command w with zero steady-state error. For the cases with
amplitude saturation, yout is unable to follow w. However, uc does not
exhibit integrator windup, and yout is able to shift direction to match the
direction of w without phase lag.

C. Triangle-wave command following for a minimum-phase

plant with rate saturation

Reconsider the triangle-wave command following problem

given in Section III-C for (4). RCAC is implemented in

feedback with nc = 10 and P (0) = I20. Since (4) is

minimum phase, we let ν = d = 1 and β̄1 = β1 = 1.

Figure 7 shows the time history of w, yout, uc, and u for

the case without rate saturation as well as the cases where

∆um equals ∆um,10%, ∆um,20%, ∆um,40%, and ∆um,80%.

For the case without rate saturation, there is zero steady-

state error, and the performance is comparable to that of the

fixed-gain controller (9) shown in Figure 3. For the cases

with rate saturation, Figure 7 shows that the rate saturation

prevents yout from following w with zero steady-state error.

However, uc does not exhibit integrator windup. In particular,

the closed-loop system maintains stability and uc does not

diverge as it did with the fixed-gain proportional-double-

integral controller as shown in Figure 3.
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Fig. 7. Triangle-wave command following for a minimum-phase plant

with RCAC. The adaptive control (15)-(17) with nc = 10 and P (0) = I20
is connected in feedback with (4). Five cases are considered from top to
bottom, where the control signal has 0%, 10%, 20%, 40%, and 80% rate
saturation. For the case without rate saturation, yout follows w with zero
steady-state error. For the cases with rate saturation, yout is unable to follow
w; however, the unsaturated control signal uc remains bounded.

D. Triangle-wave command following for a nonminimum-

phase plant with rate saturation

Reconsider the triangle-wave command following problem

given in Section III-D for (7). RCAC is implemented in

feedback with nc = 10 and P (0) = 0.01I20. Since (7) is

nonminimum phase, we let ν = d+nu = 2 and β̄1 = β1 = 1,

and β̄2 = βu,1 = −1.1. Figure 8 shows the time history of

w, yout, uc, u for the cases with and without rate saturation.

For the case without rate saturation, there is zero steady-state

error, and the performance is comparable to that of the fixed-

gain controller (11) shown in Figure 4. For the cases with

rate saturation, yout is unable to follow w with zero steady-

state error. However, uc does not exhibit integrator windup.

In particular, the closed-loop system maintains stability and

uc does not diverge as it did with the fixed-gain proportional-

double-integral controller as shown in Figure 4.

VII. CONCLUSION

This paper demonstrated that RCAC is effective for han-

dling amplitude and rate saturation, and does not displace

integrator windup. Future work includes a stability analysis

of RCAC under amplitude and rate saturation.
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