Retrospective Cost Model Reference Adaptive Control for Nonminimum-Phase Discrete-Time Systems, Part 2: Stability Analysis

Jesse B. Hoagg¹ and Dennis S. Bernstein²

Abstract— This paper is the second part of a pair of papers, which together present a direct model reference adaptive controller for discrete-time (including sampled-data) systems that are possibly nonminimum phase. The present paper and its companion paper (Part 1) together analyze that stability of the retrospective cost model reference adaptive controller.

I. INTRODUCTION

In this paper and its companion paper [1], we present a model reference adaptive control (MRAC) algorithm for discrete-time systems that are possibly nonminimum phase. This paper is intended to be read in conjunction with [1]. A detailed introduction is provided in [1].

The companion paper [1] develops the retrospective cost model reference adaptive control (RC-MRAC) algorithms, and focuses on the existence and properties of an ideal control law. The results of [1] are used in the present paper to analyze closed-loop stability.

In this second paper, we present a closed-loop error system, which is a system constructed by taking the difference between the closed-loop system with the ideal controller in feedback and the closed-loop system with the adaptive controller in feedback. Then we then examine the closedloop stability.

II. REVIEW OF THE PROBLEM FORMULATION

Consider the discrete-time system

$$y(k) = -\sum_{i=1}^{n} \alpha_i y(k-i) + \sum_{i=d}^{n} \beta_i u(k-i), \qquad (1)$$

where $k \ge 0, \alpha_1, \ldots, \alpha_n, \beta_d, \ldots, \beta_n \in \mathbb{R}$, $y(k) \in \mathbb{R}$ is the output, $u(k) \in \mathbb{R}$ is the control, and the relative degree is d > 0. Furthermore, for all i < 0, u(i) = 0, and the initial condition is $x_0 = [y(-1) \cdots y(-n)]^{\mathrm{T}} \in \mathbb{R}^n$.

Let \mathbf{q} and \mathbf{q}^{-1} denote the forward-shift and backward-shift operators, respectively. For all $k \ge 0$, (1) can be expressed as $\alpha(\mathbf{q})y(k-n) = \beta(\mathbf{q})u(k-n)$, where $\alpha(\mathbf{q}) \stackrel{\triangle}{=} \mathbf{q}^n + \alpha_1 \mathbf{q}^{n-1} + \alpha_2 \mathbf{q}^{n-2} + \cdots + \alpha_{n-1} \mathbf{q} + \alpha_n$ and $\beta(\mathbf{q}) \stackrel{\triangle}{=} \beta_d \mathbf{q}^{n-d} + \beta_{d+1} \mathbf{q}^{n-d-1} + \cdots + \beta_{n-1} \mathbf{q} + \beta_n$.

Next, consider the reference model

$$y_{\rm m} = -\sum_{i=1}^{n_{\rm m}} \alpha_{{\rm m},i} y_{\rm m}(k-i) + \sum_{i=d_{\rm m}}^{n_{\rm m}} \beta_{{\rm m},i} r(k-i), \quad (2)$$

¹Assistant Professor, Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506-0503, email: jhoagg@engr.uky.edu.

²Professor, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109-2140, email: dsbaero@umich.edu.

where $k \geq 0$, $\alpha_{m,1}, \ldots, \alpha_{m,n_m}, \beta_{m,d_m}, \ldots, \beta_{m,n_m} \in \mathbb{R}$, $y_m(k) \in \mathbb{R}$ is the reference model output, $r(k) \in \mathbb{R}$ is the reference model command, and $d_m > 0$ is the relative degree of (2). Furthermore, for all i < 0, r(i) = 0, and the initial condition is $x_{m,0} = [y_m(-1) \cdots y_m(-n_m)]^T \in \mathbb{R}^n$. For all $k \geq 0$, (2) can be expressed as $\alpha_m(\mathbf{q})y_m(k-n_m) = \beta_m(\mathbf{q})r(k-n_m)$, where $\alpha_m(\mathbf{q}) \stackrel{\triangle}{=} \mathbf{q}^{n_m} + \alpha_{m,1}\mathbf{q}^{n_m-1} + \cdots + \alpha_{m,n_m-1}\mathbf{q} + \alpha_{m,n_m}$ and $\beta_m(\mathbf{q}) \stackrel{\triangle}{=} \beta_{m,d_m}\mathbf{q}^{n_m-d_m} + \cdots + \beta_{m,n_m-1}\mathbf{q} + \beta_{m,n_m}$. Our goal is to drive the tracking error $z(k) \stackrel{\triangle}{=} y(k) - y_m(k)$ to zero asymptotically. We make the following assumptions regarding the open-loop system (1):

- (A1) $\alpha(\mathbf{q})$ and $\beta(\mathbf{q})$ are coprime.
- (A2) d is known.
- (A3) β_d is known.
- (A4) If $\lambda \in \mathbb{C}$, $|\lambda| \ge 1$, and $\beta(\lambda) = 0$, then λ is known.
- (A5) There exists an integer \bar{n} such that $n \leq \bar{n}$ and \bar{n} is known.
- (A6) $\alpha(\mathbf{q}), \beta(\mathbf{q}), n$, and x_0 are not known.

In addition, we make the following assumptions regarding the reference model (2):

- (A7) $\alpha_{\rm m}(\mathbf{q})$ and $\beta_{\rm m}(\mathbf{q})$ are coprime.
- (A8) $\alpha_{\rm m}(\mathbf{q})$ is asymptotically stable.
- (A9) If $\lambda \in \mathbb{C}$, $|\lambda| \ge 1$, and $\beta(\lambda) = 0$, then $\beta_{\mathrm{m}}(\lambda) = 0$.
- (A10) If $\lambda \in \mathbb{C}$ and $\alpha(\lambda) = 0$, then $\beta_{\mathrm{m}}(\lambda) \neq 0$.
- (A11) $d_{\rm m} \ge d$.
- (A12) r(k) is bounded.

(A13) $\alpha_{\rm m}(\mathbf{q}), \beta_{\rm m}(\mathbf{q}), d_{\rm m}$, and $n_{\rm m}$ are known.

Next, let $\beta_{u}(\mathbf{q})$ be a monic polynomial whose roots are a subset of the roots of $\beta(\mathbf{q})$ and include all the zeros of $\beta(\mathbf{q})$ that lie on or outside the unit circle. Furthermore, write $\beta_{u}(\mathbf{q}) = \mathbf{q}^{n_{u}} + \beta_{u,1}\mathbf{q}^{n_{u}-1} + \cdots + \beta_{u,n_{u}-1}\mathbf{q} + \beta_{u,n_{u}}$, where $\beta_{u,1}, \ldots, \beta_{u,n_{u}} \in \mathbb{R}$, and $n_{u} \leq n-d$ is the degree of $\beta_{u}(\mathbf{q})$, and let $\beta_{u,0} = 1$.

III. BRIEF REVIEW OF [1]

In this section, we briefly review select aspects of [1]. First, let $n_c \ge n$, and [1] shows that, for all $k \ge n_c$, (1) has the $(3n_c + 1)^{\text{th}}$ -order nonminimal-state-space realization

$$\phi(k+1) = \mathcal{A}\phi(k) + \mathcal{B}u(k) + \mathcal{D}r(k+1), \qquad (3)$$

$$y(k) = \mathfrak{C}\phi(k), \tag{4}$$

where $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} are given in [1], and

$$\phi(k) \stackrel{\Delta}{=} \begin{bmatrix} y(k-1) & \cdots & y(k-n_{\rm c}) \\ u(k-1) & \cdots & u(k-n_{\rm c}) \\ r(k) & \cdots & r(k-n_{\rm c}) \end{bmatrix}^{\rm T} \in \mathbb{R}^{3n_{\rm c}+1}.$$
 (5)

978-1-4577-0079-8/11/\$26.00 ©2011 AACC

Next, for all $k \ge n_c$, consider the time-varying controller

$$u(k) = \sum_{i=1}^{n_{\rm c}} L_i(k) y(k-i) + \sum_{i=1}^{n_{\rm c}} M_i(k) u(k-i) + \sum_{i=0}^{n_{\rm c}} N_i(k) r(k-i),$$
(6)

where, for all $i = 1, ..., n_c$, $L_i : \mathbb{N} \to \mathbb{R}$ and $M_i : \mathbb{N} \to \mathbb{R}$, and, for all $i = 0, 1, ..., n_c$, $N_i : \mathbb{N} \to \mathbb{R}$ are given by either the instantaneous RC-MRAC algorithm [1, Lemma 1] or the cumulative RC-MRAC algorithm [1, Lemma 2]. For all $k \ge n_c$, the controller (6) can be expressed as

$$u(k) = \phi^{\mathrm{T}}(k)\theta(k), \qquad (7)$$

where $\theta(k) \stackrel{\triangle}{=} [L_1(k) \cdots L_{n_c}(k) \ M_1(k) \cdots M_{n_c}(k) \ N_0(k) \cdots N_{n_c}(k)]^{\mathrm{T}}.$

For all $k \ge 0$, we define the filtered performance $z_{\rm f}(k) \stackrel{\triangle}{=} \bar{\alpha}_{\rm m}(\mathbf{q}^{-1})z(k)$, where $\bar{\alpha}_{\rm m}(\mathbf{q}^{-1})\stackrel{\triangle}{=} \mathbf{q}^{-n_{\rm m}}\alpha_{\rm m}(\mathbf{q})$. Next, for all

 $\alpha_{\rm m}(\mathbf{q}^{-1})z(k)$, where $\alpha_{\rm m}(\mathbf{q}^{-1}) = \mathbf{q}^{-\kappa_{\rm m}}\alpha_{\rm m}(\mathbf{q})$. Next, for a $k \ge 0$, define the retrospective performance

$$\hat{z}_{\mathbf{f}}(\hat{\theta},k) \stackrel{\Delta}{=} z_{\mathbf{f}}(k) + \Phi^{\mathrm{T}}(k)\hat{\theta} - \beta_{d}\bar{\beta}_{\mathbf{u}}(\mathbf{q}^{-1})u(k), \quad (8)$$

where the filtered regressor is defined by $\Phi(k) \stackrel{\bigtriangleup}{=} \beta_d \bar{\beta}_u(\mathbf{q}^{-1}) \phi(k)$ and $\bar{\beta}_u(\mathbf{q}^{-1}) \stackrel{\bigtriangleup}{=} \mathbf{q}^{-n_u - d} \beta_u(\mathbf{q})$. Finally, for all $k \ge 0$, define retrospective performance measure

$$z_{\rm f,r}(k) \stackrel{\Delta}{=} \hat{z}_{\rm f}(\theta(k), k). \tag{9}$$

IV. ERROR SYSTEM

We now construct an error system using the ideal fixedgain controller (which is given by [1, Theorem 1]) and RC-MRAC. Since n is unknown, the lower bound for the controller order n_c given by [1, Theorem 1] is unknown. Thus, for the remainder of the paper, let n_c satisfy the lower bound

$$n_{\rm c} \ge \max(2\bar{n} - n_{\rm u} - d, n_{\rm m} - n_{\rm u} - d),$$
 (10)

where assumptions (A2), (A4), (A5), and (A13) imply that the lower bound on n_c given by (10) is known. Furthermore, since, by assumption (A5), $n \leq \bar{n}$, it follows that (10) satisfies the conditions of [1, Theorem 1].

Let $\theta_* \in \mathbb{R}^{3n_c+1}$ be the ideal fixed-gain controller given by [1, Theorem 1], and, for all $k \ge n_c$, let $\phi_*(k)$ be the state of the ideal closed-loop system, which according to [1] is given by

$$\phi_*(k+1) = \mathcal{A}_*\phi_*(k) + \mathcal{D}r(k+1), \tag{11}$$

$$y_*(k) = \mathcal{C}\phi_*(k), \tag{12}$$

where $\mathcal{A}_* \stackrel{\triangle}{=} \mathcal{A} + \mathcal{B}\theta^{\mathrm{T}}_*$ is asymptotically stable and the initial condition is $\phi_*(n_{\mathrm{c}}) = \phi(n_{\mathrm{c}})$. Furthermore, define $k_0 = 2n_{\mathrm{c}} + n_{\mathrm{u}} + d$.

Next, for all $k \ge n_c$, the closed-loop system consisting of (3), (4), and (7) becomes

$$\phi(k+1) = \mathcal{A}_*\phi(k) + \mathcal{B}\phi^{\mathrm{T}}(k)\dot{\theta}(k) + \mathcal{D}r(k+1), \quad (13)$$

$$y(k) = \mathcal{C}\phi(k), \tag{14}$$

where $\tilde{\theta}(k) \stackrel{\triangle}{=} \theta(k) - \theta_*$.

Now, we construct an error system by combining the ideal closed-loop system (11), (12) with the adaptive closed-loop system (13), (14). For all $k \ge n_c$, define the error state $\tilde{\phi}(k) \stackrel{\triangle}{=} \phi(k) - \phi_*(k)$, and subtract (11), (12) from (13), (14) to obtain, for all $k \ge n_c$,

$$\tilde{\phi}(k+1) = \mathcal{A}_* \tilde{\phi}(k) + \mathcal{B}\phi^{\mathrm{T}}(k)\tilde{\theta}(k), \qquad (15)$$

$$\tilde{y}(k) = \mathcal{C}\tilde{\phi}(k), \tag{16}$$

where $\tilde{y}(k) \stackrel{\triangle}{=} y(k) - y_*(k)$.

Lemma 1. Consider the open-loop system (1) with the feedback (7). Then, for all initial conditions x_0 , all sequences $\theta(k)$, and, all $k \ge k_0$,

$$z_{\rm f}(k) = \beta_d \bar{\beta}_{\rm u}(\mathbf{q}^{-1}) \left[\phi^{\rm T}(k) \tilde{\theta}(k) \right].$$
 (17)

Proof. For all $k \ge n_c$, the error system (15), (16) has the solution

$$\tilde{y}(k) = \mathcal{C}\mathcal{A}_*^{k-n_c}\tilde{\phi}(n_c) + \sum_{i=1}^{k-n_c} \mathcal{C}\mathcal{A}_*^{i-1}\mathcal{B}\phi^{\mathrm{T}}(k-i)\tilde{\theta}(k-i).$$

Since $\phi_*(0) = \phi(0)$ it follows that $\tilde{\phi}(0) = 0$, and thus, for all $k \ge n_c$, $\tilde{y}(k) = \sum_{i=1}^{k-n_c} C\mathcal{A}_*^{i-1} \mathcal{B} \phi^{\mathrm{T}}(k-i) \tilde{\theta}(k-i)$, which implies that, for all $k \ge n_c + n_{\mathrm{m}}$

$$\bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1})\tilde{y}(k) = \bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1}) \left[\sum_{i=1}^{k-n_{\mathrm{c}}} \mathcal{C}\mathcal{A}_{*}^{i-1} \mathcal{B}\phi^{\mathrm{T}}(k-i)\tilde{\theta}(k-i) \right].$$

Next, it follows from [1, (*iv*) of Theorem 1] (with $e(k) = \phi^{\mathrm{T}}(k)\tilde{\theta}(k)$) that, for all $k \geq k_0$, $\bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1})\tilde{y}(k) = \beta_d \bar{\beta}_{\mathrm{u}}(\mathbf{q}^{-1})[\phi^{\mathrm{T}}(k)\tilde{\theta}(k)]$. Finally, note that $\bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1})\tilde{y}(k) = \bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1})y(k) - \bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1})y_*(k)$ and it follows from [1, (*i*) of Theorem 1] that $\bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1})y_*(k) = \bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1})y_{\mathrm{m}}(k)$. Therefore, for all $k \geq k_0$, $z_{\mathrm{f}}(k) = \bar{\alpha}_{\mathrm{m}}(\mathbf{q}^{-1})\tilde{y}(k)$, thus verifying (17).

Lemma 1 relates the filtered performance $z_f(k)$ to the estimation error $\tilde{\theta}(k)$. The relationship (17) is not a linear regression in the estimation error $\tilde{\theta}(k)$; however, the following result expresses $z_{f,r}(k)$ as a linear regression in $\tilde{\theta}(k)$.

Lemma 2. Consider the open-loop system (1) with the feedback (7). Then, for all initial conditions x_0 , all sequences $\theta(k)$, and all $k \ge k_0$,

$$z_{\mathbf{f},\mathbf{r}}(k) = \Phi^{\mathrm{T}}(k)\tilde{\theta}(k).$$
(18)

Proof. It follows from (8) and (9) that, for all $k \ge 0$,

$$z_{\mathrm{f,r}}(k) = z_{\mathrm{f}}(k) - \beta_{d}\bar{\beta}_{\mathrm{u}}(\mathbf{q}^{-1}) \left[\phi^{\mathrm{T}}(k)\theta(k)\right] \\ + \beta_{d} \left[\bar{\beta}_{\mathrm{u}}(\mathbf{q}^{-1})\phi(k)\right]^{\mathrm{T}} \theta(k).$$

Next, adding and subtracting $\beta_d \left[\bar{\beta}_u(\mathbf{q}^{-1})\phi(k) \right]^T \theta_*$ to the left-hand side yields, for all $k \ge 0$, $z_{f,r}(k) = z_f(k) - \beta_d \bar{\beta}_u(\mathbf{q}^{-1})[\phi^T(k)\tilde{\theta}(k)] + \beta_d [\bar{\beta}_u(\mathbf{q}^{-1})\phi(k)]^T \tilde{\theta}(k)$. Finally, it follows from Lemma 1 that, for all $k \ge k_0$, $z_f(k) - \beta_d \bar{\beta}_u(\mathbf{q}^{-1})[\phi^T(k)\tilde{\theta}(k)] = 0$, which implies that, for all

 $k \geq k_0, \ z_{\mathrm{f,r}}(k) = \beta_d[\bar{\beta}_{\mathrm{u}}(\mathbf{q}^{-1})\phi(k)]^{\mathrm{T}}\tilde{\theta}(k) = \Phi^{\mathrm{T}}(k)\tilde{\theta}(k),$ thus verifying (18).

Lastly, we develop a filtered error system. For all $k \geq k_0$, we define the ideal filtered regressor $\Phi_*(k) \stackrel{ riangle}{=}$ $\beta_d \bar{\beta}_u(\mathbf{q}^{-1}) \phi_*(k)$, and the filtered regressor error $\tilde{\Phi}(k) \stackrel{\triangle}{=}$ $\Phi(k) - \Phi_*(k) = \beta_d \bar{\beta}_u(\mathbf{q}^{-1}) \bar{\phi}(k)$. Next, we apply the operator $\beta_d \bar{\beta}_u(\mathbf{q}^{-1})$ to (15) and use Lemma 1 to obtain the filtered error system

$$\tilde{\Phi}(k+1) = \mathcal{A}_* \tilde{\Phi}(k) + \mathcal{B}\beta_d \bar{\beta}_{\mathbf{u}}(\mathbf{q}^{-1}) \left[\phi^{\mathrm{T}}(k) \tilde{\theta}(k) \right]$$
$$= \mathcal{A}_* \tilde{\Phi}(k) + \mathcal{B}z_{\mathbf{f}}(k), \tag{19}$$

which is defined for all $k \ge k_0$.

V. STABILITY ANALYSIS FOR INSTANTANEOUS RC-MRAC

In this section, we analyze the stability of instantaneous RC-MRAC. For review, instantaneous RC-MRAC (developed in [1, Lemma 1]) is given by (7) and

$$\theta(k+1) = \theta(k) - \eta(k)R^{-1}\Phi(k)z_{\rm f,r}(k),$$
 (20)

where

$$\eta(k) \stackrel{\triangle}{=} \frac{1}{\zeta(k) + \Phi^{\mathrm{T}}(k)R^{-1}\Phi(k)},\tag{21}$$

and $R \in \mathbb{R}^{(3n_{\rm c}+1)\times(3n_{\rm c}+1)}$ is positive definite, $\theta(0) \in$ $\mathbb{R}^{3n_{c}+1}$, and ζ : $\mathbb{N} \to (0,\infty)$. We assume that $\zeta_{\mathrm{L}} \stackrel{ riangle}{=}$ $\inf_{k>0} \zeta(k) > 0$ and $\zeta_{\mathrm{U}} \stackrel{\triangle}{=} \sup_{k>0} \zeta(k) < \infty$.

Lemma 3. Consider the open-loop system (1) satisfying assumptions (A1)-(A13), and the instantaneous retrospective cost model reference adaptive controller (7), (20), and (21), where n_c satisfies (10). Then, for all initial conditions x_0 and $\theta(0)$, the following properties hold:

(i)
$$\theta(k)$$
 is bounded.

- (ii) $\lim_{k\to\infty} \sum_{j=0}^{k} \eta(j) z_{\mathrm{f,r}}^2(j)$ exists. (iii) For all N > 0, $\lim_{k\to\infty} \sum_{j=N}^{k} \|\theta(j) \theta(j-N)\|^2$ exists.

Proof. Subtracting θ_* from both sides of (20) yields the estimator-error update equation

$$\tilde{\theta}(k+1) = \tilde{\theta}(k) - \eta(k)R^{-1}\Phi(k)z_{\rm f,r}(k).$$
(22)

Define the positive-definite, radially unbounded Lyapunovlike function $V_{\tilde{\theta}}(\tilde{\theta}(k)) \stackrel{\triangle}{=} \tilde{\theta}^{\mathrm{T}}(k) R \tilde{\theta}(k)$, and the Lyapunovlike difference

$$\Delta V_{\tilde{\theta}}(k) \stackrel{\Delta}{=} V_{\tilde{\theta}}(\tilde{\theta}(k+1)) - V_{\tilde{\theta}}(\tilde{\theta}(k)).$$
(23)

Evaluating $\Delta V_{\tilde{\theta}}(k)$ along the trajectories of the estimator-error system (22) yields $\Delta V_{\tilde{\theta}}(k)$ = $-2\eta(k)z_{\rm f,r}(k)\Phi^{\rm T}(k)\tilde{\theta}(k) + \eta^{2}(k)z_{\rm f,r}^{2}(k)\Phi^{\rm T}(k)R^{-1}\Phi(k).$ Next, it follows from Lemma 2 and (21) that, for all $k \ge k_0$,

$$\Delta V_{\tilde{\theta}}(k) = -2\eta(k)z_{f,r}^{2}(k) + \eta^{2}(k)z_{f,r}^{2}(k)\Phi^{T}(k)R^{-1}\Phi(k)$$

$$= -\eta(k)z_{f,r}^{2}(k) - \zeta(k)\eta^{2}(k)z_{f,r}^{2}(k)$$

$$\leq -\eta(k)z_{f,r}^{2}(k).$$
(24)

Since $V_{\tilde{\theta}}$ is a positive-definite radially unbounded function of $\theta(k)$ and, for $k \ge k_0$, $\Delta V_{\tilde{\theta}}(k)$ is non-positive, it follows that $\tilde{\theta}(k)$ is bounded and thus $\theta(k)$ is bounded. Thus, we have verified (i).

To show (ii), first we show that $\lim_{k\to\infty} \sum_{j=k_0}^k \Delta V_{\tilde{\theta}}(j)$ exists. Since $V_{\tilde{\theta}}$ is positive definite, and, for all $k \geq k_0$, $\Delta V_{\tilde{\theta}}(k)$ is non-positive, it follows from (23) that

$$0 \leq -\lim_{k \to \infty} \sum_{j=k_0}^{\kappa} \Delta V_{\tilde{\theta}}(j) = V_{\tilde{\theta}}(\tilde{\theta}(k_0)) - \lim_{k \to \infty} V_{\tilde{\theta}}(\tilde{\theta}(k))$$
$$\leq V_{\tilde{\theta}}(\tilde{\theta}(k_0)),$$

where the upper and lower bounds imply that both limits exist. Since $\lim_{k\to\infty} \sum_{j=k_0}^k \Delta V_{\tilde{\theta}}(j)$ exists, (24) implies that $\lim_{k\to\infty} \sum_{j=k_0}^k \eta(j) z_{f,r}^2(j)$ exists, and thus $\lim_{k\to\infty}\sum_{j=0}^k \eta(j) z_{f,r}^2(j)$ exists, which verifies (*ii*).

To show (iii), we first show that $\lim_{k\to\infty} \sum_{j=0}^k \|\theta(j + j)\|_{j=0}$ 1) – $\theta(j) \parallel^2$ exists. It follows from (20) that

$$\begin{split} &\sum_{j=0}^{\infty} \|\theta(j+1) - \theta(j)\|^2 = \sum_{j=0}^{\infty} \eta^2(j) z_{\mathbf{f},\mathbf{r}}^2(j) \Phi^{\mathbf{T}}(j) R^{-2} \Phi(j) \\ &\leq \|R^{-1}\|_{\mathbf{F}} \sum_{j=0}^{\infty} \eta^2(j) z_{\mathbf{f},\mathbf{r}}^2(j) \Phi^{\mathbf{T}}(j) R^{-1} \Phi(j), \end{split}$$

where $\|\cdot\|_{\rm F}$ denotes the Frobenius norm. Next, it follows from (21) that, for all $k \ge 0$, $\eta(k)\Phi^{\mathrm{T}}(k)R^{-1}\Phi(k) \le 1$, which implies that

$$\lim_{k \to \infty} \sum_{j=0}^k \|\theta(j+1) - \theta(j)\|^2 \le \|R^{-1}\|_{\mathbf{F}} \lim_{k \to \infty} \sum_{j=0}^k \eta(j) z_{\mathbf{f},\mathbf{r}}^2(j).$$

Furthermore, since by (*ii*), $\lim_{k\to\infty} \sum_{j=0}^k \eta(j) z_{f,r}^2(j)$ exists, it follows that $\lim_{k\to\infty} \sum_{j=0}^k \|\theta(j+1) - \theta(j)\|^2$ exists. Next, let N > 0 and note that

$$\lim_{k \to \infty} \sum_{j=N}^{k} \|\theta(j) - \theta(j-N)\|^{2}$$

$$= \lim_{k \to \infty} \sum_{j=N}^{k} \|\theta(j) - \theta(j-1) + \theta(j-1) - \theta(j-2) + \dots + \theta(j-N+1) - \theta(j-N)\|^{2}$$

$$\leq \lim_{k \to \infty} \sum_{j=N}^{k} (\|\theta(j) - \theta(j-1)\| + \dots + \|\theta(j-N+1) - \theta(j-N)\|)^{2}$$

$$\leq \lim_{k \to \infty} 2^{N-1} \sum_{j=N}^{k} (\|\theta(j) - \theta(j-1)\|^{2} + \dots + \|\theta(j-N+1) - \theta(j-N)\|^{2}). \quad (25)$$

Since all of the limits on the right hand side of (25) exist, it follows that $\lim_{k\to\infty} \sum_{j=N}^k \|\overline{\theta(j)} - \theta(j-N)\|^2$ exists. This verifies (iii).

Next, let $\xi_1, \ldots, \xi_{n_u} \in \mathbb{C}$ denote the n_u roots of $\beta_u(\mathbf{z})$, and define $M(\mathbf{z},k) \stackrel{\Delta}{=} \mathbf{z}^{n_c} - M_1(k)\mathbf{z}^{n_c-1} - M_2(k)\mathbf{z}^{n_c-2} - M_2(k)\mathbf{z}^{n_c-2}$

 $\dots - M_{n_c-1}(k)\mathbf{z} - M_{n_c}(k)$, which can be interpreted as the denominator polynomial of the controller (7) at frozen time k. Before presenting the main result of the paper, we make the following additional assumption:

(A14) There exist $\epsilon > 0$ and $k_1 > 0$ such that, for all $k \ge k_1$ and for all $i = 1, \ldots, n_u, |M(\xi_i, k)| \ge \epsilon$.

The following theorem is the main result of the paper regarding instantaneous RC-MRAC.

Theorem 1. Consider the open-loop system (1) satisfying assumptions (A1)-(A14), and the instantaneous retrospective cost model reference adaptive controller (7), (20), and (21), where n_c satisfies (10). Then, for all initial conditions x_0 and $\theta(0)$, θ is bounded, u is bounded, and $\lim_{k\to\infty} z(k) = 0$.

Proof. It follows from (i) of Lemma 3 that $\theta(k)$ is bounded. To prove the remaining properties, define the quadratic function $J(\tilde{\Phi}(k)) \stackrel{\triangle}{=} \tilde{\Phi}^{\mathrm{T}}(k) \mathcal{P}\tilde{\Phi}(k)$, where $\mathcal{P} > 0$ satisfies the discrete-time Lyapunov equation $\mathcal{P} = \mathcal{A}_*^{\mathrm{T}} \mathcal{P} \mathcal{A}_* +$ $\Omega + \alpha I$, where $\Omega > 0$ and $\alpha > 0$. Note that \mathcal{P} exists since \mathcal{A}_* is asymptotically stable. Defining $\Delta J(k) \stackrel{\Delta}{=} J(\tilde{\Phi}(k+1)) J(\Phi(k))$, it follows from (19) that, for all $k \ge k_0$,

$$\Delta J(k) = -\tilde{\Phi}^{\mathrm{T}}(k) \left(\mathbb{Q} + \alpha I \right) \tilde{\Phi}(k) + \tilde{\Phi}^{\mathrm{T}}(k) \mathcal{A}_{*}^{\mathrm{T}} \mathcal{P} \mathcal{B} z_{\mathrm{f}}(k) + z_{\mathrm{f}}(k) \mathcal{B}^{\mathrm{T}} \mathcal{P} \tilde{\mathcal{A}}^{*} \tilde{\Phi}(k) + z_{\mathrm{f}}^{2}(k) \mathcal{B}^{\mathrm{T}} \mathcal{P} \mathcal{B} \leq -\tilde{\Phi}^{\mathrm{T}}(k) \left(\mathbb{Q} + \alpha I \right) \tilde{\Phi}(k) + z_{\mathrm{f}}^{2}(k) \mathcal{B}^{\mathrm{T}} \mathcal{P} \mathcal{B} + \alpha \tilde{\Phi}^{\mathrm{T}}(k) \tilde{\Phi}(k) + \frac{1}{\alpha} z_{\mathrm{f}}^{2}(k) \mathcal{B}^{\mathrm{T}} \mathcal{P} \mathcal{A}_{*} \mathcal{A}_{*}^{\mathrm{T}} \mathcal{P} \mathcal{B} = -\tilde{\Phi}^{\mathrm{T}}(k) \mathbb{Q} \tilde{\Phi}(k) + \sigma_{1} z_{\mathrm{f}}^{2}(k),$$
(26)

where $\sigma_1 \stackrel{\triangle}{=} \mathcal{B}^T \mathcal{P} \mathcal{B} + \frac{1}{\alpha} \mathcal{B}^T \mathcal{P} \mathcal{A}_* \mathcal{A}_*^T \mathcal{P} \mathcal{B}$. Now, consider the positive-definite, radially unbounded Lyapunov-like function $V(\tilde{\Phi}(k)) \stackrel{\triangle}{=} \ln \left(1 + a_1 J(\tilde{\Phi}(k))\right)$, where $a_1 > 0$ is specified below. The Lyapunov-like difference is thus given by $\Delta V(k) \stackrel{\triangle}{=} V(\tilde{\Phi}(k+1)) - V(\tilde{\Phi}(k)).$ For all $k \ge k_0$, evaluating $\Delta V(k)$ along the trajectories of (19) yields $\Delta V(k) = \ln \left(1 + \frac{a_1 \Delta J(k)}{1 + a_1 J(\bar{\Phi}(k))}\right)$. Since, for all x > 0, $\ln x \le x - 1$, and using (26) we have

$$\Delta V(k) \le a_1 \frac{\Delta J(k)}{1 + a_1 J(\tilde{\Phi}(k))} \le -W(\tilde{\Phi}(k)) + a_1 \sigma_1 \ell^2(k),$$
(27)

where

$$W(\tilde{\Phi}(k)) \stackrel{\triangle}{=} a_1 \frac{\tilde{\Phi}^{\mathrm{T}}(k) \mathfrak{Q} \tilde{\Phi}(k)}{1 + a_1 \tilde{\Phi}^{\mathrm{T}}(k) \mathfrak{P} \tilde{\Phi}(k)},\tag{28}$$

$$\ell(k) \stackrel{\triangle}{=} \frac{z_{\rm f}(k)}{\sqrt{1 + a_1 \lambda_{\rm min} \left(\mathcal{P}\right) \tilde{\Phi}^{\rm T}(k) \tilde{\Phi}(k)}}.$$
 (29)

Now, we show that $\lim_{k\to\infty} \sum_{j=0}^k \ell^2(j)$ exists. First, it follows from Lemma 1 and Lemma 2 that, for all $k \ge k_0$,

$$z_{\mathrm{f}}(k) = z_{\mathrm{f},\mathrm{r}}(k) - \beta_d \sum_{i=d}^{n_{\mathrm{u}}+d} \beta_{\mathrm{u},i-d} \phi^{\mathrm{T}}(k-i) \left[\theta(k) - \theta(k-i)\right].$$

Therefore, it follows from (29) that, for all $k \ge k_0$,

$$|\ell(k)| \le \frac{|z_{\mathrm{f,r}}(k)|}{\sqrt{1 + a_1 \lambda_{\min}(\mathcal{P})\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k)}} + \ell_2(k), \quad (30)$$

where

$$\ell_2(k) \stackrel{\triangle}{=} \frac{|\beta_d| \sum_{i=d}^{n_u+d} |\beta_{u,i-d}| \|\phi(k-i)\| \|\theta(k) - \theta(k-i)\|}{\sqrt{1 + a_1 \lambda_{\min}(\mathcal{P}) \tilde{\Phi}^{\mathrm{T}}(k) \tilde{\Phi}(k)}}.$$

It follows from Lemma 3 that $\theta(k)$ is bounded and $\lim_{k\to\infty} \|\theta(k) - \theta(k-1)\| = 0$. Therefore, Lemma 5 implies that there exist $k_2 \ge k_0 > 0$, $c_1 > 0$, and $c_2 > 0$, such that, for all $k \geq k_2$ and all $i = d, \ldots, n_u + d$, $\|\phi(k-i)\| \leq c_1 + c_2 \|\Phi(k)\|$. In addition, note that $\|\Phi(k)\| =$ $\|\tilde{\Phi}(k) + \Phi_*(k)\| \le \|\tilde{\Phi}(k)\| + \|\Phi_*(k)\| \le \|\tilde{\Phi}(k)\| + \Phi_{*,\max},$ where $\Phi_{*,\max} \stackrel{\triangle}{=} \sup_{k\geq 0} \|\Phi_*(k)\|$ exists because Φ_* is bounded. Therefore, for all $k \geq k_2$, $\|\phi(k-i)\| \leq c_1 + c_2$ $c_2\Phi_{*,\max}+c_2\|\tilde{\Phi}(k)\|$, which implies that

$$\ell_2(k) \le \frac{\left(c_3 + c_4 \|\tilde{\Phi}(k)\|\right) \left(\sum_{i=d}^{n_u+d} \|\theta(k) - \theta(k-i)\|\right)}{\sqrt{1 + a_1 \lambda_{\min}(\mathcal{P}) \tilde{\Phi}^{\mathrm{T}}(k) \tilde{\Phi}(k)}},$$
(31)

where $c_3 \stackrel{\triangle}{=} (c_1 + c_2 \Phi_{*,\max}) |\beta_d| (\max_{d < i < n_u + d} |\beta_{u,i-d}|) > 0$ and $c_4 \stackrel{\Delta}{=} c_2 |\beta_d| (\max_{d \le i \le n_u + d} |\beta_{u,i-d}|) > 0$. Next, note that $\frac{1}{\sqrt{1 + a_1 \lambda_{\min}(\mathcal{P})\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k)}} \le 1$ and $\frac{\|\tilde{\Phi}(k)\|}{\sqrt{1 + a_1 \lambda_{\min}(\mathcal{P})\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k)}} \le \max\left(1, 1/\sqrt{a_1 \lambda_{\min}(\mathcal{P})}\right)$, which implies that $\ell_2(k) \le 1$ $c_{5}\sum_{i=d}^{n_{u}+d} \|\theta(k) - \theta(k - i)\|, \text{ where } c_{5} \stackrel{\triangle}{=} c_{3} + c_{4}\max\left(1, 1/\sqrt{a_{1}\lambda_{\min}(\mathcal{P})}\right) > 0. \text{ Thus, (30) becomes}$

$$|\ell(k)| \leq \frac{|z_{\mathrm{f,r}}(k)|}{\sqrt{1 + a_1 \lambda_{\min}(\mathcal{P})\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k)}} + c_5 \sum_{i=d}^{n_u+d} \|\theta(k) - \theta(k-i)\|.$$
(32)

Next, we show that we can choose $a_1 > 0$ such that the first term of (32) is less than a constant times $\sqrt{\eta(k)}|z_{\rm f,r}(k)|$, which is square summable according to (ii) of Lemma 3. Note that $\Phi^{\mathrm{T}}(k)\Phi(k) \leq 2\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k) + 2\Phi_*^{\mathrm{T}}(k)\Phi_*(k)$. Therefore, it follows from (21) that

$$\begin{aligned} \frac{1}{\eta(k)} &= \zeta(k) + \Phi^{\mathrm{T}}(k)R^{-1}\Phi(k) \\ &\leq \zeta_{\mathrm{U}} + \lambda_{\mathrm{max}}(R^{-1}) \left[2\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k) + 2\Phi_{*}^{\mathrm{T}}(k)\Phi_{*}(k) \right] \\ &\leq \zeta_{\mathrm{U}} + 2\lambda_{\mathrm{max}}(R^{-1})\Phi_{*,\mathrm{max}}^{2} + 2\lambda_{\mathrm{max}}(R^{-1})\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k) \\ &= c_{6} \left[1 + a_{1}\lambda_{\mathrm{min}}(\mathcal{P})\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k) \right], \end{aligned}$$

where $a_1 \stackrel{\triangle}{=} \frac{2\lambda_{\max}(R^{-1})}{c_6\lambda_{\min}(\mathcal{P})} > 0$ and $c_6 \stackrel{\triangle}{=} \zeta_U + 2\lambda_{\max}(R^{-1})\Phi_{*,\max}^2 > 0$. Therefore,

$$\frac{1}{\sqrt{1+a_1\lambda_{\min}(\mathcal{P})\tilde{\Phi}^{\mathrm{T}}(k)\tilde{\Phi}(k)}} \leq \sqrt{c_6}\sqrt{\eta(k)}$$

which combining with (32) implies that, for all $k \ge k_2$,

$$|\ell(k)| \le \sqrt{c_6} \sqrt{\eta(k)} |z_{\mathrm{f,r}}(k)| + c_5 \sum_{i=d}^{n_\mathrm{u}+d} \|\theta(k) - \theta(k-i)\|.$$

Therefore, for all $k \geq k_2$,

$$\ell^{2}(k) \leq \left[\sqrt{c_{6}} \sqrt{\eta(k)} |z_{\mathrm{f,r}}(k)| + c_{5} \sum_{i=d}^{n_{\mathrm{u}}+d} \|\theta(k) - \theta(k-i)\| \right]^{2}$$

$$\leq 2c_{6}\eta(k)z_{\mathrm{f,r}}^{2}(k) + 2c_{5}^{2} \left[\sum_{i=d}^{n_{\mathrm{u}}+d} \|\theta(k) - \theta(k-i)\| \right]^{2}$$

$$\leq 2c_{6}\eta(k)z_{\mathrm{f,r}}^{2}(k) + 2^{n_{\mathrm{u}}+1}c_{5}^{2} \sum_{i=d}^{n_{\mathrm{u}}+d} \|\theta(k) - \theta(k-i)\|^{2}.$$
(33)

It follows from *(ii)* of Lemma 3 that $\lim_{k\to\infty}\sum_{j=0}^{k}\eta(j)z_{\rm f,r}^2(j) \text{ exists. Furthermore, it follows from ($ *iii* $) of Lemma 3 that, for all <math>i = d, \ldots, n_{\rm u} + d$, $\lim_{k\to\infty}\sum_{j=0}^{k} \|\theta(j) - \theta(j-i)\|^2 \text{ exists. Thus, (33) implies}$ that $\lim_{k\to\infty} \sum_{j=0}^k \ell^2(j)$ exists.

Now, we show that $\lim_{k\to\infty} W(\tilde{\Phi}(k)) = 0$. Since W and V are positive definite, it follows from (27) that

$$\begin{split} 0 &\leq \sum_{j=0}^{\infty} W(\tilde{\Phi}(j)) \leq \sum_{j=0}^{\infty} -\Delta V(j) + a_1 \sigma_1 \sum_{j=0}^{\infty} \ell^2(j) \\ &= V(\tilde{\Phi}(0)) - \lim_{k \to \infty} V(\tilde{\Phi}(k)) + a_1 \sigma_1 \sum_{j=0}^{\infty} \ell^2(j) \\ &\leq V(\tilde{\Phi}(0)) + a_1 \sigma_1 \lim_{k \to \infty} \sum_{j=0}^k \ell^2(j), \end{split}$$

where the upper and lower bound imply that all limits exist. Thus, $\lim_{k\to\infty} W(\tilde{\Phi}(k)) = 0$, which implies that $\lim_{k \to \infty} \|\tilde{\Phi}(k)\| = 0.$

To prove that u(k) is bounded, first note that since $\lim_{k\to\infty} \|\tilde{\Phi}(k)\| = 0$ and $\Phi_*(k)$ is bounded, it follows that $\Phi(k)$ is bounded. Next, since $\Phi(k)$ is bounded, it follows from Lemma 5 that $\phi(k)$ is bounded. Furthermore, since y(k) and u(k) are components of $\phi(k+1)$, it follows that y(k) and u(k) are bounded.

To prove that $\lim_{k\to\infty} z(k) = 0$, note that it follows from (19) and the fact that $||Bz_f(k)|| = |z_f(k)|$ that

$$\lim_{k \to \infty} |z_{\mathbf{f}}(k)| \le \lim_{k \to \infty} \|\tilde{\Phi}(k+1)\| + \|\mathcal{A}_*\|_{\mathbf{F}} \lim_{k \to \infty} \|\tilde{\Phi}(k)\| = 0.$$

Since $\lim_{k\to\infty} z_{\rm f}(k) = 0$, $z_{\rm f}(k) = \bar{\alpha}_{\rm m}(\mathbf{q}^{-1})z(k)$, and $\alpha_{\rm m}(\mathbf{q}) = \mathbf{q}^{n_{\rm m}} \bar{\alpha}_{\rm m}(\mathbf{q}^{-1})$ is an asymptotically stable polynomial, it follows that $\lim_{k\to\infty} z(k) = 0$.

Theorem 1 invokes assumption (A14), which asymptotically bounds the frozen time controller poles (i.e., the roots of $M(\mathbf{z}, k)$) away from the nonminimum-phase zeros of (1), and thus, asymptotically prevents unstable pole-zero cancellation between the plant zeros and the controller poles.

The assumption $|M(\xi_i, k)| \ge \epsilon$ for some arbitrarily small $\epsilon > 0$ can be verified at each time step since $M(\xi_i, k)$ can be computed from known values (i.e., the roots of $\beta_{\rm u}(\mathbf{q})$ and the controller parameter $\theta(k)$). In fact, if, for some arbitrarily small $\epsilon > 0$, the condition $|M(\xi_i, k)| > \epsilon$ is violated at a particular time step, then the controller parameter $\theta(k)$ can be perturbed to ensure $|M(\xi_i, k)| \ge \epsilon$. However, the stability of such a perturbation is an open problem.

VI. STABILITY ANALYSIS FOR CUMULATIVE RC-MRAC

In this section, we present the analogous results to Lemma 3 and Theorem 1 for the cumulative RC-MRAC. For review, cumulative RC-MRAC (developed in [1, Lemma 2]) is given by (7) and

$$\theta(k+1) = \theta(k) - \frac{P(k)\Phi(k)z_{\rm f,r}(k)}{\lambda + \Phi^{\rm T}(k)P(k)\Phi(k)},$$
 (34)

where

9

$$P(k+1) = \frac{1}{\lambda} \left[P(k) - \frac{P(k)\Phi(k)\Phi^{\mathrm{T}}(k)P(k)}{\lambda + \Phi^{\mathrm{T}}(k)P(k)\Phi(k)} \right].$$
 (35)

and $P(0) \in \mathbb{R}^{(3n_c+1)\times(3n_c+1)}$ is positive definite and $\theta(0) \in$ $\mathbb{R}^{3n_{c}+1}$

Lemma 4. Consider the open-loop system (1) satisfying assumptions (A1)-(A13), and the cumulative retrospective cost model reference adaptive controller (7), (34), and (35), where $n_{\rm c}$ satisfies (10). Furthermore, define

$$\eta_{\rm C}(k) \stackrel{\triangle}{=} \frac{1}{1 + \Phi^{\rm T}(k)P(0)\Phi(k)}.$$
(36)

Then, for all initial conditions x_0 and $\theta(0)$, the following properties hold:

- (i) $\theta(k)$ is bounded.
- (i) $\lim_{k\to\infty} \sum_{j=0}^k \eta_{\mathrm{C}}(j) z_{\mathrm{f,r}}^2(j)$ exists. (iii) For all N > 0, $\lim_{k\to\infty} \sum_{j=N}^k \|\theta(j) \theta(j-N)\|^2$ exists.

Proof. Subtracting θ_* from both sides of (34) yields the estimator-error update equation

$$\tilde{\theta}(k+1) = \tilde{\theta}(k) - \frac{P(k)\Phi(k)z_{\rm f,r}(k)}{\lambda + \Phi^{\rm T}(k)P(k)\Phi(k)}.$$
(37)

Next, note from (35) that

$$P(k+1)\Phi(k) = \frac{1}{\lambda} \left[P(k) - \frac{P(k)\Phi(k)\Phi^{\mathrm{T}}(k)P(k)}{\lambda + \Phi^{\mathrm{T}}(k)P(k)\Phi(k)} \right] \Phi(k)$$
$$= \frac{P(k)\Phi(k)}{\lambda + \Phi^{\mathrm{T}}(k)P(k)\Phi(k)},$$
(38)

and thus,

$$\tilde{\theta}(k+1) = \tilde{\theta}(k) - P(k+1)\Phi(k)z_{\rm f,r}(k).$$
(39)

Furthermore, note the RLS identity [2]

$$P^{-1}(k+1) = \lambda P^{-1}(k) + \Phi(k)\Phi^{\mathrm{T}}(k).$$
(40)

Define $V_P(P(k),k) \stackrel{\triangle}{=} \lambda^{-k}P^{-1}(k)$, and $\Delta V_P(k)$ \equiv $V_P(P(k+1), k+1) - V_P(P(k), k)$. Evaluating $\Delta V_P(k)$ along the trajectories of (40) yields

$$\Delta V_P(k) = \lambda^{-k-1} \Phi(k) \Phi^{\mathrm{T}}(k).$$
(41)

Since P(0) is positive definite and ΔV_P is positive semidefinite, it follows that, for all $k \ge 0$, $V_P(P(k), k)$ is positive definite and $V_P(P(k), k) \ge V_P(P(k-1), k-1)$. Therefore, for all $k \ge 0$, $V_P(P(0), 0) \le V_P(P(k), k)$, which implies that $\lambda^k P(k) \leq P(0)$.

Next, define the positive-definite Lyapunov-like function $V_{\tilde{a}}(\tilde{\theta}(k), P(k), k) \stackrel{\Delta}{=} \tilde{\theta}^{\mathrm{T}}(k) V_P(P(k), k) \tilde{\theta}(k)$, and define the Lyapunov-like difference

$$\Delta V_{\tilde{\theta}}(k) \stackrel{\triangle}{=} V_{\tilde{\theta}}(\tilde{\theta}(k+1), P(k+1), k+1) - V_{\tilde{\theta}}(\tilde{\theta}(k), P(k), k).$$
(42)

Evaluating $\Delta V_{\tilde{a}}(k)$ along the trajectories of the estimatorerror system (39) and using (41) yields

$$\begin{split} \Delta V_{\tilde{\theta}}(k) &= \lambda^{-k-1} \left[\tilde{\theta}(k) - P(k+1) \Phi(k) z_{\mathrm{f,r}}(k) \right]^{\mathrm{T}} \\ &\times P^{-1}(k+1) \left[\tilde{\theta}(k) - P(k+1) \Phi(k) z_{\mathrm{f,r}}(k) \right] \\ &- \lambda^{-k} \tilde{\theta}^{\mathrm{T}}(k) P^{-1}(k) \tilde{\theta}(k) \\ &= \tilde{\theta}^{\mathrm{T}}(k) \Delta V_{P}(k) \tilde{\theta}(k) - 2\lambda^{-k-1} z_{\mathrm{f,r}}(k) \Phi^{\mathrm{T}}(k) \tilde{\theta}(k) \\ &+ \lambda^{-k-1} z_{\mathrm{f,r}}^{2}(k) \Phi^{\mathrm{T}}(k) P(k+1) \Phi(k) \\ &= \lambda^{-k-1} \left[\tilde{\theta}^{\mathrm{T}}(k) \Phi(k) \Phi^{\mathrm{T}}(k) \tilde{\theta}(k) - 2z_{\mathrm{f,r}}(k) \Phi^{\mathrm{T}}(k) \tilde{\theta}(k) \\ &+ z_{\mathrm{f,r}}^{2}(k) \Phi^{\mathrm{T}}(k) P(k+1) \Phi(k) \right]. \end{split}$$

Next, it follows from Lemma 2 and (38) that, for all $k \ge k_0$,

$$\Delta V_{\tilde{\theta}}(k) = -\lambda^{-k-1} z_{\mathrm{f,r}}^{2}(k) \left(1 - \Phi^{\mathrm{T}}(k)P(k+1)\Phi(k)\right)$$
$$= -\lambda^{-k-1} z_{\mathrm{f,r}}^{2}(k) \frac{\lambda}{\lambda + \Phi^{\mathrm{T}}(k)P(k)\Phi(k)}$$
$$= -\bar{\eta}_{\mathrm{C}}(k) z_{\mathrm{f,r}}^{2}(k), \qquad (43)$$

where $\bar{\eta}_{\rm C}(k) \stackrel{\triangle}{=} \frac{1}{\lambda^{k+1} + \lambda^k \Phi^{\rm T}(k) P(k) \Phi(k)}$. Since $V_{\tilde{\theta}}$ is a positive-definite radially unbounded function of $\tilde{\theta}(k)$ and, for $k \ge k_0$, $\Delta V_{\tilde{\theta}}(k)$ is non-positive, it follows that $\theta(k)$ and thus $\theta(k)$ is bounded. Thus, we have verified (i).

To show (ii), first we show that $\lim_{k\to\infty} \sum_{j=k_0}^k \Delta V_{\tilde{\theta}}(j)$ exists. Since $V_{\tilde{\theta}}$ is positive definite, and, for all $k \geq k_0$, $\Delta V_{\tilde{\theta}}(k)$ is non-positive, it follows from (42) that

$$0 \leq -\lim_{k \to \infty} \sum_{j=k_0}^k \Delta V_{\tilde{\theta}}(j) \leq V_{\tilde{\theta}}(\tilde{\theta}(k_0), P(k_0), k_0),$$

where the upper and lower bounds imply that both limwhere the upper and lower bounds imply that both lim-its exist. Since $\lim_{k\to\infty} \sum_{j=k_0}^{k} \Delta V_{\bar{\theta}}(j)$ exists, (43) im-plies that $\lim_{k\to\infty} \sum_{j=k_0}^{k} \bar{\eta}_{C}(j) z_{f,r}^2(j)$ exists, and thus $\lim_{k\to\infty} \sum_{j=0}^{k} \bar{\eta}_{C}(j) z_{f,r}^2(j)$ exists. Since, for all $k \ge 0$, $\lambda^{k+1} \le 1$ and $\lambda^k P(k) \le P(0)$, it follows from (36) that, for all $k \ge 0$, $\eta_{C}(k) \le \bar{\eta}_{C}(k)$, which implies that $\lim_{k\to\infty} \sum_{j=0}^{k} \eta_{C}(j) z_{f,r}^2(j) \le \lim_{k\to\infty} \sum_{j=0}^{k} \bar{\eta}_{C}(j) z_{f,r}^2(j)$. Thus, $\lim_{k\to\infty} \sum_{j=0}^{k} \eta_{C}(j) z_{f,r}^2(j)$ exists, which verifies (ii).

To show (*iii*), we first show that $\lim_{k\to\infty}\sum_{i=0}^k \|\theta(j + i)\|$

1) $-\theta(j)\|^2$ exists. Since $\lambda^k P(k) \leq P(0)$, (37) implies that k

$$\begin{split} \lim_{k \to \infty} \sum_{j=0}^{\infty} \|\theta(j+1) - \theta(j)\|^2 \\ &= \sum_{j=0}^{\infty} \bar{\eta}_{\mathcal{C}}(j) z_{\mathcal{f},\mathbf{r}}^2(j) \left(\frac{\lambda^j \Phi^{\mathcal{T}}(j) P^2(j) \Phi(j)}{\lambda + \Phi^{\mathcal{T}}(j) P(j) \Phi(j)}\right) \\ &\leq \sum_{j=0}^{\infty} \bar{\eta}_{\mathcal{C}}(j) z_{\mathcal{f},\mathbf{r}}^2(j) \|\lambda^j P(j)\|_F \left(\frac{\Phi^{\mathcal{T}}(j) P(j) \Phi(j)}{\lambda + \Phi^{\mathcal{T}}(j) P(j) \Phi(j)}\right) \\ &\leq \|P(0)\|_F \sum_{i=0}^{\infty} \bar{\eta}_{\mathcal{C}}(j) z_{\mathcal{f},\mathbf{r}}^2(j). \end{split}$$

Since $\lim_{k\to\infty} \sum_{j=0}^{k} \bar{\eta}_{\rm C}(j) z_{\rm f,r}^2(j)$ exists, it follows that $\lim_{k\to\infty} \sum_{j=0}^{k} \|\theta(j+1) - \theta(j)\|^2$ exists. The remainder of the proof is identical to the proof of *(iii)* in Lemma 3.

The following theorem is the main result of the paper regarding cumulative RC-MRAC.

Theorem 2. Consider the open-loop system (1) satisfying assumptions (A1)-(A14), and the cumulative retrospective cost model reference adaptive controller (7), (34), and (35), where n_c satisfies (10). Then, for all initial conditions x_0 and $\theta(0)$, θ is bounded, u is bounded, and $\lim_{k\to\infty} z(k) = 0$.

The proof of Theorem 2 is identical to the proof of \cong Theorem 1 with $\eta(k)$ replaced by $\eta_{\rm C}(k)$ and a_1 $\frac{2\lambda_{\max}(P(0))}{\lambda_{\min}(\mathcal{P})[1+2\lambda_{\max}(P(0))\Phi_{*,\max}^2]} > 0.$

VII. CONCLUSIONS

This paper, in conjunction with its companion paper [1], presented a direct MRAC algorithm for discrete-time (including sampled-data) systems that are possibly nonminimum phase, provided that nonminimum-phase zeros are known. We provided the construction and stability analysis of the RC-MRAC algorithm.

APPENDIX A:

This appendix presents a lemma that is used in the proofs of Theorem 1 and Theorem 2. The proof has been omitted due to space considerations.

Lemma 5. Consider the open-loop system (1) satisfying assumptions (A1)-(A13). In addition, consider a feedback controller (7) that satisfies the following assumptions:

- (i) $\theta(k)$ is bounded.
- (*ii*) $\lim_{k\to\infty} \|\theta(k) \theta(k-1)\| = 0.$
- (iii) There exist $\epsilon > 0$ and $k_1 > 0$ such that, for all $k \ge k_1$ and for all $i = 1, \ldots, n_u$, $|M(\xi_i, k)| \ge \epsilon$.

Then, for all initial conditions x_0 and $\theta(0)$, there exist $k_2 > 0$ 0, $c_1 > 0$, and $c_2 > 0$, such that, for all $k \ge k_2$, and, for all $N = 0, \dots, n_{u}, \|\phi(k - d - N)\| \le c_1 + c_2 \|\Phi(k)\|.$

REFERENCES

- [1] J. B. Hoagg and D. S. Bernstein, "Retrospective cost model reference adaptive control for nonminimum-phase discrete-time systems, Part 1," in Proc. Amer. Contr. Conf., San Francisco, CA, June 2011.
- [2] G. C. Goodwin and K. S. Sin, Adaptive Filtering, Prediction, and Control. Prentice Hall, 1984.