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Abstract— This paper is the second part of a pair of papers,
which together present a direct model reference adaptive
controller for discrete-time (including sampled-data) systems
that are possibly nonminimum phase. The present paper and
its companion paper (Part 1) together analyze that stability of
the retrospective cost model reference adaptive controller.

I. INTRODUCTION

In this paper and its companion paper [1], we present

a model reference adaptive control (MRAC) algorithm for

discrete-time systems that are possibly nonminimum phase.

This paper is intended to be read in conjunction with [1]. A

detailed introduction is provided in [1].

The companion paper [1] develops the retrospective cost

model reference adaptive control (RC-MRAC) algorithms,

and focuses on the existence and properties of an ideal

control law. The results of [1] are used in the present paper

to analyze closed-loop stability.

In this second paper, we present a closed-loop error sys-

tem, which is a system constructed by taking the difference

between the closed-loop system with the ideal controller

in feedback and the closed-loop system with the adaptive

controller in feedback. Then we then examine the closed-

loop stability.

II. REVIEW OF THE PROBLEM FORMULATION

Consider the discrete-time system

y(k) = −
n
∑

i=1

αiy(k − i) +

n
∑

i=d

βiu(k − i), (1)

where k ≥ 0, α1, . . . , αn, βd, . . . , βn ∈ R, y(k) ∈ R is the

output, u(k) ∈ R is the control, and the relative degree is

d > 0. Furthermore, for all i < 0, u(i) = 0, and the initial

condition is x0 = [ y(−1) · · · y(−n) ]T ∈ Rn.

Let q and q
−1 denote the forward-shift and backward-shift

operators, respectively. For all k ≥ 0, (1) can be expressed

as α(q)y(k − n) = β(q)u(k − n), where α(q)
△
= q

n +

α1q
n−1+α2q

n−2+· · ·+αn−1q+αn and β(q)
△
= βdq

n−d+
βd+1q

n−d−1 + · · ·+ βn−1q+ βn.

Next, consider the reference model

ym = −
nm
∑

i=1

αm,iym(k − i) +

nm
∑

i=dm

βm,ir(k − i), (2)
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where k ≥ 0, αm,1, . . . , αm,nm
, βm,dm

, . . . , βm,nm
∈ R,

ym(k) ∈ R is the reference model output, r(k) ∈ R is the

reference model command, and dm > 0 is the relative degree

of (2). Furthermore, for all i < 0, r(i) = 0, and the initial

condition is xm,0 = [ ym(−1) · · · ym(−nm) ]T ∈ Rn.

For all k ≥ 0, (2) can be expressed as αm(q)ym(k−nm) =

βm(q)r(k−nm), where αm(q)
△
= q

nm +αm,1q
nm−1+ · · ·+

αm,nm−1q + αm,nm
and βm(q)

△
= βm,dm

q
nm−dm + · · · +

βm,nm−1q + βm,nm
. Our goal is to drive the tracking error

z(k)
△
= y(k) − ym(k) to zero asymptotically. We make the

following assumptions regarding the open-loop system (1):

(A1) α(q) and β(q) are coprime.

(A2) d is known.

(A3) βd is known.

(A4) If λ ∈ C, |λ| ≥ 1, and β(λ) = 0, then λ is known.

(A5) There exists an integer n̄ such that n ≤ n̄ and n̄ is

known.

(A6) α(q), β(q), n, and x0 are not known.

In addition, we make the following assumptions regarding

the reference model (2):

(A7) αm(q) and βm(q) are coprime.

(A8) αm(q) is asymptotically stable.

(A9) If λ ∈ C, |λ| ≥ 1, and β(λ) = 0, then βm(λ) = 0.

(A10) If λ ∈ C and α(λ) = 0, then βm(λ) 6= 0.

(A11) dm ≥ d.

(A12) r(k) is bounded.

(A13) αm(q), βm(q), dm, and nm are known.

Next, let βu(q) be a monic polynomial whose roots are

a subset of the roots of β(q) and include all the zeros of

β(q) that lie on or outside the unit circle. Furthermore, write

βu(q) = q
nu + βu,1q

nu−1 + · · ·+ βu,nu−1q+ βu,nu
, where

βu,1, . . . , βu,nu
∈ R, and nu ≤ n−d is the degree of βu(q),

and let βu,0 = 1.

III. BRIEF REVIEW OF [1]

In this section, we briefly review select aspects of [1].

First, let nc ≥ n, and [1] shows that, for all k ≥ nc, (1) has

the (3nc + 1)th-order nonminimal-state-space realization

φ(k + 1) = Aφ(k) +Bu(k) +Dr(k + 1), (3)

y(k) = Cφ(k), (4)

where A, B, C, and D are given in [1], and

φ(k)
△
=

[

y(k − 1) · · · y(k − nc)

u(k − 1) · · · u(k − nc)

r(k) · · · r(k − nc)
]T ∈ R

3nc+1. (5)
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Next, for all k ≥ nc, consider the time-varying controller

u(k) =

nc
∑

i=1

Li(k)y(k − i) +

nc
∑

i=1

Mi(k)u(k − i)

+

nc
∑

i=0

Ni(k)r(k − i), (6)

where, for all i = 1, . . . , nc, Li : N → R and Mi : N → R,

and, for all i = 0, 1, . . . , nc, Ni : N → R are given by

either the instantaneous RC-MRAC algorithm [1, Lemma 1]

or the cumulative RC-MRAC algorithm [1, Lemma 2]. For

all k ≥ nc, the controller (6) can be expressed as

u(k) = φT(k)θ(k), (7)

where θ(k)
△
= [L1(k) · · · Lnc

(k) M1(k) · · ·
Mnc

(k) N0(k) · · · Nnc
(k)]T.

For all k ≥ 0, we define the filtered performance zf(k)
△
=

ᾱm(q
−1)z(k), where ᾱm(q

−1)
△
= q

−nmαm(q). Next, for all

k ≥ 0, define the retrospective performance

ẑf(θ̂, k)
△
= zf(k) + ΦT(k)θ̂ − βdβ̄u(q

−1)u(k), (8)

where the filtered regressor is defined by Φ(k)
△
=

βdβ̄u(q
−1)φ(k) and β̄u(q

−1)
△
= q

−nu−dβu(q). Finally, for

all k ≥ 0, define retrospective performance measure

zf,r(k)
△
= ẑf(θ(k), k). (9)

IV. ERROR SYSTEM

We now construct an error system using the ideal fixed-

gain controller (which is given by [1, Theorem 1]) and

RC-MRAC. Since n is unknown, the lower bound for the

controller order nc given by [1, Theorem 1] is unknown.

Thus, for the remainder of the paper, let nc satisfy the lower

bound

nc ≥ max(2n̄− nu − d, nm − nu − d), (10)

where assumptions (A2), (A4), (A5), and (A13) imply that

the lower bound on nc given by (10) is known. Furthermore,

since, by assumption (A5), n ≤ n̄, it follows that (10)

satisfies the conditions of [1, Theorem 1].

Let θ∗ ∈ R3nc+1 be the ideal fixed-gain controller given

by [1, Theorem 1], and, for all k ≥ nc, let φ∗(k) be the

state of the ideal closed-loop system, which according to [1]

is given by

φ∗(k + 1) = A∗φ∗(k) +Dr(k + 1), (11)

y∗(k) = Cφ∗(k), (12)

where A∗
△
= A + BθT∗ is asymptotically stable and the

initial condition is φ∗(nc) = φ(nc). Furthermore, define

k0 = 2nc + nu + d.

Next, for all k ≥ nc, the closed-loop system consisting of

(3), (4), and (7) becomes

φ(k + 1) = A∗φ(k) +BφT(k)θ̃(k) +Dr(k + 1), (13)

y(k) = Cφ(k), (14)

where θ̃(k)
△
= θ(k)− θ∗.

Now, we construct an error system by combining the ideal

closed-loop system (11), (12) with the adaptive closed-loop

system (13), (14). For all k ≥ nc, define the error state

φ̃(k)
△
= φ(k)−φ∗(k), and subtract (11), (12) from (13), (14)

to obtain, for all k ≥ nc,

φ̃(k + 1) = A∗φ̃(k) +BφT(k)θ̃(k), (15)

ỹ(k) = Cφ̃(k), (16)

where ỹ(k)
△
= y(k)− y∗(k).

Lemma 1. Consider the open-loop system (1) with the

feedback (7). Then, for all initial conditions x0, all sequences

θ(k), and, all k ≥ k0,

zf(k) = βdβ̄u(q
−1)

[

φT(k)θ̃(k)
]

. (17)

Proof. For all k ≥ nc, the error system (15), (16) has the

solution

ỹ(k) = CA
k−nc

∗ φ̃(nc) +

k−nc
∑

i=1

CA
i−1
∗ BφT(k − i)θ̃(k − i).

Since φ∗(0) = φ(0) it follows that φ̃(0) = 0, and thus, for

all k ≥ nc, ỹ(k) =
∑k−nc

i=1 CAi−1
∗ BφT(k−i)θ̃(k−i), which

implies that, for all k ≥ nc + nm

ᾱm(q
−1)ỹ(k) = ᾱm(q

−1)

[

k−nc
∑

i=1

CA
i−1
∗ BφT(k − i)θ̃(k − i)

]

.

Next, it follows from [1, (iv) of Theorem 1] (with e(k) =
φT(k)θ̃(k) ) that, for all k ≥ k0, ᾱm(q

−1)ỹ(k) =
βdβ̄u(q

−1)[φT(k)θ̃(k)]. Finally, note that ᾱm(q
−1)ỹ(k) =

ᾱm(q
−1)y(k) − ᾱm(q

−1)y∗(k) and it follows from [1,

(i) of Theorem 1] that ᾱm(q
−1)y∗(k) = ᾱm(q

−1)ym(k).
Therefore, for all k ≥ k0, zf(k) = ᾱm(q

−1)ỹ(k), thus

verifying (17).

Lemma 1 relates the filtered performance zf(k) to the

estimation error θ̃(k). The relationship (17) is not a linear re-

gression in the estimation error θ̃(k); however, the following

result expresses zf,r(k) as a linear regression in θ̃(k).

Lemma 2. Consider the open-loop system (1) with the

feedback (7). Then, for all initial conditions x0, all sequences

θ(k), and all k ≥ k0,

zf,r(k) = ΦT(k)θ̃(k). (18)

Proof. It follows from (8) and (9) that, for all k ≥ 0,

zf,r(k) = zf(k)− βdβ̄u(q
−1)

[

φT(k)θ(k)
]

+ βd

[

β̄u(q
−1)φ(k)

]T
θ(k).

Next, adding and subtracting βd

[

β̄u(q
−1)φ(k)

]T
θ∗ to the

left-hand side yields, for all k ≥ 0, zf,r(k) = zf(k) −
βdβ̄u(q

−1)[φT(k)θ̃(k)] + βd[β̄u(q
−1)φ(k)]Tθ̃(k). Finally, it

follows from Lemma 1 that, for all k ≥ k0, zf(k) −
βdβ̄u(q

−1)[φT(k)θ̃(k)] = 0, which implies that, for all
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k ≥ k0, zf,r(k) = βd[β̄u(q
−1)φ(k)]Tθ̃(k) = ΦT(k)θ̃(k),

thus verifying (18).

Lastly, we develop a filtered error system. For all

k ≥ k0, we define the ideal filtered regressor Φ∗(k)
△
=

βdβ̄u(q
−1)φ∗(k), and the filtered regressor error Φ̃(k)

△
=

Φ(k) − Φ∗(k) = βdβ̄u(q
−1)φ̃(k). Next, we apply the

operator βdβ̄u(q
−1) to (15) and use Lemma 1 to obtain the

filtered error system

Φ̃(k + 1) = A∗Φ̃(k) +Bβdβ̄u(q
−1)

[

φT(k)θ̃(k)
]

= A∗Φ̃(k) +Bzf(k), (19)

which is defined for all k ≥ k0.

V. STABILITY ANALYSIS FOR INSTANTANEOUS

RC-MRAC

In this section, we analyze the stability of instantaneous

RC-MRAC. For review, instantaneous RC-MRAC (devel-

oped in [1, Lemma 1]) is given by (7) and

θ(k + 1) = θ(k)− η(k)R−1Φ(k)zf,r(k), (20)

where

η(k)
△
=

1

ζ(k) + ΦT(k)R−1Φ(k)
, (21)

and R ∈ R(3nc+1)×(3nc+1) is positive definite, θ(0) ∈
R

3nc+1, and ζ : N → (0,∞). We assume that ζL
△
=

infk≥0 ζ(k) > 0 and ζU
△
= supk≥0 ζ(k) < ∞.

Lemma 3. Consider the open-loop system (1) satisfying

assumptions (A1)-(A13), and the instantaneous retrospective

cost model reference adaptive controller (7), (20), and (21),

where nc satisfies (10). Then, for all initial conditions x0

and θ(0), the following properties hold:

(i) θ(k) is bounded.

(ii) limk→∞

∑k

j=0 η(j)z
2
f,r(j) exists.

(iii) For all N > 0, limk→∞

∑k

j=N ‖θ(j) − θ(j − N)‖2
exists.

Proof. Subtracting θ∗ from both sides of (20) yields the

estimator-error update equation

θ̃(k + 1) = θ̃(k)− η(k)R−1Φ(k)zf,r(k). (22)

Define the positive-definite, radially unbounded Lyapunov-

like function Vθ̃(θ̃(k))
△
= θ̃T(k)Rθ̃(k), and the Lyapunov-

like difference

∆Vθ̃(k)
△
= Vθ̃(θ̃(k + 1))− Vθ̃(θ̃(k)). (23)

Evaluating ∆Vθ̃(k) along the trajectories of the

estimator-error system (22) yields ∆Vθ̃(k) =
−2η(k)zf,r(k)Φ

T(k)θ̃(k) + η2(k)z2f,r(k)Φ
T(k)R−1Φ(k).

Next, it follows from Lemma 2 and (21) that, for all k ≥ k0,

∆Vθ̃(k) = −2η(k)z2f,r(k) + η2(k)z2f,r(k)Φ
T(k)R−1Φ(k)

= −η(k)z2f,r(k)− ζ(k)η2(k)z2f,r(k)

≤ −η(k)z2f,r(k). (24)

Since Vθ̃ is a positive-definite radially unbounded function

of θ̃(k) and, for k ≥ k0, ∆Vθ̃(k) is non-positive, it follows

that θ̃(k) is bounded and thus θ(k) is bounded. Thus, we

have verified (i).

To show (ii), first we show that limk→∞

∑k

j=k0
∆Vθ̃(j)

exists. Since Vθ̃ is positive definite, and, for all k ≥ k0,

∆Vθ̃(k) is non-positive, it follows from (23) that

0 ≤ − lim
k→∞

k
∑

j=k0

∆Vθ̃(j) = Vθ̃(θ̃(k0))− lim
k→∞

Vθ̃(θ̃(k))

≤ Vθ̃(θ̃(k0)),

where the upper and lower bounds imply that both

limits exist. Since limk→∞

∑k

j=k0
∆Vθ̃(j) exists, (24)

implies that limk→∞

∑k

j=k0
η(j)z2f,r(j) exists, and thus

limk→∞

∑k

j=0 η(j)z
2
f,r(j) exists, which verifies (ii).

To show (iii), we first show that limk→∞

∑k

j=0 ‖θ(j +
1)− θ(j)‖2 exists. It follows from (20) that

∞
∑

j=0

‖θ(j + 1)− θ(j)‖2 =
∞
∑

j=0

η2(j)z2f,r(j)Φ
T(j)R−2Φ(j)

≤ ‖R−1‖F
∞
∑

j=0

η2(j)z2f,r(j)Φ
T(j)R−1Φ(j),

where ‖ · ‖F denotes the Frobenius norm. Next, it follows

from (21) that, for all k ≥ 0, η(k)ΦT(k)R−1Φ(k) ≤ 1,

which implies that

lim
k→∞

k
∑

j=0

‖θ(j + 1)− θ(j)‖2 ≤ ‖R−1‖F lim
k→∞

k
∑

j=0

η(j)z2f,r(j).

Furthermore, since by (ii), limk→∞

∑k

j=0 η(j)z
2
f,r(j) exists,

it follows that limk→∞

∑k

j=0 ‖θ(j+1)−θ(j)‖2 exists. Next,

let N > 0 and note that

lim
k→∞

k
∑

j=N

‖θ(j)− θ(j −N)‖2

= lim
k→∞

k
∑

j=N

‖θ(j)− θ(j − 1) + θ(j − 1)− θ(j − 2)

+ · · ·+ θ(j −N + 1)− θ(j −N)‖2

≤ lim
k→∞

k
∑

j=N

(‖θ(j)− θ(j − 1)‖

+ · · ·+ ‖θ(j −N + 1)− θ(j −N)‖)2

≤ lim
k→∞

2N−1
k

∑

j=N

(

‖θ(j)− θ(j − 1)‖2

+ · · ·+ ‖θ(j −N + 1)− θ(j −N)‖2
)

. (25)

Since all of the limits on the right hand side of (25) exist, it

follows that limk→∞

∑k

j=N ‖θ(j)− θ(j−N)‖2 exists. This

verifies (iii).

Next, let ξ1, . . . , ξnu
∈ C denote the nu roots of βu(z),

and define M(z, k)
△
= z

nc −M1(k)z
nc−1 −M2(k)z

nc−2 −
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· · ·−Mnc−1(k)z−Mnc
(k), which can be interpreted as the

denominator polynomial of the controller (7) at frozen time

k. Before presenting the main result of the paper, we make

the following additional assumption:

(A14) There exist ǫ > 0 and k1 > 0 such that, for all k ≥ k1
and for all i = 1, . . . , nu, |M(ξi, k)| ≥ ǫ.

The following theorem is the main result of the paper

regarding instantaneous RC-MRAC.

Theorem 1. Consider the open-loop system (1) satisfying

assumptions (A1)-(A14), and the instantaneous retrospective

cost model reference adaptive controller (7), (20), and (21),

where nc satisfies (10). Then, for all initial conditions x0 and

θ(0), θ is bounded, u is bounded, and limk→∞ z(k) = 0.

Proof. It follows from (i) of Lemma 3 that θ(k) is

bounded. To prove the remaining properties, define the

quadratic function J(Φ̃(k))
△
= Φ̃T(k)PΦ̃(k), where P > 0

satisfies the discrete-time Lyapunov equation P = AT
∗ PA∗+

Q+αI , where Q > 0 and α > 0. Note that P exists since A∗

is asymptotically stable. Defining ∆J(k)
△
= J(Φ̃(k + 1))−

J(Φ̃(k)), it follows from (19) that, for all k ≥ k0,

∆J(k) = − Φ̃T(k) (Q+ αI) Φ̃(k) + Φ̃T(k)AT
∗ PBzf(k)

+ zf(k)B
T
PÃ

∗Φ̃(k) + z2f (k)B
T
PB

≤ − Φ̃T(k) (Q+ αI) Φ̃(k) + z2f (k)B
T
PB

+ αΦ̃T(k)Φ̃(k) +
1

α
z2f (k)B

T
PA∗A

T
∗ PB

= − Φ̃T(k)QΦ̃(k) + σ1z
2
f (k), (26)

where σ1
△
= BTPB+ 1

α
BTPA∗A

T
∗ PB.

Now, consider the positive-definite, radially unbounded

Lyapunov-like function V (Φ̃(k))
△
= ln

(

1 + a1J(Φ̃(k))
)

,

where a1 > 0 is specified below. The Lyapunov-like dif-

ference is thus given by ∆V (k)
△
= V (Φ̃(k+1))−V (Φ̃(k)).

For all k ≥ k0, evaluating ∆V (k) along the trajectories of

(19) yields ∆V (k) = ln
(

1 + a1∆J(k)

1+a1J(Φ̃(k))

)

. Since, for all

x > 0, lnx ≤ x− 1, and using (26) we have

∆V (k) ≤ a1
∆J(k)

1 + a1J(Φ̃(k))
≤ −W (Φ̃(k)) + a1σ1ℓ

2(k),

(27)

where

W (Φ̃(k))
△
= a1

Φ̃T(k)QΦ̃(k)

1 + a1Φ̃T(k)PΦ̃(k)
, (28)

ℓ(k)
△
=

zf(k)
√

1 + a1λmin (P) Φ̃T(k)Φ̃(k)
. (29)

Now, we show that limk→∞

∑k

j=0 ℓ
2(j) exists. First, it

follows from Lemma 1 and Lemma 2 that, for all k ≥ k0,

zf(k) = zf,r(k)− βd

nu+d
∑

i=d

βu,i−dφ
T(k − i) [θ(k)− θ(k − i)] .

Therefore, it follows from (29) that, for all k ≥ k0,

|ℓ(k)| ≤ |zf,r(k)|
√

1 + a1λmin(P)Φ̃T(k)Φ̃(k)
+ ℓ2(k), (30)

where

ℓ2(k)
△
=

|βd|
∑nu+d

i=d |βu,i−d|‖φ(k − i)‖‖θ(k)− θ(k − i)‖
√

1 + a1λmin(P)Φ̃T(k)Φ̃(k)
.

It follows from Lemma 3 that θ(k) is bounded and

limk→∞ ‖θ(k)−θ(k−1)‖ = 0. Therefore, Lemma 5 implies

that there exist k2 ≥ k0 > 0, c1 > 0, and c2 > 0,

such that, for all k ≥ k2 and all i = d, . . . , nu + d,

‖φ(k−i)‖ ≤ c1+c2‖Φ(k)‖. In addition, note that ‖Φ(k)‖ =
‖Φ̃(k) + Φ∗(k)‖ ≤ ‖Φ̃(k)‖+ ‖Φ∗(k)‖ ≤ ‖Φ̃(k)‖+Φ∗,max,

where Φ∗,max
△
= supk≥0 ‖Φ∗(k)‖ exists because Φ∗ is

bounded. Therefore, for all k ≥ k2, ‖φ(k − i)‖ ≤ c1 +
c2Φ∗,max + c2‖Φ̃(k)‖, which implies that

ℓ2(k) ≤

(

c3 + c4‖Φ̃(k)‖
)(

∑nu+d

i=d ‖θ(k)− θ(k − i)‖
)

√

1 + a1λmin(P)Φ̃T(k)Φ̃(k)
,

(31)

where c3
△
= (c1+c2Φ∗,max)|βd|(maxd≤i≤nu+d |βu,i−d|) > 0

and c4
△
= c2|βd|(maxd≤i≤nu+d |βu,i−d|) > 0. Next, note that

1√
1+a1λmin(P)Φ̃T(k)Φ̃(k)

≤ 1 and
‖Φ̃(k)‖√

1+a1λmin(P)Φ̃T(k)Φ̃(k)
≤

max
(

1, 1/
√

a1λmin(P)
)

, which implies that ℓ2(k) ≤
c5

∑nu+d

i=d ‖θ(k) − θ(k − i)‖, where c5
△
= c3 +

c4 max
(

1, 1/
√

a1λmin(P)
)

> 0. Thus, (30) becomes

|ℓ(k)| ≤ |zf,r(k)|
√

1 + a1λmin(P)Φ̃T(k)Φ̃(k)

+ c5

nu+d
∑

i=d

‖θ(k)− θ(k − i)‖. (32)

Next, we show that we can choose a1 > 0 such that the

first term of (32) is less than a constant times
√

η(k)|zf,r(k)|,
which is square summable according to (ii) of Lemma

3. Note that ΦT(k)Φ(k) ≤ 2Φ̃T(k)Φ̃(k) + 2ΦT
∗ (k)Φ∗(k).

Therefore, it follows from (21) that

1

η(k)
= ζ(k) + ΦT(k)R−1Φ(k)

≤ ζU + λmax(R
−1)

[

2Φ̃T(k)Φ̃(k) + 2ΦT
∗ (k)Φ∗(k)

]

≤ ζU + 2λmax(R
−1)Φ2

∗,max + 2λmax(R
−1)Φ̃T(k)Φ̃(k)

= c6

[

1 + a1λmin(P)Φ̃
T(k)Φ̃(k)

]

,

where a1
△
= 2λmax(R

−1)
c6λmin(P) > 0 and c6

△
= ζU +

2λmax(R
−1)Φ2

∗,max > 0. Therefore,

1
√

1 + a1λmin(P)Φ̃T(k)Φ̃(k)
≤ √

c6
√

η(k),
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which combining with (32) implies that, for all k ≥ k2,

|ℓ(k)| ≤ √
c6
√

η(k)|zf,r(k)|+ c5

nu+d
∑

i=d

‖θ(k)− θ(k − i)‖.

Therefore, for all k ≥ k2,

ℓ2(k) ≤
[

√
c6
√

η(k)|zf,r(k)|+ c5

nu+d
∑

i=d

‖θ(k)− θ(k − i)‖
]2

≤ 2c6η(k)z
2
f,r(k) + 2c25

[

nu+d
∑

i=d

‖θ(k)− θ(k − i)‖
]2

≤ 2c6η(k)z
2
f,r(k) + 2nu+1c25

nu+d
∑

i=d

‖θ(k)− θ(k − i)‖2.

(33)

It follows from (ii) of Lemma 3 that

limk→∞

∑k

j=0 η(j)z
2
f,r(j) exists. Furthermore, it follows

from (iii) of Lemma 3 that, for all i = d, . . . , nu + d,

limk→∞

∑k

j=0 ‖θ(j)− θ(j − i)‖2 exists. Thus, (33) implies

that limk→∞

∑k

j=0 ℓ
2(j) exists.

Now, we show that limk→∞ W (Φ̃(k)) = 0. Since W and

V are positive definite, it follows from (27) that

0 ≤
∞
∑

j=0

W (Φ̃(j)) ≤
∞
∑

j=0

−∆V (j) + a1σ1

∞
∑

j=0

ℓ2(j)

= V (Φ̃(0))− lim
k→∞

V (Φ̃(k)) + a1σ1

∞
∑

j=0

ℓ2(j)

≤ V (Φ̃(0)) + a1σ1 lim
k→∞

k
∑

j=0

ℓ2(j),

where the upper and lower bound imply that all limits

exist. Thus, limk→∞ W (Φ̃(k)) = 0, which implies that

limk→∞ ‖Φ̃(k)‖ = 0.

To prove that u(k) is bounded, first note that since

limk→∞ ‖Φ̃(k)‖ = 0 and Φ∗(k) is bounded, it follows that

Φ(k) is bounded. Next, since Φ(k) is bounded, it follows

from Lemma 5 that φ(k) is bounded. Furthermore, since

y(k) and u(k) are components of φ(k + 1), it follows that

y(k) and u(k) are bounded.

To prove that limk→∞ z(k) = 0, note that it follows from

(19) and the fact that ‖Bzf(k)‖ = |zf(k)| that

lim
k→∞

|zf(k)| ≤ lim
k→∞

‖Φ̃(k + 1)‖+ ‖A∗‖F lim
k→∞

‖Φ̃(k)‖ = 0.

Since limk→∞ zf(k) = 0, zf(k) = ᾱm(q
−1)z(k), and

αm(q) = q
nm ᾱm(q

−1) is an asymptotically stable poly-

nomial, it follows that limk→∞ z(k) = 0.

Theorem 1 invokes assumption (A14), which asymptoti-

cally bounds the frozen time controller poles (i.e., the roots

of M(z, k)) away from the nonminimum-phase zeros of

(1), and thus, asymptotically prevents unstable pole-zero

cancellation between the plant zeros and the controller poles.

The assumption |M(ξi, k)| ≥ ǫ for some arbitrarily small

ǫ > 0 can be verified at each time step since M(ξi, k) can

be computed from known values (i.e., the roots of βu(q) and

the controller parameter θ(k)). In fact, if, for some arbitrarily

small ǫ > 0, the condition |M(ξi, k)| ≥ ǫ is violated at a

particular time step, then the controller parameter θ(k) can

be perturbed to ensure |M(ξi, k)| ≥ ǫ. However, the stability

of such a perturbation is an open problem.

VI. STABILITY ANALYSIS FOR CUMULATIVE RC-MRAC

In this section, we present the analogous results to Lemma

3 and Theorem 1 for the cumulative RC-MRAC. For review,

cumulative RC-MRAC (developed in [1, Lemma 2]) is given

by (7) and

θ(k + 1) = θ(k)− P (k)Φ(k)zf,r(k)

λ+ΦT(k)P (k)Φ(k)
, (34)

where

P (k + 1) =
1

λ

[

P (k)− P (k)Φ(k)ΦT(k)P (k)

λ+ΦT(k)P (k)Φ(k)

]

. (35)

and P (0) ∈ R(3nc+1)×(3nc+1) is positive definite and θ(0) ∈
R3nc+1.

Lemma 4. Consider the open-loop system (1) satisfying

assumptions (A1)-(A13), and the cumulative retrospective

cost model reference adaptive controller (7), (34), and (35),

where nc satisfies (10). Furthermore, define

ηC(k)
△
=

1

1 + ΦT(k)P (0)Φ(k)
. (36)

Then, for all initial conditions x0 and θ(0), the following

properties hold:

(i) θ(k) is bounded.

(ii) limk→∞

∑k

j=0 ηC(j)z
2
f,r(j) exists.

(iii) For all N > 0, limk→∞

∑k

j=N ‖θ(j) − θ(j − N)‖2
exists.

Proof. Subtracting θ∗ from both sides of (34) yields the

estimator-error update equation

θ̃(k + 1) = θ̃(k)− P (k)Φ(k)zf,r(k)

λ+ΦT(k)P (k)Φ(k)
. (37)

Next, note from (35) that

P (k + 1)Φ(k) =
1

λ

[

P (k)− P (k)Φ(k)ΦT(k)P (k)

λ+ΦT(k)P (k)Φ(k)

]

Φ(k)

=
P (k)Φ(k)

λ+ΦT(k)P (k)Φ(k)
, (38)

and thus,

θ̃(k + 1) = θ̃(k)− P (k + 1)Φ(k)zf,r(k). (39)

Furthermore, note the RLS identity [2]

P−1(k + 1) = λP−1(k) + Φ(k)ΦT(k). (40)

Define VP (P (k), k)
△
= λ−kP−1(k), and ∆VP (k)

△
=

VP (P (k + 1), k + 1) − VP (P (k), k). Evaluating ∆VP (k)
along the trajectories of (40) yields

∆VP (k) = λ−k−1Φ(k)ΦT(k). (41)
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Since P (0) is positive definite and ∆VP is positive semidef-

inite, it follows that, for all k ≥ 0, VP (P (k), k) is positive

definite and VP (P (k), k) ≥ VP (P (k− 1), k− 1). Therefore,

for all k ≥ 0, VP (P (0), 0) ≤ VP (P (k), k), which implies

that λkP (k) ≤ P (0).

Next, define the positive-definite Lyapunov-like function

Vθ̃(θ̃(k), P (k), k)
△
= θ̃T(k)VP (P (k), k)θ̃(k), and define the

Lyapunov-like difference

∆Vθ̃(k)
△
= Vθ̃(θ̃(k + 1), P (k + 1), k + 1)

− Vθ̃(θ̃(k), P (k), k). (42)

Evaluating ∆Vθ̃(k) along the trajectories of the estimator-

error system (39) and using (41) yields

∆Vθ̃(k) = λ−k−1
[

θ̃(k)− P (k + 1)Φ(k)zf,r(k)
]T

× P−1(k + 1)
[

θ̃(k)− P (k + 1)Φ(k)zf,r(k)
]

− λ−kθ̃T(k)P−1(k)θ̃(k)

= θ̃T(k)∆VP (k)θ̃(k)− 2λ−k−1zf,r(k)Φ
T(k)θ̃(k)

+ λ−k−1z2f,r(k)Φ
T(k)P (k + 1)Φ(k)

= λ−k−1
[

θ̃T(k)Φ(k)ΦT(k)θ̃(k)− 2zf,r(k)Φ
T(k)θ̃(k)

+z2f,r(k)Φ
T(k)P (k + 1)Φ(k)

]

.

Next, it follows from Lemma 2 and (38) that, for all k ≥ k0,

∆Vθ̃(k) = − λ−k−1z2f,r(k)
(

1− ΦT(k)P (k + 1)Φ(k)
)

= − λ−k−1z2f,r(k)
λ

λ+ΦT(k)P (k)Φ(k)

= − η̄C(k)z
2
f,r(k), (43)

where η̄C(k)
△
= 1

λk+1+λkΦT(k)P (k)Φ(k)
. Since Vθ̃ is a

positive-definite radially unbounded function of θ̃(k) and,

for k ≥ k0, ∆Vθ̃(k) is non-positive, it follows that θ̃(k) and

thus θ(k) is bounded. Thus, we have verified (i).

To show (ii), first we show that limk→∞

∑k

j=k0
∆Vθ̃(j)

exists. Since Vθ̃ is positive definite, and, for all k ≥ k0,

∆Vθ̃(k) is non-positive, it follows from (42) that

0 ≤ − lim
k→∞

k
∑

j=k0

∆Vθ̃(j) ≤ Vθ̃(θ̃(k0), P (k0), k0),

where the upper and lower bounds imply that both lim-

its exist. Since limk→∞

∑k

j=k0
∆Vθ̃(j) exists, (43) im-

plies that limk→∞

∑k

j=k0
η̄C(j)z

2
f,r(j) exists, and thus

limk→∞

∑k

j=0 η̄C(j)z
2
f,r(j) exists. Since, for all k ≥ 0,

λk+1 ≤ 1 and λkP (k) ≤ P (0), it follows from (36)

that, for all k ≥ 0, ηC(k) ≤ η̄C(k), which implies that

limk→∞

∑k

j=0 ηC(j)z
2
f,r(j) ≤ limk→∞

∑k

j=0 η̄C(j)z
2
f,r(j).

Thus, limk→∞

∑k

j=0 ηC(j)z
2
f,r(j) exists, which verifies (ii).

To show (iii), we first show that limk→∞

∑k

j=0 ‖θ(j +

1)− θ(j)‖2 exists. Since λkP (k) ≤ P (0), (37) implies that

lim
k→∞

k
∑

j=0

‖θ(j + 1)− θ(j)‖2

=
∞
∑

j=0

η̄C(j)z
2
f,r(j)

(

λjΦT(j)P 2(j)Φ(j)

λ+ ΦT(j)P (j)Φ(j)

)

≤
∞
∑

j=0

η̄C(j)z
2
f,r(j)‖λjP (j)‖F

(

ΦT(j)P (j)Φ(j)

λ+ΦT(j)P (j)Φ(j)

)

≤ ‖P (0)‖F
∞
∑

j=0

η̄C(j)z
2
f,r(j).

Since limk→∞

∑k

j=0 η̄C(j)z
2
f,r(j) exists, it follows that

limk→∞

∑k

j=0 ‖θ(j + 1)− θ(j)‖2 exists. The remainder of

the proof is identical to the proof of (iii) in Lemma 3.

The following theorem is the main result of the paper

regarding cumulative RC-MRAC.

Theorem 2. Consider the open-loop system (1) satisfying

assumptions (A1)-(A14), and the cumulative retrospective

cost model reference adaptive controller (7), (34), and (35),

where nc satisfies (10). Then, for all initial conditions x0 and

θ(0), θ is bounded, u is bounded, and limk→∞ z(k) = 0.

The proof of Theorem 2 is identical to the proof of

Theorem 1 with η(k) replaced by ηC(k) and a1
△
=

2λmax(P (0))

λmin(P)[1+2λmax(P (0))Φ2
∗,max]

> 0.

VII. CONCLUSIONS

This paper, in conjunction with its companion paper [1],

presented a direct MRAC algorithm for discrete-time (includ-

ing sampled-data) systems that are possibly nonminimum

phase, provided that nonminimum-phase zeros are known.

We provided the construction and stability analysis of the

RC-MRAC algorithm.

APPENDIX A:

This appendix presents a lemma that is used in the proofs

of Theorem 1 and Theorem 2. The proof has been omitted

due to space considerations.

Lemma 5. Consider the open-loop system (1) satisfying

assumptions (A1)-(A13). In addition, consider a feedback

controller (7) that satisfies the following assumptions:

(i) θ(k) is bounded.

(ii) limk→∞ ‖θ(k)− θ(k − 1)‖ = 0.

(iii) There exist ǫ > 0 and k1 > 0 such that, for all k ≥ k1
and for all i = 1, . . . , nu, |M(ξi, k)| ≥ ǫ.

Then, for all initial conditions x0 and θ(0), there exist k2 >
0, c1 > 0, and c2 > 0, such that, for all k ≥ k2, and, for all

N = 0, . . . , nu, ‖φ(k − d−N)‖ ≤ c1 + c2‖Φ(k)‖.
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