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Abstract—We develop a multi-input, multi-output direct The present paper extends prior RCAC results by de-
adaptive controller for discrete-time, possibly nonminimum-  scribing a modification of RCAC that does not require
phase, systems with unknown nonminimum-phase zeros. The | qyjedge of the locations of the NMP zeros. Instead, this

adaptive controller requires limited modeling information about . . .
the system, specifically, Markov parameters from the contrb extension requires knowledge of a limited number of Markov

input to the performance variables. Often, only a single Makov ~ parameters; typically only one Markov parameter is needed.
parameter is required, even in the nonminimum-phase case. The significant aspect of this extension is the fact that

We analysis the stability of the algorithm using a time-and-  knowledge of the NMP zeros is not needed. This extension
frequency-domain approach. We demonstrate the algorithm oy, s increases the applicability of the method to systerts wi

disturbance-rejection problems, where the disturbance spctra .
are unknown. This controller is based on a retrospective unknown NMP zeros, as well as systems with NMP zeros

performance objective, where the controller is updated usig ~that may be changing slowly due to aging or due to a slowly
either batch or recursive least squares. varying linearization of a nonlinear plant.

The algorithm developed in the present paper is analased
; l. INTRODUCTION ; using time-and-frequency-domain methods and is demon-
Unlike robust control, an adaptive controller is self-tdne 9 d Yy

during operation. This tuning accounts for the actua—angi'ated on a few SISO. In all cases, the number of Markov

possibly changing—dynamics of the system as well as th%arameters that are used is not sufficient to determine the

nature of the external signals, such as commands and disrt'ggp zeros of the system. Consequently, these examples

bances. Adaptive control may also be required for syste monstrate the ability to control MIMO NMP systems with
that are difficult to model due to unknown physics or duémknown NMP zeros.

to the inability to perform sufficiently accurate identifiican.

Adaptive control may depend on prior modeling information, Il. PROBLEM FORMULATION

such as bounds on the model order and parameters, or it mayConsider the MIMO discrete-time system

entail explicit on-line identification. These approaches a

known, respectively, as direct and indirect adaptive aintr o(k +1) = Az(k) + Bu(k) + D1w(k), @
The key issue then becomes the nature of the modeling y(k) = Cz(k) + Daw(k), (2)
information required by the adaptive controller provided z(k) = Erz(k) + Eyw(k), 3)

either prior to or during operation. N ; ; ;
In adaptive control, the controller is tuned to the actuaWherex(lf) € R, y(k) € RY, Z(.k) € R, u(k) € Ru’,
plant during operation. However, this ability comes at é”(k) € R'v, andk > 0. Our goal IS t_o (_:ievelop an adaptive
cost. Adaptive control algorithms may require restrictivé)m_pm fee_dback controller that minimizes the _perfor_mance
assumptions, such as full-state feedback, positive rea,lneva_”f"‘blez n th_e presence .Of the exogenous S'ng'th
minimum-phase zeros, matched disturbances, as well gﬁnlmal moqlelmg information -about the_ dynam|cs and
information on the sign of the high frequency gain, relative "€ block diagram for (1)-(3) is shown in Figure 1, where
degree, or zero locations [1-4]. In particular, the stgrtinG(q) = [Gzw(@) Gzu(q)] and
point for the present paper is the r.etro.spective C(?St adapti 2(k) = G (Quw(k) + Gy (qQ)u(k), 4)
control (RCAC) approach [5-8]. This direct adaptive cohtro _ )
approach is applicable to MIMO (output feedback) plant¥/here q is the forward-shift operator. Note thab can
that are possibly unstable and nonminimum phase (NMFB_presentenheracom_mand signal to be followed, an externa
with uncertain command and disturbance spectra. The mogisturbance to be rejected, or both. The system (1)-(3)
eling information required by RCAC in [5-8] is the first €@n represent a sampled-data application arising from a
nonzero Markov parameter and locations of the NMP zero§ontinuous-time system with sample and hold operations.

if any. Alternatively, a collection of Markov parameteraca
Real System

be used as long as a sufficient number is available to capture

the NMP zero locations.
Fig. 1. Disturbance-rejection and command-following &egure.

This work was supported in part by NASA GSRP grant NNX09AO55H
and IRAC grant NNX08AB92A.

A. M. D’Amato, E. Dogan Sumer and D. S. Bernstein are with the
Department of Aerospace Engineering, University of MiemgAnn Arbor,
MI, USA. { andamat o, dogan, dsbaero}@mi ch. edu



If Dy = 0 and Ey # 0, then the objective is to have where (10) becomes

the outputF; 2 follow the command signal- Eyw. On the
other hand, ifD; # 0 and Ey = 0, then the objective is to

reject the disturbance from the performance measurement

Eyx. Furthermore, ifDy = [ Dy 0], Eo=[0 FE |,
andw(k) = [ wi(k)T wa(k)T }T, then the objective is to
have E;« follow the command— Eyw, while rejecting the
disturbancew,. Lastly, if D; and E, are empty matrices,
then the objective is output stabilization, that is, cogegice
of z to zero.

I1l. RETROSPECTIVESURROGATE COST
Fori > 1, define the Markov parameter 6f,,, given by

H; 2 B A1, (5)

For example,H;, = F1B and H, = E,AB. Let r be a
positive integer. Then, for aklt > r,

z(k) = A"x(k — ) + Z A Bu(k — i)
i=1

+ > AT Dyw(k — i),

(6)
1=1
and thus
2(k) = By Az(k —r)+ Y EyA"' Dyw(k — i)
i=1
+ Eow(k) + HU(k—1), (7)
where
AL H H, | e RExrl
and
u(k—1)
O(k-1)2 :
u(k —r)

Next, we rearrange the columns &f and the components

of U(k — 1) and partition the resulting matrix and vector so

that
HUk—-1)=HU'(k—-1)+HU(k — 1), (8)

where H' € RE*0lu=lw) H ¢ REXw Uk — 1) €
R«=lv andU(k — 1) € R'. Then, we can rewrite (7)
as

2(k) = S(k) + HU (k — 1), (9)
where
S(k) 2 By A x(k — 1) + Z By A Dyw(k — 4)
=1
+ Eow(k) + H'U'(k—1). (10)

Next, forj = 1,...,s, we rewrite (9) with a delay ofk;
time steps, wher@ < k; < ko < --- < kg, in the form

2(k —kj) = Sj(k = kj) + H;Uj(k —k; = 1), (11)

Si(k—ky) & EvA"z(k —k; — 1)

+Y B AT Diw(k — ky — i) + Eow(k — kj)
=1

+ H;Uj(k —kj — 1)
and (8) becomes

HU(k = kj = 1) = HyU(k — kj — 1) + H;U;(k — kj — 1),
(12)

whereH), € REX hetog) gy € REX10s Uj(k—kj—1) €
R~ and U;(k — k; — 1) € R, Now, by stacking
2(k—k1),...,2(k—k), we define thextended performance

z(k — ky)
Z(k) 2 : € R, (13)
z(k — ks)
Therefore,
Z(k) £ S(k) + HO(k — 1), (14)
where
S1(k— k1)
S(k) 2 : € Rel:, (15)
Ss(k — ks)
U(k — 1) has the form
u(k — q1)
Uk—1)2 : € Rlo, (16)
u(k —q,)
where, fori = 1,...,l5, kv < ¢ < ks + r, and

H e Re=*lv is constructed according to the structure of
U(k — 1). The vectorU(k — 1) is formed by stacking
Ui(k — ki —1),...,Us(k — ks — 1) and removing copies
of repeated components.

Next, we define theurrogate performance

2k — k) 2 Sk — kj) + H;U;(k—k; — 1), (17)

where the past controlS;(k — k; — 1) in (11) are replaced
by the surrogate control§;(k — k; — 1). In analogy with

(13), theextended surrogate performance for (17) is defined
as

5k — k)
2(k) 2 : e R (18)
é(k - ks)
and thus is given by
Z(k) = S(k) + HU(k — 1), (19)

where the componentsﬁf(k—l) € R'o are the components
of Up(k — ki1 —1),...,Us(k — ks — 1) ordered in the same
way as the components &f(k — 1). Subtracting (14) from



(19) yields and

(k) = Z(k) —HO(k—1) + HU(k —1).  (20) u(k —1)
Finally, we define theetrospective cost function :
. A . ok —1) 2 ulk =ne) | pactutt) (31
JUk—1),k) = ZV(k)R(K)Z(K), (21) y(k—1)
where R(k) € Rl=**l=* is a positive-definite performance
weighting. The goal is to determine refined contrblé: — L y(k =) |

1) that would have provided better performance than the Recursive Least Squares Update of (k)
controlsU (k) that were applied to the system. The refined

control valuesﬁ(k —1) are subsequently used to update the Let d be a positive integer such thak(k — 1) contains

u(k — d). Next, we define the cumulative cost function

controller.
k
JrO(k) 2> N6 —d =107 (i~ 1)
IV. COoSTFUNCTION OPTIMIZATION WITH ADAPTIVE i=d+1
REGULARIZATION — @T(i — d)H{ (32)
To ensure that (21) has a global minimizer, we consideghere|| - || is the Euclidean norm, and(k) € (0,1] is the
the regularized cost forgetting factor. Minimizing (32) yields
_ 2 N
J(U(k—1),k) = Z"(k)R(k) Z (k) 0T (k) 2 07 (k — 1) + B(k)P(k — 1)p(k — d — 1)
T U Tk -0k —1),  (22) o7 (k= d)P(k — 1)g(k —d — 1) + A(k)] !
T T ~T
wheren(k) > 0. Substituting (20) into (22) yields o (k—d=1)8"(k—1) —a (k—d)], (33)

where (k) is either0 or 1. Whenj3(k) is 1, the controller

- 2 - 2 T Z
JUk—1),k) =U(k - 1)"AR)U(k — 1) is allowed to adapt, whegi(k) is 0, the controller adaption

+ B(k)f](k —1)+C(k), (23) is off. The error covariance is updated by
where P(k) 2 (1 - Bk)P(k — 1) + B)N"L(k)P(k — 1)
A(K) 2 HTR(K)H + n(k)Il. : (24) — BRI (k) P(k —1)p(k —d — 1)
Ay N [¢T(k —d = 1)P(k = 1)k — d) + A(k)] ™!
B(k) 2 2HTR(Z() ~ A (s 1), (25) 4 P 1) .

C(k) = 2" (k) R(k)Z (k) — 227 (k )R(kYHU (k — 1)

+UT( B 1)HTR( VH ( (26) We initialize the error covariance matrix a(0) = 71,

): wherey > 0.
If either H has full column rank on(k) > 0, then A(k) is
positive definite. In this caseT(U(k: 1), k) has the unique VI. STABILITY ANALYSIS
global minimizer A. Conditions for Convergence of z(k) — (k) to Zero
(}(k -1)= —%A‘l(k)B(k). (27) Consider theetrospective system
V. CONTROLLER CONSTRUCTION &(k+1) = Az(k) + Bu(k) + Diw(k), (35)
5(k) = Exé (k) + Eow(k), (36)

The controlu(k) is given by the strictly proper time-series
controller of ordem,. given by which is obtained by replacing(k) in (1) with (k). The
extended retrospective system is given by

k):ZMi(k) o +ZN Bl @8 1) = AX(h) + BU(K) + B'O(K) + Daw (k),

(37)
where, for alli = 1,...,n., M;(k) € Rl«*t« and N;(k) €

R!l«*lv The control (28) can be expressed as Z(k) = Ex X (k) + EoW (), (38)
w(k) — B whereX (k) € R, W (k) € R¥", X (k) € R*", U’ (k—1) €
(k) = 0(k)p(k — 1), (29) Rlo- and
where @k — k1) w(k — k1)
0(k) S[My(k) - My (k) X(k) = L W(k) = . (39)

Ni(k) - Ny, (k)] € Rbexneltutls) (30) ik _ ks) w(k - ks)



u(k —q1)
) ﬁ/(k - 1) )
ulk—df,)
(40)

I(k — kl)
X (k) z
x(k — k)

A2, @AeRm™ ™ D 21, @D; € Rl By 2
Lo E € Rb>sho By 2 @ B € RO and @
is the Kronecker product. The matricés € R*"*lv and
B’ € Rs"*lo' are block-row matrices with block entrié3
and0,,x;, such that

Bi(k — k1)

BU(k) + B'U (k) = c R, (41)

Bi(k — k)

vyhere(:]’(k) is formed by replacing the entriegk — ¢;) of
U'(k) by a(k —q;) fori=1,..., 1.

The following result gives conditions under whigh{k) =
0.

Fact 6.1: Assume that{ has full column ranky (k) =

0, R(k) = I, andZ(k) is in the range of{, and letU (k—1)
be given by (27). TherZ (k) = 0.

Proof. SinceZ (k) is in the range of, there existg) €
R#!a such thatZ (k) = HQ. Substituting (27) into (20) yields
Z(k) = Z(k) + H(HYH) " *HY (= Z(k) + HU) — HU
= Z(k) = H(H"H) " HT Z (k)

=HQ —H(H"H)"H"HQ = 0. O

The next result assumes that the recursive-least-squares

optimization yieldsu(k — d) — i(k — d) — 0 ask — oo,
that is,0(k)p(k —d — 1) — 4(k — d) — 0o ask — oc.

Fact 6.2: Assume tha?)(k) is updated using (33) and
(34), and assume thétk)p(k —d —1) —a(k —d) — 0 as
k — oo. Thenz(k) — &(k) — 0 ask — oo.

Proof. It follows from (1) and (35) that

a(k —d+1)—#(k —d + 1) = Bu(k — d) — Ba(k — d).
(42)

It follows from (29) thatu(k — d) = 0(k — d)p(k —d — 1).
Defining g(k) 2 0(k)p(k —d — 1) — a(k — d), (42) becomes

a(k—d+1)—2(k—d+1)
= B[0(k — d) — 0(k)|(k — d — 1) + Bg(k).
(43)

Sinceg(k) — 0 ask — oo, it follows from (33) thatd(k) —
0(k — 1) — 0 ask — oco. It thus follows from (43) that
2(k—d+1)—&(k—d+1) —0ask — oco. O

In view of Fact 6.2, we assume henceforth thatis
sufficiently large that the difference betweéitk), a(k),
y(k), andz(k) andx(k), u(k), y(k), andz(k), respectively,
is negligible. For convenience we sét= r. The following
analysis focuses on the subsequent behaviai (6§, (%),
andz(k), whenn(k) =0 and R(k) = I.

B. Boundedness of the Internal Sate

Next, we introduce thédeal system performance
2 (k) = By A"z (k—r1) + Y Ey A" Dyw(k — i)
i=1

+ Bow(k) + H'U'(k — 1)+ HU*(k — 1),  (44)

wherez*(k) is the state of the ideal system abdd(k — 1)
is defined analogously t&/(k — 1), with u(k) replaced by
u*(k), where

w (k) = 0% ¢* (k — 1), (45)
¢ (k—1)2 [wT(k—1) - (k- n) (46)
g Tk —1) -y Tk —n)] ", (47)

and the ideal controllep* is assumed to yield the ideal
performance

2" (k) = 0. (48)
Adding and subtracting@’; A"z (k—r) to and from (44) yields
2" (k) =S(k) + E1A"e(k — )+ HU*(k—1),  (49)
whereS(k) is defined by (10) withe(k) replaced byi(k),
ande(k) £ o*(k) — (k).
The extended ideal system is given by
X*(k+41) = AX*(k) + BU*(k) + BU' (k) + D, W (k),
(50)
Z*(k) = S(k) + EYA"E(k — 1) + HU*(k — 1) =0,
(51)
whereX*(k + 1) and Z* (k) are defined in the same way as
X(k+1) and Z(k), E(k) £ X*(k) — X (k), and

~ A

U*(k) = [I, ® 07]¢" (k — 1), (52)

2|

Fk)E[ o h—q) Tk —ay) |

The goal is to drive the refined contrclek—l) to U*(k—1)
to ensure that/(k) — 6* — 0 ask — oc.

Next, subtracting (19) from (51) and solving fér(k:— 1)
yields

(53)

Uk —1) = HI[ELA"E(k — 1) + HU*(k — 1) + Z(k)],
(54)

where H'H = I;, and’H is assumed to have full column
rank.

Under the assumptions of Fact 6(k) = 0 and therefore
(54) reduces to

Uk—-1)=HEAEk-1)+U*(k-1). (55)

Subtracting (37) from (50), and using (55) yields the error
dynamics

E(k) = (A— BH'E,A"E(k — 1). (56)



Therefore, ifA — BHE| A" is asymptotically stable, then VIIl. FREQUENC¥-DOMAIN CONVERGENCEANALYSIS

x(k) —2*(k) — 0 ask — oo. Furthermorez (k) — z*(k) =
Eix(k) — Eia*(k) — 0 ask — oo. Since z*(k) =
Ey z*(k) = 0, it follows that z(k) — 0 ask — oc.

VIl. REGULARIZED RETROSPECTIVECPST
We now letr(k) > 0. In this case, choosing (k —
in (27) yields
Z(k) = Z(k) = HU(k — 1) + H(H"R(k)H + n(k)L;, ) ~*
“HYR(K)[-Z (k) + HU (k — 1)]). (57)

1) as

The following result is an extension of Fact 6.1, where w

no longer assume thatk) =

Fact 7.1: Assume thatH has full column rank,Z (k)
is in the range oft for all k, u(k) — (k) — 0 ask — oo,
and letU (k — 1) be given by (27). The (k) — Z(k) — 0
ask — oo.

Proof. Sinceu(k) — (k) — 0 ask — oo, it follows that

(:](k) — U(k) — 0 ask — oo. Next, the retrospective cost

function is

Z(k) = Z(k) = H(U (k) = U(k)),

therefore,Z (k) — Z(k) — 0 ask — oo. O

In view of Fact 7.1, we assume henceforth ttatis
sufficiently large that the difference betweéitk), a(k),
9(k), andz(k) andz(k), u(k), y(k), andz(k), respectively,
is negligible. For convenience we sét= r. The following
analysis focuses on the subsequent behaviof: (@) and
2(k), whenn(k) > 0.

Substituting (27) into (37) yields

(58)

X (k) = AX (k) + B(HTR(kYH +n(k — 1)1;,)) ™
HER(K)[-2(k) + HU(k — 1)] + B'U'(k — 1)
+ Dy W (k- 1), (59)
Z(k) = B\ X (k) + EoW (k). (60)
Next, we write the performance as
Z(k) = By A" X (k — 1) + HU(k — 1) + H'U'(k — 1)
+ DA"W (k —1). (61)
Substituting (61) into (59) yields
X (k) =[A~ B(H"R(kYH +n(k — 1)I;,) "
HYR(K)EL A" X (k —1),+][D1 — B(H'R(k)H
+n(k — 1)L, ) "HTR(k)DA"IW (k — 1)
+[B - B(H'R(k)H
Ak — DI HER(EYRT (k- 1). (62)

Therefore, it follows from (62) that ifl — B(H* R(k)H + ‘1 — L
n(k =11, )" "H " R(k )E, A" is asymptotically stable, then

X(k) and Z(k) are bounded. Furthermore, note th&t—

B(H'R(k)H + n(k — 1)I,,) "HTR(k)E; A" — A as
n(k) — oc.

Let Grir(q) be an FIR transfer function whose numerator
coefficients are the Markov parameters(sf,, that comprise
H. Furthermore, let the external signalk) be a sinusoid
whose frequency €.

Next, assume thatl is asymptotically stable, and assume
that the system is turned on At= 1 and allowed to reach
harmonic steady state, which occursiat > k. Then for
0 < k; < ko, B(k;) = 0, and 3(ko) = 1. Furthermore,
B(ko + 1) = 0, whereg(k) = 1, once the system has again
reached harmonic steady state.

Assume that{ has full column rankg(k) — 0asz(k) —

. R(k) =1, Z(k) is in the range of{, and letU(k—1) b

e
iven by (27) Furthermore, assume thdk) — u(k) — 0
ask — oo and

qu(eje)
- 1. 63
’ el < (63)
Then z(k) — 0 ask — oo. To show this consider the
performance in harmonic steady state we have

2, = sz(eJ@)w + qu(eJ@)ﬁy + qu(ejg)gy, (64)

wherez,,w, g, are phasors, and = 3(0) +- - - + 3(k), that
is, the number of times the controlléfk) has been allowed
to adapt, andy, 2 Uy — Uy

Next, the retrospective cost in harmonic steady state is

522 - Grir(e’®)uy—1 + Grir(e’®)a,,  (65)
2, = G ()W + [GLu(e7®) — Grir (€7©)]uy, 1
+ Grir(e’®) . (66)
Solving (66) fora, yields
@y = Gpir(€79) [20 — Gow(€7®)w — [G.u ()
—GFIR(eJG)]u,,} ) (67)

Substituting (67) into (64) yields

=[1-G. (eJO)GFllR( N[ () w

= Gau(®)uy1] + Gou(€®)Gri 2y + Gau(€’)go.
Using this process we write, in terms ofug as

= [1 = Gou(@®) G (7)) (G (700

= Gou(e’ )UO] + [qu (eJG)Gl;IlR]Vél + G (e‘je)gv'
(68)
It follows from (68) that
2] < |[1 = Gu(e’®)Grpp (¢°))"]
. ’sz(eJ@)w - qu(eJ@)u()’
+1Gu(€®)Grix|” 121 +|Gau(@®)gn] . (69)

zu(eje)

rermy prich it follows that

Therefore, smce‘l —

< 1,

Gm eJ@) — 0 asv — oo, then|z,| — 0 ash — .
Condmon 63) has a simple geometric interpretation,
namely, Grir(e’®) must lie in a half plane that con-
tains G, (e’®) and whose boundary is perpendicular to
|G..(e79)| and passes through|G..(e’®)|. Figure 2 il-



lustrates the region of admissibl@rr(e’®) for a given
|G..(e’®)] and frequencyd.

Performance z(k)
o
Controller 8(k)

i
)
a
3
S}

[CY

IN)

Control u(k)
o
Disturbance w(k)

4
!
S

50 o
(© (d

500

; ; ; ; Fig. 4. For this example, the plant is SISO and nonminimunmseh&Ve
Fig. 2. The dashed region on the complex plane illustratesrégion - -

of admissibleGrir (¢’©) for a given |G (e7)| and frequency® as chooseH = [—0.1076 — 0.8]T and#j(k) = 2. (a) shows the performance
determined by (63). The admissible region is a half plane. z(k), (b) shows the controller paramete&t&:), (c) shows the control signal

L. . k), and (d) shows the disturbaneg(k).
The above analysis is based on the assumption that tﬁge) @ ve(k)
state of the system reaches harmonic steady state after each

period of adaptation. This assumption is an approximatiofe controller parameters as in Examplé. However, we

invoked to facilitate the analysis. In fact, RCAC adapts afow assume that the”® and 6t" Markov parameters are
each step, and thus the state does not reach harmonic st@igywn, and thus{ = [~0.1076 — 0.8]T. Figure 4 shows
The examples in the next section show that this condition ige resulting closed-loop performance.

sufficient but not necessary, and thus provides a conseevati

estimate of the allowable uncertainty that can be tolerated X. CONCLUSIONS
the FIR approximation error. In this paper we extended the RCAC adaptive control
IX. NUMERICAL EXAMPLES algorithm and investigated its ability to adaptively canhtr

he followi ical | h . systems without knowledge of the nonminimum-phase zeros,
For the following numerical examples we use the recursivg any. A frequency-domain conditions that ensures stigbili

least squares update (_33) _and (34). Furthermore, we ccuns%? the error system was derived. Furthermore, the algorithm

only the disturbance rejection problerp,wh?e;é 0, D2 = \ya5 demonstrated on several SISO examples. In all cases,

0, andEyp = 0. We also choosg(k) = 7(k)Z " (k—1)Z(k—  he number of Markov parameters that are used is not

1), wherei(k) is a nonnegative number for &l > 1. sufficient to determine the nonminimum-phase zeros of the
Example 9.1: (SISO NMP) Consider the asymptotically system. Numerical examples showed that the frequency-

stable, nonminimum-phase system domain convergence analysis, which is based on a harmonic

2 } , - steady-state assumption, is conservative. Future asalyti

0 refine this analysis to better reflect the robustness of RCAC

- observed in the numerical examples.

.25 } R (71)

1

A = 1 0 0

0 0.5 0

0.9794
Dy =| —0.2656 |,C=FE;=| —

—0.5484

no
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and (d) shows the disturbanee(k).
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