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Abstract— We develop a multi-input, multi-output direct
adaptive controller for discrete-time, possibly nonminimum-
phase, systems with unknown nonminimum-phase zeros. The
adaptive controller requires limited modeling information about
the system, specifically, Markov parameters from the control
input to the performance variables. Often, only a single Markov
parameter is required, even in the nonminimum-phase case.
We analysis the stability of the algorithm using a time-and-
frequency-domain approach. We demonstrate the algorithm on
disturbance-rejection problems, where the disturbance spectra
are unknown. This controller is based on a retrospective
performance objective, where the controller is updated using
either batch or recursive least squares.

I. I NTRODUCTION
Unlike robust control, an adaptive controller is self-tuned

during operation. This tuning accounts for the actual—and
possibly changing—dynamics of the system as well as the
nature of the external signals, such as commands and distur-
bances. Adaptive control may also be required for systems
that are difficult to model due to unknown physics or due
to the inability to perform sufficiently accurate identification.
Adaptive control may depend on prior modeling information,
such as bounds on the model order and parameters, or it may
entail explicit on-line identification. These approaches are
known, respectively, as direct and indirect adaptive control.
The key issue then becomes the nature of the modeling
information required by the adaptive controller provided
either prior to or during operation.

In adaptive control, the controller is tuned to the actual
plant during operation. However, this ability comes at a
cost. Adaptive control algorithms may require restrictive
assumptions, such as full-state feedback, positive realness,
minimum-phase zeros, matched disturbances, as well as
information on the sign of the high frequency gain, relative
degree, or zero locations [1–4]. In particular, the starting
point for the present paper is the retrospective cost adaptive
control (RCAC) approach [5–8]. This direct adaptive control
approach is applicable to MIMO (output feedback) plants
that are possibly unstable and nonminimum phase (NMP)
with uncertain command and disturbance spectra. The mod-
eling information required by RCAC in [5–8] is the first
nonzero Markov parameter and locations of the NMP zeros,
if any. Alternatively, a collection of Markov parameters can
be used as long as a sufficient number is available to capture
the NMP zero locations.
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The present paper extends prior RCAC results by de-
scribing a modification of RCAC that does not require
knowledge of the locations of the NMP zeros. Instead, this
extension requires knowledge of a limited number of Markov
parameters; typically only one Markov parameter is needed.
The significant aspect of this extension is the fact that
knowledge of the NMP zeros is not needed. This extension
thus increases the applicability of the method to systems with
unknown NMP zeros, as well as systems with NMP zeros
that may be changing slowly due to aging or due to a slowly
varying linearization of a nonlinear plant.

The algorithm developed in the present paper is analased
using time-and-frequency-domain methods and is demon-
strated on a few SISO. In all cases, the number of Markov
parameters that are used is not sufficient to determine the
NMP zeros of the system. Consequently, these examples
demonstrate the ability to control MIMO NMP systems with
unknown NMP zeros.

II. PROBLEM FORMULATION

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

wherex(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu ,
w(k) ∈ R

lw , andk ≥ 0. Our goal is to develop an adaptive
output feedback controller that minimizes the performance
variablez in the presence of the exogenous signalw with
minimal modeling information about the dynamics andw.
The block diagram for (1)-(3) is shown in Figure 1, where
G(q) = [Gzw(q) Gzu(q)] and

z(k) = Gzw(q)w(k) + Gzu(q)u(k), (4)

where q is the forward-shift operator. Note thatw can
represent either a command signal to be followed, an external
disturbance to be rejected, or both. The system (1)–(3)
can represent a sampled-data application arising from a
continuous-time system with sample and hold operations.

Fig. 1. Disturbance-rejection and command-following architecture.



If D1 = 0 and E0 6= 0, then the objective is to have
the outputE1x follow the command signal−E0w. On the
other hand, ifD1 6= 0 andE0 = 0, then the objective is to
reject the disturbancew from the performance measurement
E1x. Furthermore, ifD1 =

[

D̂1 0
]

, E0 =
[

0 Ê0

]

,

and w(k) =
[

w1(k)T w2(k)T
]T

, then the objective is to
haveE1x follow the command−Ê0w2 while rejecting the
disturbancew1. Lastly, if D1 and E0 are empty matrices,
then the objective is output stabilization, that is, convergence
of z to zero.

III. R ETROSPECTIVESURROGATE COST
For i ≥ 1, define the Markov parameter ofGzu given by

Hi
△
= E1A

i−1B. (5)

For example,H1 = E1B and H2 = E1AB. Let r be a
positive integer. Then, for allk ≥ r,

x(k) = Arx(k − r) +
r

∑

i=1

Ai−1Bu(k − i)

+

r
∑

i=1

Ai−1D1w(k − i), (6)

and thus

z(k) = E1A
rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i)

+ E0w(k) + H̄Ū(k − 1), (7)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
lz×rlu

and

Ū(k − 1)
△
=







u(k − 1)
...

u(k − r)






.

Next, we rearrange the columns of̄H and the components
of Ū(k − 1) and partition the resulting matrix and vector so
that

H̄Ū(k − 1) = H′U ′(k − 1) + HU(k − 1), (8)

where H′ ∈ R
lz×(rlu−lU ), H ∈ R

lz×lU , U ′(k − 1) ∈
R

rlu−lU , and U(k − 1) ∈ R
lU . Then, we can rewrite (7)

as

z(k) = S(k) + HU(k − 1), (9)

where

S(k)
△
= E1A

rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i)

+ E0w(k) + H′U ′(k − 1). (10)

Next, for j = 1, . . . , s, we rewrite (9) with a delay ofkj

time steps, where0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the form

z(k − kj) = Sj(k − kj) + HjUj(k − kj − 1), (11)

where (10) becomes

Sj(k − kj)
△

= E1A
r
x(k − kj − r)

+
r

∑

i=1

E1A
i−1

D1w(k − kj − i) + E0w(k − kj)

+ H′

jU
′

j(k − kj − 1)

and (8) becomes

H̄Ū(k − kj − 1) = H′
jU

′
j(k − kj − 1) + HjUj(k − kj − 1),

(12)

whereH′
j ∈ R

lz×(rlu−lUj
)
, Hj ∈ R

lz×lUj , U ′
j(k−kj −1) ∈

R
rlu−lUj , and Uj(k − kj − 1) ∈ R

lUj . Now, by stacking
z(k−k1), . . . , z(k−ks), we define theextended performance

Z(k)
△
=







z(k − k1)
...

z(k − ks)






∈ R

slz . (13)

Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (14)

where

S̃(k)
△
=







S1(k − k1)
...

Ss(k − ks)






∈ R

slz , (15)

Ũ(k − 1) has the form

Ũ(k − 1)
△
=







u(k − q1)
...

u(k − qlŨ
)






∈ R

lŨ , (16)

where, for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks + r, and
H̃ ∈ R

slz×lŨ is constructed according to the structure of
Ũ(k − 1). The vector Ũ(k − 1) is formed by stacking
U1(k − k1 − 1), . . . , Us(k − ks − 1) and removing copies
of repeated components.

Next, we define thesurrogate performance

ẑ(k − kj)
△
= Sj(k − kj) + HjÛj(k − kj − 1), (17)

where the past controlsUj(k − kj − 1) in (11) are replaced
by the surrogate controlŝUj(k − kj − 1). In analogy with
(13), theextended surrogate performance for (17) is defined
as

Ẑ(k)
△
=







ẑ(k − k1)
...

ẑ(k − ks)






∈ R

slz (18)

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃
U(k − 1), (19)

where the components of̃̂U(k−1) ∈ R
lŨ are the components

of Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) ordered in the same
way as the components of̃U(k − 1). Subtracting (14) from



(19) yields

Ẑ(k) = Z(k) − H̃Ũ(k − 1) + H̃ ˆ̃
U(k − 1). (20)

Finally, we define theretrospective cost function

J( ˆ̃
U(k − 1), k)

△
= ẐT(k)R(k)Ẑ(k), (21)

where R(k) ∈ R
lzs×lzs is a positive-definite performance

weighting. The goal is to determine refined controlsˆ̃
U(k −

1) that would have provided better performance than the
controlsU(k) that were applied to the system. The refined

control valuesˆ̃U(k− 1) are subsequently used to update the
controller.

IV. COST FUNCTION OPTIMIZATION WITH ADAPTIVE

REGULARIZATION

To ensure that (21) has a global minimizer, we consider
the regularized cost

J̄( ˆ̃
U(k − 1), k)

△
= ẐT(k)R(k)Ẑ(k)

+ η(k) ˆ̃
UT(k − 1) ˆ̃

U(k − 1), (22)

whereη(k) ≥ 0. Substituting (20) into (22) yields

J̄( ˆ̃
U(k − 1), k) = ˆ̃

U(k − 1)TA(k) ˆ̃
U(k − 1)

+ B(k) ˆ̃
U(k − 1) + C(k), (23)

where

A(k)
△
= H̃TR(k)H̃ + η(k)IlŨ

, (24)

B(k)
△
= 2H̃TR(k)[Z(k) − H̃Ũ(k − 1)], (25)

C(k)
△
= ZT(k)R(k)Z(k) − 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1). (26)

If either H̃ has full column rank orη(k) > 0, thenA(k) is

positive definite. In this case,̄J( ˆ̃
U(k− 1), k) has the unique

global minimizer

ˆ̃
U(k − 1) = −

1

2
A−1(k)B(k). (27)

V. CONTROLLER CONSTRUCTION

The controlu(k) is given by the strictly proper time-series
controller of ordernc given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (28)

where, for alli = 1, . . . , nc, Mi(k) ∈ R
lu×lu andNi(k) ∈

R
lu×ly . The control (28) can be expressed as

u(k) = θ(k)φ(k − 1), (29)

where

θ(k)
△
= [M1(k) · · · Mnc

(k)

N1(k) · · · Nnc
(k)] ∈ R

lu×nc(lu+lz) (30)

and

φ(k − 1)
△
=





















u(k − 1)
...

u(k − nc)
y(k − 1)

...
y(k − nc)





















∈ R
nc(lu+ly). (31)

A. Recursive Least Squares Update of θ(k)

Let d be a positive integer such that̃U(k − 1) contains
u(k − d). Next, we define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=d+1

λk−i‖φT(i − d − 1)θT(i − 1)

− ûT(i − d)‖2, (32)

where‖ · ‖ is the Euclidean norm, andλ(k) ∈ (0, 1] is the
forgetting factor. Minimizing (32) yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − d − 1)

· [φT(k − d)P (k − 1)φ(k − d − 1) + λ(k)]−1

· [φT(k − d − 1)θT(k − 1) − ûT(k − d)], (33)

whereβ(k) is either0 or 1. Whenβ(k) is 1, the controller
is allowed to adapt, whenβ(k) is 0, the controller adaption
is off. The error covariance is updated by

P (k)
△
= (1 − β(k))P (k − 1) + β(k)λ−1(k)P (k − 1)

− β(k)λ−1(k)P (k − 1)φ(k − d − 1)

· [φT(k − d − 1)P (k − 1)φ(k − d) + λ(k)]−1

· φT(k − d − 1)P (k − 1). (34)

We initialize the error covariance matrix asP (0) = γI,
whereγ > 0.

VI. STABILITY ANALYSIS

A. Conditions for Convergence of z(k) − ẑ(k) to Zero

Consider theretrospective system

x̂(k + 1) = Ax(k) + Bû(k) + D1w(k), (35)

ẑ(k) = E1x̂(k) + E0w(k), (36)

which is obtained by replacingu(k) in (1) with û(k). The
extended retrospective system is given by

X̂(k + 1) = ÃX(k) + B̃
ˆ̃
U(k) + B̃′ ˆ̃U ′(k) + D̃1W (k),

(37)

Ẑ(k) = Ẽ1X̂(k) + Ẽ0W (k), (38)

whereX̂(k) ∈ R
sn, W (k) ∈ R

slw , X(k) ∈ R
sn, Ũ ′(k−1) ∈

R
lŨ′ and

X̂(k)
△
=







x̂(k − k1)
...

x̂(k − ks)






, W (k)

△
=







w(k − k1)
...

w(k − ks)






, (39)



X(k)
△
=







x(k − k1)
...

x(k − ks)






, Ũ ′(k − 1)

△
=







u(k − q′1)
...

u(k − q′lŨ′
)






,

(40)

Ã
△
= Is ⊗ A ∈ R

sn×sn, D̃1
△
= Is ⊗ D1 ∈ R

sn×slw , Ẽ0
△
=

Is ⊗ E1 ∈ R
slz×slw , Ẽ1

△
= Is ⊗ E1 ∈ R

slz×sn, and ⊗
is the Kronecker product. The matrices̃B ∈ R

sn×lŨ and
B̃′ ∈ R

sn×lŨ′ are block-row matrices with block entriesB
and0n×lu such that

B̃
ˆ̃
U(k) + B̃′ ˆ̃U ′(k) =







Bû(k − k1)
...

Bû(k − ks)






∈ R

slu , (41)

where ˆ̃
U ′(k) is formed by replacing the entriesu(k− q′i) of

Ũ ′(k) by û(k − q′i) for i = 1, . . . , lŨ ′ .

The following result gives conditions under whicĥZ(k) =
0.

Fact 6.1: Assume thatH̃ has full column rank,η(k) =

0, R(k) = I, andZ(k) is in the range ofH̃, and let ˆ̃U(k−1)
be given by (27). Then̂Z(k) = 0.

Proof. SinceZ(k) is in the range ofH̃, there existsQ ∈
R

slũ such thatZ(k) = H̃Q. Substituting (27) into (20) yields

Ẑ(k) = Z(k) + H̃(H̃TH̃)−1H̃T(−Z(k) + H̃Ũ) − H̃Ũ

= Z(k) − H̃(H̃TH̃)−1H̃TZ(k)

= H̃Q − H̃(H̃TH̃)−1H̃TH̃Q = 0. �

The next result assumes that the recursive-least-squares
optimization yieldsu(k − d) − û(k − d) → 0 as k → ∞,
that is,θ(k)φ(k − d − 1) − û(k − d) → ∞ ask → ∞.

Fact 6.2: Assume thatθ(k) is updated using (33) and
(34), and assume thatθ(k)φ(k − d − 1) − û(k − d) → 0 as
k → ∞. Thenx(k) − x̂(k) → 0 ask → ∞.

Proof. It follows from (1) and (35) that

x(k − d + 1)−x̂(k − d + 1) = Bu(k − d) − Bû(k − d).
(42)

It follows from (29) thatu(k − d) = θ(k − d)φ(k − d − 1).

Definingg(k)
△
= θ(k)φ(k− d− 1)− û(k− d), (42) becomes

x(k − d + 1)−x̂(k − d + 1)

= B[θ(k − d) − θ(k)]φ(k − d − 1) + Bg(k).
(43)

Sinceg(k) → 0 ask → ∞, it follows from (33) thatθ(k)−
θ(k − 1) → 0 as k → ∞. It thus follows from (43) that
x(k − d + 1) − x̂(k − d + 1) → 0 ask → ∞. �

In view of Fact 6.2, we assume henceforth thatk is
sufficiently large that the difference between̂x(k), û(k),
ŷ(k), and ẑ(k) andx(k), u(k), y(k), andz(k), respectively,
is negligible. For convenience we setd = r. The following
analysis focuses on the subsequent behavior ofx̂(k), û(k),
and ẑ(k), whenη(k) = 0 andR(k) = I.

B. Boundedness of the Internal State

Next, we introduce theideal system performance

z∗(k) = E1A
rx∗(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i)

+ E0w(k) + H′U ′(k − 1) + HU∗(k − 1), (44)

wherex∗(k) is the state of the ideal system andU∗(k − 1)
is defined analogously toU(k − 1), with u(k) replaced by
u∗(k), where

u∗(k) = θ∗φ∗(k − 1), (45)

φ∗(k − 1)
△
=

[

u∗T(k − 1) · · · u∗T(k − nc) (46)

y∗T(k − 1) · · · y∗T(k − nc)
]T

, (47)

and the ideal controllerθ∗ is assumed to yield the ideal
performance

z∗(k) ≡ 0. (48)

Adding and subtractingE1A
rx̂(k−r) to and from (44) yields

z∗(k) = S(k) + E1A
re(k − r) + HU∗(k − 1), (49)

whereS(k) is defined by (10) withx(k) replaced bŷx(k),

ande(k)
△
= x∗(k) − x̂(k).

The extended ideal system is given by

X∗(k + 1) = ÃX∗(k) + B̃Ũ∗(k) + B̃Ũ ′(k) + D̃1W (k),
(50)

Z∗(k) = S̃(k) + Ẽ1Ã
rE(k − 1) + H̃Ũ∗(k − 1) = 0,

(51)

whereX∗(k +1) andZ∗(k) are defined in the same way as

X(k + 1) andZ(k), E(k)
△
= X∗(k) − X̂(k), and

Ũ∗(k)
△
= [IlŨ

⊗ θ∗]φ̃∗(k − 1), (52)

φ̃∗(k)
△
=

[

φ∗T(k − q1) · · · φ∗T(k − qlŨ
)

]T
. (53)

The goal is to drive the refined controls̃̂U(k−1) to Ũ∗(k−1)
to ensure thatθ(k) − θ∗ → 0 ask → ∞.

Next, subtracting (19) from (51) and solving forˆ̃U(k−1)
yields

ˆ̃
U(k − 1) = H̃†[Ẽ1Ã

rE(k − 1) + H̃Ũ∗(k − 1) + Ẑ(k)],
(54)

whereH̃†H̃ = IlŨ
and H̃ is assumed to have full column

rank.
Under the assumptions of Fact 6.1,Ẑ(k) = 0 and therefore

(54) reduces to

ˆ̃
U(k − 1) = H̃†Ẽ1Ã

rE(k − 1) + Ũ∗(k − 1). (55)

Subtracting (37) from (50), and using (55) yields the error
dynamics

E(k) = (Ã − B̃H̃†Ẽ1Ã
r)E(k − 1). (56)



Therefore, ifÃ − B̃H̃†Ẽ1Ã
r is asymptotically stable, then

x(k)− x∗(k) → 0 ask → ∞. Furthermore,z(k)− z∗(k) =
E1x(k) − E1x

∗(k) → 0 as k → ∞. Since z∗(k) =
E1x

∗(k) = 0, it follows that z(k) → 0 ask → ∞.

VII. R EGULARIZED RETROSPECTIVECOST

We now letη(k) > 0. In this case, choosinĝ̃U(k − 1) as
in (27) yields

Ẑ(k) = Z(k) − H̃Ũ(k − 1) + H̃(H̃TR(k)H̃ + η(k)IlŨ
)−1

· H̃TR(k)[−Z(k) + H̃Ũ(k − 1)]). (57)

The following result is an extension of Fact 6.1, where we
no longer assume thatη(k) = 0.

Fact 7.1: Assume thatH̃ has full column rank,Z(k)
is in the range ofH̃ for all k, u(k)− û(k) → 0 ask → ∞,

and let ˆ̃
U(k − 1) be given by (27). ThenZ(k) − Ẑ(k) → 0

ask → ∞.

Proof. Sinceu(k)− û(k) → 0 ask → ∞, it follows that
ˆ̃
U(k) − Ũ(k) → 0 as k → ∞. Next, the retrospective cost
function is

Ẑ(k) = Z(k) − H̃( ˆ̃
U(k) − Ũ(k)), (58)

therefore,Ẑ(k) − Z(k) → 0 ask → ∞. �

In view of Fact 7.1, we assume henceforth thatk is
sufficiently large that the difference between̂x(k), û(k),
ŷ(k), and ẑ(k) andx(k), u(k), y(k), andz(k), respectively,
is negligible. For convenience we setd = r. The following
analysis focuses on the subsequent behavior ofx̂(k) and
ẑ(k), whenη(k) > 0.

Substituting (27) into (37) yields

X̂(k) = ÃX̂(k) + B̃(H̃TR(k)H̃ + η(k − 1)IlŨ
)−1

· H̃TR(k)[−Ẑ(k) + H̃ ˆ̃
U(k − 1)] + B̃′ ˆ̃U ′(k − 1)

+ D̃1W (k − 1), (59)

Ẑ(k) = Ẽ1X̂(k) + Ẽ0W (k). (60)

Next, we write the performance as

Ẑ(k) = Ẽ1Ã
rX̂(k − 1) + H̃ ˆ̃

U(k − 1) + H̃′ ˆ̃U ′(k − 1)

+ D̃ÃrW (k − 1). (61)

Substituting (61) into (59) yields

X̂(k) = [Ã − B̃(H̃TR(k)H̃ + η(k − 1)IlŨ
)−1

· H̃TR(k)Ẽ1Ã
r]X̂(k − 1), +[D̃1 − B̃(H̃TR(k)H̃

+ η(k − 1)IlŨ
)−1H̃TR(k)D̃Ãr]W (k − 1)

+ [B̃ − B̃(H̃TR(k)H̃

· +η(k − 1)IlŨ
)−1H̃TR(k)H̃′] ˆ̃U ′(k − 1). (62)

Therefore, it follows from (62) that if̃A−B̃(H̃TR(k)H̃+
η(k − 1)IlŨ

)−1H̃TR(k)Ẽ1Ã
r is asymptotically stable, then

X̂(k) and Z(k) are bounded. Furthermore, note thatÃ −
B̃(H̃TR(k)H̃ + η(k − 1)IlŨ

)−1H̃TR(k)Ẽ1Ã
r → Ã as

η(k) → ∞.

VIII. F REQUENCY-DOMAIN CONVERGENCEANALYSIS
Let GFIR(q) be an FIR transfer function whose numerator

coefficients are the Markov parameters ofGzu that comprise
H̃. Furthermore, let the external signalw(k) be a sinusoid
whose frequency isΘ.

Next, assume thatA is asymptotically stable, and assume
that the system is turned on atk = 1 and allowed to reach
harmonic steady state, which occurs atk0 > k. Then for
0 ≤ ki < k0, β(ki) = 0, and β(k0) = 1. Furthermore,
β(k0 + 1) = 0, whereβ(k) = 1, once the system has again
reached harmonic steady state.

Assume thatH̃ has full column rank,η(k) → 0 asz(k) →

0, R(k) = I, Z(k) is in the range ofH̃, and let ˆ̃U(k−1) be
given by (27). Furthermore, assume thatu(k) − û(k) → 0
ask → ∞ and
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Then z(k) → 0 as k → ∞. To show this consider the
performance in harmonic steady state we have

zν = Gzw(eΘ)w + Gzu(eΘ)ûν + Gzu(eΘ)gν , (64)

wherezν ,w, gν are phasors, andν = β(0)+ · · ·+β(k), that
is, the number of times the controllerθ(k) has been allowed

to adapt, andgν
△
= uν − ûν .

Next, the retrospective cost in harmonic steady state is

ẑν
△
= zν−1 − GFIR(eΘ)uν−1 + GFIR(eΘ)ûν , (65)

ẑν = Gzw(eΘ)w + [Gzu(eΘ) − GFIR(eΘ)]uν−1

+ GFIR(eΘ)ûν . (66)

Solving (66) forûν yields

ûν = G−1
FIR(eΘ)

[

ẑν − Gzw(eΘ)w − [Gzu(eΘ)

−GFIR(eΘ)]uν

]

. (67)

Substituting (67) into (64) yields

zν = [1 − Gzu(eΘ)G−1
FIR(eΘ)][Gzw(eΘ)w

− Gzu(eΘ)uν−1] + Gzu(eΘ)G−1
FIRẑν + Gzu(eΘ)gν .

Using this process we writezν in terms ofu0 as

zν = [1 − Gzu(eΘ)G−1
FIR(eΘ)]ν [Gzw(eΘ)w

− Gzu(eΘ)u0] + [Gzu(eΘ)G−1
FIR]ν ẑ1 + Gzu(eΘ)gν .

(68)

It follows from (68) that
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Therefore, since
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< 1, it follows that
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→ 0 asν → ∞, then |zν | → 0 ash → ∞.

Condition (63) has a simple geometric interpretation,
namely, GFIR(eΘ) must lie in a half plane that con-
tains Gzu(eΘ) and whose boundary is perpendicular to
|Gzu(eΘ)| and passes through12 |Gzu(eΘ)|. Figure 2 il-



lustrates the region of admissibleGFIR(eΘ) for a given
|Gzu(eΘ)| and frequencyΘ.

Fig. 2. The dashed region on the complex plane illustrates the region
of admissibleGFIR(eΘ) for a given |Gzu(eΘ)| and frequencyΘ as
determined by (63). The admissible region is a half plane.

The above analysis is based on the assumption that the
state of the system reaches harmonic steady state after each
period of adaptation. This assumption is an approximation
invoked to facilitate the analysis. In fact, RCAC adapts at
each step, and thus the state does not reach harmonic state.
The examples in the next section show that this condition is
sufficient but not necessary, and thus provides a conservative
estimate of the allowable uncertainty that can be toleratedin
the FIR approximation error.

IX. N UMERICAL EXAMPLES

For the following numerical examples we use the recursive
least squares update (33) and (34). Furthermore, we consider
only the disturbance rejection problem, whereD1 6= 0, D2 =
0, andE0 = 0. We also chooseη(k) = η̄(k)ZT(k−1)Z(k−
1), whereη̄(k) is a nonnegative number for allk ≥ 1.

Example 9.1: (SISO NMP) Consider the asymptotically
stable, nonminimum-phase system

A =





1.7 −1.2 0.7

1 0 0

0 0.5 0



 , B =





2

0

0



 , (70)

D1 =





0.9794

−0.2656

−0.5484



 , C = E1 =





0.5

−1.25

1





T

. (71)

The goal is to reject the disturbancew(k) = sin(π
5 k). We

chooseH̃ = H1 = 1, nc = 5, η̄(k) = 2, and γ = 1.
Figure 3 shows the adaptive filter in closed loop with the
nonminimum-phase system. Note that the controller does not
have any knowledge of the nonminimum-phase zero.

Example 9.2: (SISO NMP) We consider the same plant
and disturbance as in Example 9.1. Furthermore we choose
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Fig. 3. For this example, the plant is SISO and nonminimum phase. We
chooseH̃ = H1 = 1, and η̄(k) = 2. (a) shows the performancez(k), (b)
shows the controller parametersθ(k), (c) shows the control signalu(k),
and (d) shows the disturbancew(k).
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Fig. 4. For this example, the plant is SISO and nonminimum phase. We
chooseH̃ = [−0.1076 − 0.8]T and η̄(k) = 2. (a) shows the performance
z(k), (b) shows the controller parametersθ(k), (c) shows the control signal
u(k), and (d) shows the disturbancew(k).

the controller parameters as in Example9.1. However, we
now assume that the2nd and 6th Markov parameters are
known, and thusH̃ = [−0.1076 − 0.8]T. Figure 4 shows
the resulting closed-loop performance.

X. CONCLUSIONS

In this paper we extended the RCAC adaptive control
algorithm and investigated its ability to adaptively control
systems without knowledge of the nonminimum-phase zeros,
if any. A frequency-domain conditions that ensures stability
of the error system was derived. Furthermore, the algorithm
was demonstrated on several SISO examples. In all cases,
the number of Markov parameters that are used is not
sufficient to determine the nonminimum-phase zeros of the
system. Numerical examples showed that the frequency-
domain convergence analysis, which is based on a harmonic
steady-state assumption, is conservative. Future analysis will
refine this analysis to better reflect the robustness of RCAC
observed in the numerical examples.
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