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Abstract— The goal of this paper is to provide a tutorial
on retrospective cost adaptive control (RCAC). RCAC is a
discrete-time adaptive control technique that is applicable to
stabilization, command following, and disturbance rejection.
RCAC is based on the concept of retrospectively optimized
control, where past controller coefficients used to generate past
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control inputs are re-optimized in the sense that if the re-
optimized coefficients had been used over a previous window
of operation, then the performance would have been better.
Unlike signal processing applications such as estimation and
identification, it is impossible to change past control inputs,
and thus the re-optimized controller coefficients are used only
to generate the next control input. This paper presents a tutorial
on the algorithmic details of RCAC including the construction
of the retrospective cost, the role of the target model, and the
effect of tuning parameters. Numerical examples are given to
illustrate each of these choices as well as the performance
of RCAC for command following and disturbance rejection
under minimal modeling of the plant dynamics and exogenous
inputs. Properties of the closed-loop system are also compared
to features of discrete-time, high-authority LQG controllers.

I. INTRODUCTION

A vast range of technological systems—from aerospace
vehicles to chemical process plants to Segways—depend
on feedback control. These applications typically rely on
a combination of classical and modern control techniques,
logic for mode switching, and diagnostics for failure detec-
tion to ensure safety and reliability, validated and verified
through simulation and testing. A feedback control system
is the quintessential cyberphysical system, where computing
elements interact with the full complexity of the real world
through noisy and limited communication channels.

Despite these successes, many applications of feedback
control remain beyond the reach of modern tools and tech-
niques. These applications may be highly under-sensed and
under-actuated relative to the dimension of their significant
dynamics; they may be difficult to model due to complex,
unknown, or unpredictably changing physics; and they may
require reliable high-performance control systems that must
be engineered within tight deadlines and budgets. Adaptive
control offers one potential solution to these challenges.

The underlying motivation for research in adaptive control
is to develop control algorithms that respect sensor and
actuator limitations, account for complex, uncertain, and
unpredictably changing dynamics, and operate robustly de-
spite noise. The promise of adaptive control is the ability
to account for all of these effects and thereby reduce the
time and cost needed to engineer reliable, high-performance
feedback control systems for applications that are beyond the
reach of fixed-gain feedback control laws.

While research on adaptive control spans the last 50 years
with diverse techniques and demonstrated successes, the
challenges are also well documented. Although no attempt
is made here to survey the field, we cite [1] for a summary
of challenges that researchers continue to address in order to
make adaptive control a viable technology.
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The goal of this paper is to provide a tutorial on retro-
spective cost adaptive control (RCAC). RCAC is a discrete-
time adaptive control technique that is applicable to stabi-
lization, command following, and disturbance rejection. As
a discrete-time approach, RCAC is motivated by the desire
to implement control algorithms that operate at the sensor
sample rate without the need for controller discretization.
This also means that the required modeling information
can be estimated based on data sampled at the same rate
as the control update. Adaptive control algorithms have
been developed for discrete-time systems in [2]–[13]. In
particular, the ability to handle plants with nonminimum-
phase (NMP) zeros is demonstrated in [3]–[6], which is
crucial for applications involving output feedback and for
which positive real properties cannot be enforced.

II. HISTORICAL DEVELOPMENT OF RCAC

RCAC is based on the concept of retrospectively optimized
control, where past controller coefficients used to generate
past control inputs are re-optimized in the sense that if the re-
optimized coefficients had been used over a previous window
of operation, then the performance would have been better.
Unlike signal processing applications such as estimation and
identification, it is impossible to change past control inputs,
and thus the re-optimized controller coefficients are used
only to generate the next control input.

The idea of re-optimization is philosophically related to
iterative feedback tuning (IFT) [14] and iterative learning
control (ILC) [15]. However, unlike RCAC, IFT requires ex-
ogenous signals to estimate cost gradients, and ILC requires
re-running the system under nearly identical initial conditions
and exogenous inputs. Some elements of RCAC appear in
[6].

RCAC was originally developed within the context of
active noise control experiments [16]. The algorithm used
in [16] is gradient-based, where the gradient direction and
step size are based on different cost functions. In subsequent
work [17], the gradient algorithm was replaced by batch
least-squares optimization. In both [16] and [17], the mod-
eling information is given by Markov parameters (impulse
response coefficients) of the open-loop transfer function Gzu
from the control input u to the performance variable z.

More recently, in [18], a recursive least squares algorithm
was used, along with knowledge of the NMP zeros of Gzu.
The approaches in [16], [17], [18] are closely related in
the sense that all of the NMP zeros outside of the spectral
radius of Gzu are approximate zeros of a polynomial whose
coefficients are Markov parameters of Gzu.

RCAC uses a filter Gf to define the retrospective cost by
filtering the difference between the actual past control inputs
and the re-optimized control inputs. To construct Gf , Markov
parameters are used in [16], [17], and NMP zeros are used
in [18]. As shown in [18], Gf serves as a target model for a
closed-loop transfer function (called Γ) whose zeros include
the zeros of Gzu. The need for Gf to include the NMP zeros
arises from the fact that if a NMP zero of Gzu is not included

in Gf , then RCAC tends to cancel the zero through feedback
in order to match Γ.

The theoretical development of RCAC includes gradient
optimization with Markov parameters [16], batch optimiza-
tion with Markov parameters for NMP plants [17], and
RLS optimization using the NMP zeros in Gf [18]. RCAC
was applied to the Rohrs counterexamples in [19] and
demonstrated for broadband disturbance rejection in [20].
Application of RCAC to Hammerstein plants with monotonic
input nonlinearities is considered in [21]. Extensions to
MIMO systems was considered in [22], where it is shown
that RCAC squares nonsquare plants, which may introduce
NMP squaring zeros.

RCAC has been implemented in both simulation and
laboratory experiments. Numerical simulation studies are
given in [23], [24] for flow control; in [25] for noncolocated
control of a linkage; in [20], [26]–[28] for vibration control;
in [29] for engine control; in [30]–[33] for aircraft control;
in [34] for spacecraft control; in [35] for quadrotor control;
in [36] for missile control; in [37] for scramjet control; and
in [38] for control of systems with hysteresis. Laboratory
experiments are reported in [16], [39], [40] for noise control;
in [41] for ducted flame control; and in [42] for 6DOF motion
control.

III. RCAC ALGORITHM

A. Standard Problem

Consider the standard problem consisting of the discrete-
time, linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)
y(k) = Cx(k) +D0u(k) +D2w(k), (2)
z(k) = E1x(k) + E2u(k) + E0w(k), (3)

where x(k) ∈ Rn is the state, y(k) ∈ Rly is the mea-
surement, u(k) ∈ Rlu is the control input, w(k) ∈ Rlw
is the exogenous input, and z(k) ∈ Rlz is the measured
performance variable. We say that w is matched with u if
D1 = B,D2 = D0, and E0 = E2. The goal is to develop an
adaptive output feedback controller that minimizes z in the
presence of the exogenous signal w with limited modeling in-
formation about (1)–(3). The components of w can represent
either command signals to be followed, external disturbances
to be rejected, or both, depending on the choice of D1 and
E0. Depending on the application, components of w may
or may not be measured. The measured components of w
may be included in y by suitable choice of C and D2. Since
RCAC is an input-output approach to adaptive control, the
controllability and observability of (1)–(3) does not play an
explicit role. Figure 1 shows a block diagram of the standard
problem with the adaptive controller Gc,k.
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Fig. 1. Transfer function representation of the adaptive standard problem
with controller Gc,k .

B. Controller Structure

Define the dynamic compensator

u(k) =

nc∑

i=1

Pi(k)u(k − i) +

nc∑

i=kc

Qi(k)y(k − i), (4)

where Pi(k) ∈ Rlu×lu and Qi(k) ∈ Rlu×ly are the controller
coefficient matrices, and kc ≥ 0. For controller startup, we
implement (4) as

u(k) =

{
0, k < kw,

Φ(k)θ(k), k ≥ kw,
(5)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
=




u(k − 1)
...

u(k − nc)
y(k − kc)

...
y(k − nc)




T

⊗ Ilu ∈ Rlu×lθ , (6)

kw is an initial waiting period that allows Φ(k) to be
populated with data, and the controller coefficient vector θ(k)
is defined by

θ(k)
4
= vec

[
P1(k) · · · Pnc(k) Qkc(k) · · · Qnc(k)

]T ∈ Rlθ ,
(7)

lθ
4
= l2unc + luly(nc +1−kc), “⊗” is the Kronecker product,

and “vec” is the column-stacking operator. Note that kc = 0
allows an exactly proper controller, whereas kc ≥ 1 yields a
strictly proper controller of relative degree at least kc. In all
examples in this paper, we use kc = 1, and unless specified
otherwise, we use kw = nc. In terms of the forward shift
operator q, the transfer function of the controller from y to
u is given by

Gc,k(q) =
(
qncIlu − qnc−1P1(k)− · · · − Pnc

(k)
)−1

·
(
qnc−kcQkc(k) + · · ·+Qnc

(k)
)
. (8)

If y and u are scalar signals, then Gc is SISO and (8) can
be written as

Gc,k(q) =
qnc−kcQkc(k) + · · ·+Qnc

(k)

qnc − qnc−1P1(k)− · · · − Pnc(k)
. (9)

C. Retrospective Performance Variable

We define the retrospective control as

û(k, θ̂) = Φ(k)θ̂, (10)

where θ̂ ∈ Rlθ . The corresponding retrospective performance
variable is defined as

ẑ(k, θ̂)
4
= z(k) +Gf(q)[û(k, θ̂)− u(k)]. (11)

The nz × nu filter Gf has the form

Gf
4
= D−1

f Nf , (12)

where Df is an lz × lz polynomial matrix with leading
coefficient Ilu , and Nf is an lz × lu polynomial matrix. For
reasons given below, we henceforth refer to Gf as the target
model. By defining the filtered versions Φf(k) ∈ Rlz×lθ and
uf(k) ∈ Rlz of Φ(k) and u(k), respectively, (11) can be
written as

ẑ(k, θ̂) = z(k) + Φf(k)θ̂ − uf(k), (13)

where

Φf(k)
4
= Gf(q)Φ(k), uf(k)

4
= Gf(q)u(k). (14)

The optimal controller coefficient vector θ̂opt(k) is obtained
by retrospective optimization below to yield the updated
controller with coefficients

θ(k + 1) = θ̂opt(k). (15)

D. Role of the Target Model Gf

The target model Gf is a key component of RCAC. In early
work, Gf was viewed as a model of Gzu that captures the
sign of the leading coefficient of Gzu along with the NMP
zeros of Gzu. In [18], the analysis of RCAC involves an ideal
filter G∗f , which is a closed-loop transfer function involving
an ideal feedback controller G∗c . This insight leads to an
alternative interpretation of Gf , where Gf is a target model
for a specific closed-loop transfer function. These properties
are summarized below for the case where z and u are scalar
signals.

1) Frequency response: For a given choice of Gf , RCAC
updates θ so that the frequency response of the transfer
function Γ tends to match that of Gf , where

Γ(q)
4
=

Nzu(q)qnc

Dc(q)Dzu(q) +Nc(q)Nzu(q)
, (16)

and Gzu = Nzu/Dzu. The transfer function Γ is closely
related to the closed-loop transfer function from an external
perturbation v of u to the performance variable z. This
transfer function is given by

Gzv(q) =
Nzu(q)Dc(q)

Dc(q)Dzu(q) +Nc(q)Nzu(q)
. (17)
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Note that Γ differs from Gzv due to the replacement of Dc

in the numerator of (16) by qnc .

2) Pole placement: If the order of Gf is equal to the order
n + nc of the closed-loop system, then RCAC attempts to
place the closed-loop poles at the locations of the poles of
Gf . Hence, Gf can be used for pole placement.

3) Relative degree: In [18], the relative degree of the
target model Gf is chosen to match the relative degree of
Gzu. Since the relative degree of Γ is equal to the relative
degree of Gzu, it follows that the relative degree of Gf must
be chosen in accordance with Gzu.

4) NMP zeros: In [18], the target model Gf is chosen such
that Nu contains the NMP zeros of Gzu. A key feature of
Γ is the presence of Nzu in the numerator. This means that,
since RCAC adapts Gc in order to match Γ to Gf , RCAC
may cancel NMP zeros that are not included in Gf . This
observation motivates the desire to capture all NMP zeros of
Nzu in the numerator of Gf .

5) Markov parameters: In [16], [17], Gf is based on the
Markov parameters of Gzu. In particular, for each complex
number z whose absolute value is greater than the spectral
radius of A, it follows that

G(z) = E1(zI −A)−1B =
∞∑

i=0

Hi

zi
, (18)

where, for all, i ≥ 1, the ith Markov parameter of Gzu is
given by

Hi
4
= E1A

i−1B. (19)

As shown in [17], a sufficiently large number of Markov
parameters used in the FIR truncation Gf(z) =

∑nf

i=0
Hi
zi of

(18) can capture the locations of the NMP zeros of Gzu.
This choice of Gf also gives the correct relative degree.

6) FIR Target Model: In the case where Gzu is minimum
phase, we define the FIR target model

Gf(q)
4
=
Hdzu

qdzu
. (20)

In the case where Gzu is NMP, we define the FIR target
model

Gf(q)
4
=

HdzuNzu,u(q)

qdzu+deg(Nzu,u)
. (21)

7) IIR Target Model for Pole Placement: RCAC attempts
to place the poles of Γ at the locations of the poles of Gf .
Note that the poles of Γ are equal to the closed-loop poles,
that is, the poles of G̃zw. Consequently, RCAC attempts to
place the closed-loop poles at the locations of the poles of
Gf . In order to use Gf for pole placement, let Dp be a
monic polynomial whose roots are the desired closed-loop
pole locations. Then, in the case where Gzu is minimum
phase, we define the IIR target model

Gf(q)
4
=

Hdzu

qdzu−deg(Dp)Dp(q)
, (22)

and, in the case where Gzu is NMP, we define the IIR target
model

Gf(q)
4
=

HdzuNzu,u(q)

qdzu+deg(Nzu,u)−deg(Dp)Dp(q)
. (23)

The target models (20), (22) for minimum-phase Gzu, and
(21), (23) for NMP Gzu represent the modeling information
required by RCAC.

E. Retrospective Cost

Using the retrospective performance variable ẑ(k, θ̂) de-
fined by (11), we define the cumulative retrospective cost
function

J(k, θ̂)
4
=

k∑

i=1

λk−i[ẑT(i, θ̂)Rz ẑ(i, θ̂) + (Φf(i)θ̂)
TRuΦf(i)θ̂]

+ λk(θ̂ − θ(0))TRθ(θ̂ − θ(0)), (24)

where Rz and Rθ are positive definite, Rf is a positive
semidefinite performance dependent weight, and λ ∈ (0, 1] is
the forgetting factor. Recursive minimization of (24) is used
to update the controller coefficients θ(k).

Proposition: Let P (0) = R−1
θ . Then, for all k ≥ 1,

the retrospective cost function (24) has a unique global
minimizer θ(k), which is given by

θ(k) = θ(k−1)−P (k−1)ΦT
f (k)Υ−1(k)[Φf(k)θ(k−1)

+ (Rz +Ru)−1Rz(z(k)− uf(k))], (25)

P (k) =
1

λ
P (k − 1) −

1

λ
P (k − 1)ΦT

f (k)Υ−1(k)Φf(k)P (k − 1), (26)

where

Υ(k)
4
= λ(Rz +Ru)−1 + Φf(k)P (k − 1)ΦT

f (k).

Notice that, if λ = 1, then the covariance P (k) decreases
monotonically, which decreases the rate of adaptation as θ
converges. To maintain adaptation in cases where the plant
or exogenous signals are changing, the covariance can be
reset using suitable logic. Alternatively, setting the forgetting
factor λ < 1 prevents monotonic decrease of P (k), but can
lead to instability, especially in the presence of noise and
in the absence of persistency. An alternative approach is to
include an additional positive-semidefinite forcing term Q on
the right-hand side of (26) of the form

P (k) = P (k − 1) −
P (k − 1)ΦT

f (k)Υ−1(k)Φf(k)P (k − 1) +Q, (27)

where λ = 1 in Υ(k). Note that (25) and (27) is the Kalman
filter Riccati update equations with the dynamics matrix
A = Ilθ and output matrix C(k) = Φf(k). Consequently,
persistency in (25) is determined by the observability of
(Ilθ ,Φf). For all examples in this paper, we initialize θ(0) =
0, and, unless specified otherwise, we choose Ru = 0.
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IV. COMMAND-FOLLOWING

A. The Adaptive Servo Problem

Consider the discrete-time, linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) + D̄1d(k), (28)
y0(k) = C̄x(k) + D̄0u(k) + D̄2d(k), (29)
yn(k) = y0(k) + v(k), (30)
z(k) = r(k)− y0(k), (31)

where x(k) ∈ Rn is the state, yn(k) ∈ Rly is the measure-
ment, u(k) ∈ Rlu is the control input, d(k) ∈ Rld is the
disturbance, r(k) ∈ Rly is the command, v(k) ∈ Rly is the
sensor noise, and z(k) ∈ Rly is the performance variable.
We can rewrite (30) in terms of q as

y0(k) = Gu(q)u(k) +Gd(q)d(k), (32)

where

Gu(q)
4
= C̄(qI −A)−1B + D̄0, (33)

Gd(q)
4
= C̄(qI −A)−1D̄1 + D̄2. (34)

Furthermore, the linear time-invariant controller has the form

u(k) = Gc(q)z(k), (35)

where

z(k)
4
= r(k)− yn(k). (36)

Figure 2 illustrates (32)–(36).

Gc,k
[Gd Gu]u

d

r

−

z

z0

y0

v
yn

−

Fig. 2. Transfer function representation of the adaptive servo problem with
the adaptive controller Gc,k .

The adaptive servo problem is thus a special case of the
adaptive standard problem with

Gzw = [Ily −Gd 0], Gzu = −Gu, (37)
Gyw = [Ily −Gd − Ily ], Gyu = −Gu. (38)

B. Command Following for Minimum-Phase Plants

Example 1. Effect of Rθ on command-following per-
formance for a step command. Consider the asymptotically
stable, minimum-phase plant

G(q) =
q− 0.85

(q− 0.8)(q− 0.9)
. (39)

Let r be a unit-height step command, and let d = v = 0.
We use the FIR target model (20), and set nc = 3. Figure

3 shows the command-following performance for Rθ = 20
and Rθ = 0.2. �
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Fig. 3. Example 1: Effect of Rθ on command-following performance for
a step command for (39). For Rθ = 20 (upper plots), RCAC follows the
step command in about 2000 time steps, whereas, for Rθ = 0.2 (lower
plots), RCAC follows the step command in about 200 time steps. For both
values of Rθ , the converged controllers have integrators, as shown by the
poles at 1.

Example 2. Effect of Ru on command-following perfor-
mance for a harmonic command. Consider the asymptoti-
cally stable, minimum-phase plant

G(q) =
q− 0.8

(q− 0.95)(q− 0.99)
. (40)

Let r be the harmonic command r(k) = cosωk, where ω =
0.5 rad/sample, and let d = v = 0. We use the FIR target
model (20), and set nc = 5 and Rθ = 0.2. Figure 4 shows
the command-following performance for Ru = 0 and Ru =
0.1. �

Example 3. Minimum-phase zero cancellation. Consider
the unstable, minimum-phase plant

G(q) =
(q− 0.6)(q− 0.8)

(q− 1.1)(q2 − 1.6q + 1)
. (41)

Let r be the harmonic command r(k) = cosωk, where
ω = 0.6 rad/sample, and let d = v = 0. We use the FIR
target model (20), and set nc = 16 and Rθ = 2 × 10−7.
Figure 5 shows the command-following performance. Since
the minimum-phase zeros of Gzu are not included in the
numerator of Gf , RCAC adapts Gc so that they are cancelled.
�

Example 4. Including an internal model. Example 1
shows that RCAC can develop an internal model of the com-
mand. However, to speed up convergence, we can include
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Fig. 4. Example 2: Effect of Ru on command-following performance for
a harmonic command for (40). For Ru = 0 (upper plots), RCAC converges
to an unstable controller, with an unstable pole at −1.13 and an internal
model of the harmonic command, whereas, for Ru = 0.1 (lower plots),
RCAC converges to an asymptotically stable controller without an internal
model and thus with a nonzero command-following error. The lower left
plot shows the command-following response for both Ru = 0 (upper) as
well as Ru = 0.1 (lower).
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Fig. 5. Example 3: Minimum-phase zero cancellation. Since the minimum-
phase zeros of Gzu are not included in the numerator of Gf , RCAC places
closed-loop poles at the location of the minimum-phase zeros of Gzu.

an internal model in the controller. For example, to embed
integrators in the controller, we introduce the integrator states

γ(k) = γ(k − 1) + Fy(k), (42)

where γ(k) ∈ Rlγ and F ∈ Rlγ×ly selects components of
y(k). We then cascade (42) with (4) by means of a gain
KI(k) ∈ Rlγ to obtain

u(k)=

nc∑

i=1

Pi(k)u(k − i)+

nc∑

i=k0

Qi(k)y(k − i)+KI(k)γ(k).

(43)

We then augment Φ(k) and θ(k) accordingly. Consider the
asymptotically stable, minimum-phase plant

G(q) =
(q− 0.8)(q− 0.9)

(q− 0.4)(q2 + 0.16)
. (44)

Let r be a unit-height step command, and let d = v = 0. We
use the FIR target model (20), and set nc = 4 and Rθ = 10.
Figure 6 shows the command-following performance, in
the case where RCAC converges to a controller with an
integrator, as well in the case where an integrator is included
in the controller. �
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Fig. 6. Example 4: Including an internal model. In both cases, RCAC
follows the step command. However, the command-following performance
is improved in the case where an integrator is added.

C. NMP Plants

Example 5. Command following for a plant with one real
NMP zero. Consider the asymptotically stable, NMP plant

G(q) =
(q− 1.05)(q− 0.8)

(q− 0.85)(q− 0.88)(q− 0.9)
. (45)

Let r be a unit-height step command, and let d = v = 0. We
use the FIR target model (21), and set nc = 5 and Rθ = 200.
Figure 7 shows the command-following performance. �
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Fig. 7. Example 5: Command following for a plant with one real NMP
zero. Gf is constructed to have the same NMP zero as (45). RCAC develops
an internal model and follows the step command.
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Example 6. Command following for a plant with one
NMP zero, using Markov parameters for the target model.
Consider the asymptotically stable, NMP plant

G(q) =
(q− 1.1)(q− 0.6)

(q− 0.7)(q− 0.8)(q− 0.9)
. (46)

Let r be a unit-height step command, and let d = v = 0.
We use 60 Markov parameters for the target model, which
allows Gf to capture the location of the NMP zero at 1.1. We
set Rθ = 140 and nc = 20. Figure 47 shows the command-
following performance. �
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Fig. 8. Example 6: Command following for a plant with one NMP zero,
using Markov parameters for the target model, for (46). RCAC follows the
step command.

Example 7. Command following for a plant with two
complex NMP zeros. Consider the asymptotically stable,
NMP plant

G(q) =
(q− 1 + 1.1)(q− 1− 1.1)

(q− 0.7)(q− 0.85)(q− 0.95)
. (47)

Let r be the harmonic command r(k) = cosωk, where ω =
0.2 rad/sample, and let d = v = 0. We use the FIR target
model (21), and set Rθ = 10 and nc = 12. Figure 9 shows
the command-following performance. �
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Fig. 9. Example 7: Command following for a plant with two complex
NMP zeros. (47) has two complex NMP zeros, which are used in the target
model. RCAC follows the harmonic command.

Example 8. Command following for an unstable NMP
plant that requires an unstable controller. Consider the
unstable, NMP plant

G(q) =
(q− 0.6)(q− 0.8)(q− 1.05)

(q− 0.9)(q− 1.1)(q2 − 1.6q + 0.89)
. (48)

Note that the NMP zero lies between 1 and the unstable
pole. It follows from root locus analysis and the parity

interlacing property [44] that, in order to stabilize this plant,
the controller must be unstable [4]. Let r be the harmonic
command r(k) = cosωk, where ω = 0.6 rad/sample, and
let d = v = 0. We use the FIR target model (21), and set
Rθ = 2×10−7 and nc = 16. Figure 10 shows the command-
following performance. �
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Fig. 10. Example 8: Command following for an unstable NMP plant whose
stabilization requires an unstable controller. Notice that RCAC places an
unstable controller pole to the right of the unstable plant pole, and that the
closed-loop system is asymptotically stable.

D. Adaptive Feedforward Control

In this section we consider extensions of the adaptive servo
problem to include feedforward control. The first feedfor-
ward architecture uses centralized adaptation, as shown in
Figure 11.

Gc,k
[Gd Gu]u

d
−

r

z

y0

v
yn

−
z0

Gc,k

Fig. 11. Transfer function representation of centralized feedback-
feedforward control for the adaptive servo problem.

Alternatively, RCAC may use a decentralized feedback
and feedforward architecture that allows for decentralized
adaptation, as shown in Figure 12. In this case, the feedback
controller Gfb,k may have poles that are different from those
of the feedforward controller Gff,k, which is not possible
with centralized feedback-feedforward control. Moreover, we
may choose the feedback controller to be FIR.
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Fig. 12. Transfer function representation of decentralized feedback-
feedforward control for the adaptive servo problem.

The model reference adaptive control (MRAC) problem is
a special case of the adaptive standard problem with

w =



r
d
v


 , y =

[
r
yn

]
, z = Gmr − yn, (49)

Gzw = [Gm −Gd − Ilz ], Gzu = −Gu, (50)

Gyw =

[
Ilr 0 0

0 Gd Ilz

]
, Gyu = Gu, (51)

where r ∈ Rlr and Gm is the reference model. Figure 13
shows the transfer function representation of the MRAC
problem. Note that, since y includes the command r, the
controller is both feedback and feedforward.
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[Gd Gu]u

d

ym

−

r

z

v
yn

−
z0

Gc,k y0

Fig. 13. Transfer function representation of the model reference adaptive
control problem with the adaptive controller Gc,k .

Example 9. Command following using centralized
feedback-feedforward control for the adaptive servo problem.
Consider the asymptotically stable, NMP plant

G(q) =
(q− 1.2)(q2 − 1.8q + 0.85)

(q− 0.9)(q− 0.95)(q2 − 1.4q + 0.74)
. (52)

Let r be the harmonic command r(k) = cosωk, where
ω = 0.4 rad/sample, and let d = v = 0. We apply the
centralized feedback-feedforward control architecture shown
in Figure 11 with Rθ = 10 and nc = 8, and we use the FIR

target model (21). Figure 14 shows the command-following
performance for combined feedforward and feedback control.
RCAC follows the harmonic command without developing
an internal model. �
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Fig. 14. Example 9: Combined feedforward and feedback control. RCAC
follows the harmonic command without developing an internal model.

Example 10. Command following using decentralized
feedback-feedforward control for the adaptive servo problem.
Consider the asymptotically stable, NMP plant

G(q) =
(q− 0.9)(q− 1.1)

(q− 0.99)(q2 − 1.9z + 0.9925)
. (53)

Let r be a unit-height step command, and let d = v =
0. We apply the decentralized feedback-feedforward control
architecture shown in Figure 12. For both controllers we set
Rθ = 105 and nc = 10, and we use the FIR target model
(20). We restrict Gfb to be an FIR controller. Figure 15 shows
the command-following performance. Note that, since the
feedback controller is FIR, RCAC cannot develop an internal
model of the command. However, RCAC adapts Gff so that
the command is followed. �
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Fig. 15. Example 10: Command following using decentralized feedback-
feedforward control for the adaptive servo problem. Since the feedback
controller is FIR, RCAC cannot develop an internal model of the command.
However, RCAC adapts Gff so that the command is followed.

Example 11. MRAC with step disturbance. Consider the
unstable, minimum-phase double integrator

G(q) =
q− 0.95

(q− 1)2
. (54)

Let r be a sequence of step commands with different heights,
let d = 0.2, and let v = 0. Let Gm be the continuous-time
reference model M(s) = 1

s2+2s+1 discretized with sampling
period h = 0.5 sec. We set Rθ = 0.1 and nc = 12, and
we use the FIR target model (20). RCAC rejects the step
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disturbance and follows the output of the reference model,
as shown in Figure 16. �
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Fig. 16. Example 11: MRAC with step disturbance. RCAC rejects the step
disturbance, and follows the output of the reference model.

Example 12. MRAC for a NMP plant. Consider the
unstable, NMP double integrator

G(q) =
q− 1.1

(q− 1)2
. (55)

Let r be a sequence of step commands with different heights,
and let d = v = 0. Let Gm be the continuous-time reference
model M(s) = 1

s2+30s+1 discretized with sampling period
h = 1 sec. We set Rθ = 10−3 and nc = 8, and we use
the FIR target model (21). RCAC follows the output of the
reference model, as shown in Figure 17. �
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Fig. 17. Example 12: MRAC for the unstable, NMP plant (55). RCAC
follows the output of the reference model.

E. Pole Placement and Controller Poles

Example 13. Pole placement for the adaptive servo
problem. Consider the unstable, minimum-phase plant

G(q) =
q2 − 1.4q + 0.85

(q− 1.05)(q2 − 1.6q + 0.89)
. (56)

Let r be a unit step command, and let d = v = 0. To place
five closed-loop poles at 0.05, 0.4, 0.6, and ±0.05, we use
the IIR target model (22) with

Dp(q) = (q− 0.05)(q− 0.4)(q− 0.6)(q2 + 0.0025),
(57)

and set Rθ = 10−40 and nc = 4. RCAC follows the step
command and places closed-loop poles near the locations
of the roots of Dp, as shown in Figure 18. Note that two
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Fig. 18. Example 13: Pole placement for the adaptive servo problem.
RCAC places five closed-loop poles near the locations of the roots of Dp.
The closed-loop poles and zeros are shown at step k = 100.

closed-loop poles cancel the minimum-phase zeros of G. �

Example 14. Choice of closed-loop poles leading to an
unstable controller. Consider the asymptotically stable, NMP
plant given by (45), let r be a unit-height step command,
and let d = v = 0. We use the FIR target model (21), and
set nc = 5 and Rθ = 10. Figure 19 shows the command-
following performance. RCAC converges to an unstable
controller, and the closed-loop poles do not converge to
zero. �
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Fig. 19. Example 14: Choice of closed-loop poles leading to an unstable
controller for (45). The choice of the target pole locations at zero causes
RCAC to develop an unstable controller. RCAC does not follow the
command, and the closed-loop poles do not converge to zero.

Example 15. Choice of closed-loop poles leading to an
asymptotically stable controller. Consider the asymptotically
stable, NMP plant given by (45), let r be a unit-height step
command, and let d = v = 0. To place five closed-loop poles
at 0.95, we use the IIR target model (23) with

Dp(q) = (q− 0.95)4, (58)

and set nc = 5 and Rθ = 10. Figure 20 shows the
command-following performance. The choice of the target
pole locations allows RCAC to develop an internal model
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of the command, and Gc,k converges to an asymptotically
stable controller. RCAC places closed-loop poles near the
locations of the poles of Gf . �
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Fig. 20. Example 15: Choice of closed-loop poles leading to an asymp-
totically stable controller for (45). The choice of the target pole locations
allows RCAC to develop an internal model of the command, and converge
to a stable controller. RCAC places closed-loop poles near the locations of
the poles of Gf .

Example 16. Frequency response matching of Gf and Γ.
Consider the asymptotically stable, NMP plant

G(q) =
(q− 0.99)(q− 1.15)

(q− 0.88)(q− 0.9)(q− 0.95)
. (59)

Let r be the harmonic command r(k) = cosωk, where ω =
0.6 rad/sample, and let d = v = 0. We use the IIR target
model (23) with

Dp(q) = (q− 0.5)(q + 0.5)(q + 0.5)(q− 0.5), (60)

and set nc = 5 and Rθ = 10−10. Figure 21 shows the
command-following performance. The frequency response of
Γ nearly matches the frequency response of Gf , particularly
in magnitude. RCAC places closed-loop poles near the poles
of Gf . �

F. Command Following for Nonlinear Plants

Example 17. Command following for the Van der Pol
oscillator, with a command whose phase portrait is inside the
limit cycle. Consider the discretized Van der Pol oscillator

x1(k) = x1(k − 1) + Tsx2(k − 1), (61)

x2(k) = x2(k − 1) + Ts((1− x1(k − 1)2)x2(k − 1)

− x1(k − 1) + u(k − 1)), (62)

where Ts = 0.01 sec, y0(k) = x2(k), z(k) = r(k)− y0(k),
let r be a unit-amplitude harmonic command with frequency
ω = 0.002 rad/sample, and let d = v = 0. We use the FIR
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Fig. 21. Example 16: Frequency response matching of Gf and Γ for (59).
The frequency response of Γ nearly matches the frequency response of Gf ,
particularly in magnitude. RCAC places closed-loop poles near the poles of
Gf .

target model (20), and set nc = 10 and Rθ = 1. Figure 22
shows the command-following performance. �
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Fig. 22. Example 17: Command following for the Van der Pol oscillator
(61)–(62), with a command whose phase portrait is inside the limit cycle.
RCAC develops an internal model and follows the harmonic command. The
lower plot shows the phase portraits of the open-loop limit cycle and the
closed-loop response.

Example 18. Command following for the Van der Pol
oscillator, with a command whose phase portrait is outside
the limit cycle. Consider the discretized Van der Pol oscillator
where Ts = 0.005 sec, y0(k) = x2(k), z(k) = r(k)− y0(k),
let r be a unit-amplitude harmonic command with frequency
ω = 0.0008 rad/sample, and let d = v = 0. We use the FIR
target model (20), and set nc = 20 and Rθ = 1. Figure 23
shows the command-following performance. �
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Fig. 23. Example 18: Command following for the Van der Pol oscillator
(61)–(62), with a command whose phase portrait is outside the limit cycle.
RCAC develops an internal model and follows the harmonic command. The
lower plot shows the phase portraits of the open-loop limit cycle and the
closed-loop response.

Example 19. Command following for the Roup oscillator.
Consider the discretized oscillator from [43]

x1(k) = x1(k − 1) + Tsx2(k − 1), (63)
x2(k) = x2(k − 1) + Ts[−x1(k − 1) + u(k − 1)

− λ
(
x2

1(k − 1) + ω−2x2
2(k − 1)− a2

)
x2(k − 1)],

(64)

where Ts = 0.01 sec. Without control, this oscillator has
a harmonic limit cycle with amplitude a and frequency ω.
The parameter λ adjusts the rate of convergence to the limit
cycle. Let λ = 0.5, a = 1, and ω = 1. Let y0(k) =
x2(k), z(k) = r(k) − y0(k), let r be a unit-amplitude
harmonic command with frequency ω = 0.002 rad/sample,
and let d = v = 0. We construct the target model using
three Markov parameters, and set nc = 8 and Rθ = 10.
Figure 24 shows the command-following performance for
the initial condition x(0) = [0.3 0.3]T. The open-loop plant
approaches the harmonic limit cycle, and RCAC follows the
harmonic command. �

Example 20. Command following for the Duffing oscilla-
tor. Consider the discretized Duffing oscillator with constant
disturbance

x1(k) = x1(k − 1) + Tsx2(k − 1), (65)

x2(k) = x2(k − 1) + Ts[−
1

4
x2(k − 1) + 4x1(k − 1)

− x3
1(k − 1) + u(k − 1) + 1], (66)

where Ts = 0.01 sec. The uncontrolled plant has stable
equilibria at (−1.86, 0) and (2.11, 0). Let y0(k) = x2(k),
z(k) = r(k) − y0(k), let r be a unit-amplitude harmonic
command with frequency ω = 0.0025 rad/sample, and let
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Fig. 24. Example 19: Command following for the Roup oscillator (63)–
(64). The lower plot shows the phase portraits of the open-loop limit cycle
and the closed-loop response. The open-loop plant approaches the harmonic
limit cycle, and RCAC follows the harmonic command.

v = 0. We construct the target model using ten Markov
parameters, and set nc = 10 and Rθ = 100. Figure 25 shows
the command-following performance for the initial condi-
tion x(0) = [0.1 0.1]T. The open-loop plant approaches
the equilibrium at (2.11, 0). RCAC follows the harmonic
command. �
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Fig. 25. Example 20: Command following for the Duffing oscillator (65)–
(66). RCAC follows the harmonic command. The lower plot shows the
phase portraits of the open-loop limit cycle and the closed-loop response.
The open-loop plant approaches the equilibrium at (2.11, 0).

V. DISTURBANCE REJECTION

A. Step Disturbance Rejection

In this section we consider step disturbance rejection,
where the disturbance is a unit-height step. We consider the
case where y = z and with w matched with u.
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Example 21. Step disturbance rejection. Consider the
asymptotically stable, minimum-phase plant

G(q) =
q2 − 1.44q + 0.81

(q− 0.9)(q2 − 1.71q + 0.903)
, (67)

To place four closed-loop poles at ±0.5 and ±0.8, we use
the IIR target model (22) with

Dp(q) = (q− 0.5)(q + 0.5)(q2 + 0.64), (68)

and set nc = 4 and Rθ = 10−10. Figure 26 shows the
closed-loop response. �
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Fig. 26. Example 21: Step disturbance rejection for (67). The poles of
Gf are achieved in G̃zw . The remaining unassigned assignable closed-loop
poles converge to zero. The frequency response of Γ matches the frequency
response of Gf .

Example 22. Step disturbance rejection for an unstably
stabilizable plant. Consider the unstable, NMP plant

G(q) =
q− 1.2

(q− 1.1)(q− 2)
. (69)

Let w be a unit step. We set Rθ = 10−40 and nc = 3.
To place five closed-loop poles at 0.05, 0.4, 0.6, and ±0.01,
we use the IIR target model (23) with four target closed-loop
poles given by the roots of

Dp(q) = (q− 0.4)(q− 0.6)(q− 0.05)(q2 + 0.0001).
(70)

Note that the NMP zero lies between the two unstable poles.
Thus, in order to stabilize this plant, the controller must
be unstable. RCAC places five closed-loop poles near the
locations of the roots of Dp, as shown in Figure 27. Note
that the controller converges to an unstable configuration
and the spectral radius of the closed-loop system at step
k = 20 is less than 1. �
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Fig. 27. Example 22: Step disturbance rejection for an unstably stabilizable
plant. RCAC places five closed-loop poles near the locations of the roots
of Dp. Note that the controller becomes unstable after a few steps and the
closed-loop system is stabilized at step k = 20. The closed-loop poles and
zeros are shown at step k = 100.

B. Harmonic Disturbance Rejection

In this section we consider unit-amplitude harmonic
disturbance rejection, where the disturbance consists of two
sinusoids with frequencies ω1 = π

8 rad/sample and ω2 = π
12

rad/sample. We consider various cases where y and z may
be equal and where w and u may be matched.

Example 23. Harmonic disturbance rejection with y = z
and with w matched with u. Consider the asymptotically
stable, NMP plant with y = z and with w matched with u,
shown in Figure 28. We use the FIR target model 21, and
set nc = 10 and Rθ = 10−10. �
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Fig. 28. Example 23: Harmonic disturbance rejection with y = z and with
w matched with u. RCAC places controller poles at the two disturbance
frequencies, and G̃zw is asymptotically stable. The frequency response of
Γ matches the frequency response of Gf .
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Example 24. Harmonic disturbance rejection with y 6= z
and with w not matched with u. Consider the asymptotically
stable, NMP plant with y 6= z and with w not matched
with u, shown in Figure 29. We set Rθ = 10−10, nc = 10,
and Gf(q) = 0.7708(q2−1.179q+1.011)

q3 , where the numerator
contains Hd and the NMP zeros of Gzu. �
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Fig. 29. Example 24: Harmonic disturbance rejection with y 6= z and
with w not matched with u. Only the NMP zeros of Gzu are modeled.
RCAC places controller poles at the two disturbance frequencies, and G̃zw
is asymptotically stable. The frequency response of Γ matches the frequency
response of Gf .

C. Broadband Disturbance Rejection

In this section we consider broadband disturbance rejec-
tion where the disturbance is zero-mean Gaussian white
noise. We compare the closed-loop performance of RCAC
to high-authority LQG without sensor noise. Sensor noise is
considered in Section VI.

1) Matching high-authority LQG closed-loop perfor-
mance: The closed-loop poles of high-authority LQG control
without sensor noise are discussed in the Appendix. We
attempt to match the closed-loop performance of high-
authority LQG with RCAC by using nc = n and setting the
pole locations in Gf to coincide with the high-authority LQG
closed-loop poles. However, we show that this causes RCAC
to place extra poles at the minimum-phase zeros of Gzu. We
also show that RCAC can match the closed-loop performance
of high-authority LQG by omitting the minimum-phase zeros
of Gzu. Specifically, we choose

Gf(q) =
HdNzu,uqm

Nzu,u(1/q)Nyw,s(q)Nyw,u(q−1)
, (71)

where m is chosen such that the relative degree of Gf is in
accordance with the relative degree of Gzu.

Example 25. RCAC for the adaptive standard problem
with y = z and with w matched with u. Consider the

Lyapunov-stable NMP plant

G(q) =
(q− 0.5)(q2 − 1.92q + 1.44)

(q− 1)(q− 0.9)(q2 − 1.62q + 0.81)
, (72)

where the NMP zeros are complex. We set nc = n and use
the high-authority LQG target model (71). RCAC places the
closed-loop poles near the high-authority LQG closed-loop
poles and approximates the closed-loop frequency response
of high-authority LQG, as shown in Figure 30. �
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Fig. 30. Example 25: RCAC for the adaptive standard problem using the
high-authority LQG target model (71). RCAC places the closed-loop poles
near the high-authority LQG closed-loop poles and approximates the closed-
loop frequency response of high-authority LQG. The frequency-response
plots and closed-loop poles and zeros are shown at step k = 104.

Example 26. RCAC for the adaptive standard problem
with y 6= z, and with w not matched with u. Consider the
asymptotically stable plant

A =




0 1 0 0
0 0 −0.4482 1.1491
0 0 0.81 1
0 0 −0.1539 0.81


 , B =




0
0
0
1


 , (73)

D1 =




0.7343
−0.1655
−0.6579
−0.0230


 , D0 = E2 = 0, D2 = E0 = 0, (74)

C = [0.5754 − 0.5819 0.3479 0.4574], (75)
E1 = [0.2608 − 0.7079 − 0.2385 0.6116], (76)

where Gzu, Gyu, and Gyw are NMP, and Gzw is minimum
phase. We set nc = n and use the high-authority LQG
target model (71). RCAC places the closed-loop poles near
the high-authority LQG closed-loop poles and approximates
the closed-loop frequency response of high-authority LQG,
as shown in Figure 31. �

2) Matching high-authority LQG closed-loop perfor-
mance with minimal modeling information: In LQG control,
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Fig. 31. Example 26: RCAC for the adaptive standard problem, with the
high-authority LQG target model (71). RCAC places the closed-loop poles
near the high-authority LQG closed-loop poles and approximates the closed-
loop frequency response of high-authority LQG. The frequency-response
plots and closed-loop poles and zeros are shown at step k = 105.

the controller order is equal to the order of the plant. In this
section, we show that, for sufficiently large nc > n, RCAC
approximates the performance of high-authority LQG using
the FIR target models (20) and (21), which use knowledge
of dzu, Hdzu , and the NMP zeros of Gzu.

Example 27. RCAC for the adaptive standard problem
with y = z and with w matched with u. Consider the
unstable, minimum-phase plant

G(q) =
(q2 − 1.739q + 0.81)(q2 − 1.379q + 0.81)

(q− 0.5)(q2 − 1.9q + 1.1)(q2 − 1.485q + 1.1)
,

(77)

where Gzu, Gzw, Gyu, and Gyw are minimum phase. We set
nc = n = 5, and we use the FIR target model (20). RCAC
does not approximate the closed-loop frequency response of
high-authority LQG, as shown in Figure 32. However, by
using (71), RCAC approximates the closed-loop frequency
response of LQG with nc = n (not shown).

Next, we increase nc from nc = 5 to nc = 10 and
again to nc = 20. In both cases RCAC approximates the
closed-loop frequency response of LQG, as shown in Figure
33. Note that RCAC approximates the frequency response
of high-authority LQG more closely as nc is increased from
10 to 20. �

Example 28. RCAC for the adaptive standard problem
with y 6= z and with w not matched with u. Consider the
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Fig. 32. Example 27: RCAC for the adaptive standard problem with nc =
n, using the FIR target model (20). RCAC does not approximate the closed-
loop frequency response of high-authority LQG. In addition, the frequency
response of Γ does not approximate the frequency response of Gf at low
frequencies. The frequency-response plots are shown at step k = 105.
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Fig. 33. Example 27: RCAC for the adaptive standard problem with nc =
10 (left plots) and nc = 20 (right plots), using the FIR target model (20)
in both cases. RCAC approximates the closed-loop frequency response of
high-authority LQG. In addition, the frequency response of Γ approximates
the frequency response of Gf . Note that RCAC approximates the frequency
response of high-authority LQG more closely as nc is increased from 10
to 20. The frequency-response plots are shown at step k = 105.

asymptotically stable plant

A =




0.855 1 0 0 0
−0.1715 0.855 −0.4266 −0.3607 0.4952

0 0 0.5 −0.5072 0.6964
0 0 0 0.6716 1
0 0 0 −0.4514 0.6716



,

(78)

B =




0
0
0
0
1



, D1 =




−0.6269
0.3985
−0.3306
0.4415
0.3794



, (79)

C = [0.7298 − 0.3954 − 0.3605 0.4003 0.1447],
(80)

E1 = [0.1717 0.3351 − 0.5294 − 0.4476 0.6145],
(81)

D0 = E2 = 0, D2 = E0 = 0, (82)
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where Gzu, Gzw, Gyu, and Gyw are NMP. We set nc =
2n = 10, and we use the FIR target model (21) without
knowledge of D̃HA. In this case RCAC approximates the
closed-loop frequency response of high-authority LQG, as
shown in Figure 34. �
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Fig. 34. Example 28: RCAC for the adaptive standard problem with
nc = 10. RCAC approximates the closed-loop frequency response of high-
authority LQG. In addition, the frequency response of Γ approximates the
frequency response of Gf . The frequency-response plots are shown at step
k = 105.

Example 29. RCAC for the adaptive standard problem
with y = z and with w matched with u. We reconsider
the Lyapunov-stable plant (72) in Example 25, and we let
w be nonzero-mean white noise with mean 0.1. We set
nc = 5n = 20, and we use the FIR target model (21)
without knowledge of D̃HA. RCAC approximates the closed-
loop frequency response of high-authority LQG except at DC
due to the internal model needed to reject the nonzero-mean
disturbance, which is evident in the form of the notch at DC,
as shown in Figure 35. �

Example 30. Harmonic command following and stochas-
tic disturbance rejection for the adaptive servo problem.
Consider the asymptotically stable plant

G(q) =
(q2 − 1.7q + 0.785)(q2 − 1.4q + 0.85)

(q− 0.5)(q2 − 1.8q + 0.97)(q2 − 1.4q + 0.98)
,

(83)

where G is minimum phase. Let r be the harmonic
command r(k) = cosωk, where ω = 0.8 rad/sample, and
let v = 0. We set nc = 8n = 40, and we use the FIR
target model (20). RCAC follows the harmonic command
and approximates the closed-loop frequency response of
high-authority LQG except at the command frequency due
to the internal model, which is evident in the form of the
notch at the command frequency, as shown in Figure 36. �
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Fig. 35. Example 29: RCAC for the adaptive standard problem with nc =
5n = 20. RCAC approximates the closed-loop frequency response of high-
authority LQG except at DC due to the internal model needed to reject the
step disturbance. The internal model is evident in the form of the notch at
DC corresponding to the closed-loop zero at 1. In addition, the frequency
response of Γ approximates the frequency response of Gf . The frequency-
response plots and closed-loop poles and zeros are shown at step k = 105.
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Fig. 36. Example 30: Command following and stochastic disturbance
rejection for the adaptive servo problem with nc = 8n = 40. RCAC
approximates the closed-loop frequency response of high-authority LQG
except at the command frequency due to the internal model. The internal
model is evident in the form of the notch at the command frequency
corresponding to the closed-loop zeros on the unit circle. The frequency-
response plots and closed-loop poles and zeros are shown at step k = 105.

Example 31. Step command following and stochastic dis-
turbance rejection for the adaptive servo problem. Consider
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the asymptotically stable plant

A =




0.861 1 0 0 0
−0.1612 0.861 −0.3095 −0.3417 0.6314

0 0 0.6718 1 0
0 0 −0.4512 0.6718 0.7302
0 0 0 0 0.5



,

(84)

B =




0
0
0
0
1



, D̄1 =




0.5537
0.0603
−0.5457
0.5596
−0.2806



, D̄2 = 0, D̄0 = 0,

(85)
C̄ = [0.2312 0.3910 − 0.3527 − 0.3894 0.7195],

(86)

where Gu and Gd are minimum phase. Let r be a unit step
command, and let v = 0. We set nc = 4n = 20, and we use
the FIR target model (20). RCAC follows the step command
and approximates the closed-loop frequency response of
high-authority LQG except at DC due to the internal model,
which is evident in the form of the notch at DC, as shown
in Figure 37. �
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Fig. 37. Example 31: Command following and stochastic disturbance
rejection for the adaptive servo problem with nc = 4n = 20. RCAC
approximates the closed-loop frequency response of high-authority LQG
except at DC due to the internal model. The internal model is evident in the
form of the notch at DC corresponding to the closed-loop zero at 1. The
frequency-response plots and closed-loop poles and zeros are shown at step
k = 105.

VI. EFFECT OF SENSOR NOISE

In all examples considered so far in this paper, the
measurement y is not corrupted by noise. In contrast, the
examples in this section consider the adaptive servo problem
where the sensor noise v is stochastic.

Example 32. Pole placement for the adaptive servo prob-
lem with sensor noise. Consider the asymptotically stable,

minimum-phase plant

G(q) =
q2 − 1.4q + 0.85

(q− 0.99)(q2 − 1.6q + 0.89)
. (87)

Let r be a unit step command, and let d = v = 0. We set
Rθ = 10−10 and nc = 4. To place four closed-loop poles at
±0.5 and ±0.6, we use the IIR target model (22) with

Dp(q) = (q + 0.5)(q− 0.5)(q2 + 0.36). (88)

RCAC places closed-loop poles near the locations of
the roots of Dp. Now, let v be nonzero-mean Gaussian
white noise with mean 0.5 and standard deviation σ. For
σ = 0.01, RCAC places closed-loop poles near the locations
of the roots of Dp. However, for σ = 0.1, RCAC fails
to place closed-loop poles near the locations of the roots
of Dp. However, in both cases, the closed-loop system is
asymptotically stable at step k = 100. Asymptotic stability
is also obtained at step k = 100 for σ = 1 and σ = 10 (not
shown). �
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Fig. 38. Example 32: Pole placement for the adaptive servo problem
without sensor noise (upper plots), as well as with sensor noise v with
standard deviation σ = 0.01 (middle plots) and σ = 0.1 (lower plots). For
σ = 0.01, RCAC places closed-loop poles near the locations of the roots
of Dp. However, for σ = 0.1, RCAC fails to place closed-loop poles near
the locations of the roots of Dp. However, in both cases, the closed-loop
system is asymptotically stable at step k = 100. The closed-loop poles and
zeros are shown at step k = 100.

Example 33. Pole placement for the adaptive servo
problem with sensor noise. Consider the unstable, minimum-
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phase plant

G(q) =
q2 − 1.4q + 0.85

(q− 1.1)(q2 − 1.8q + 1.06)
. (89)

Let r be the harmonic command r(k) = cosωk, where ω =
0.3 rad/sample, and let d = v = 0. We set Rθ = 10−10 and
nc = 6. To place four closed-loop poles at 0, 0.5, and ±0.1,
we use the IIR target model (22) with

Dp(q) = q4 − 0.5q3 + 0.01q2 − 0.005q. (90)

RCAC places closed-loop poles near the locations of the
roots of Dp. Now let v be zero-mean Gaussian white noise
with standard deviation σ. For σ = 0.1, RCAC fails to place
closed-loop poles near the locations of the roots of Dp, but
stabilizes the system at step k = 500. For σ = 0.2, RCAC
fails to place closed-loop poles near the locations of the
roots of Dp, and the closed-loop system is unstable at step
k = 500. �
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Fig. 39. Example 33: Pole placement for the adaptive servo problem
without sensor noise (upper plots), as well as with zero-mean Gaussian
white sensor noise v, with σ = 0.1 (middle plots) and σ = 0.2 (lower
plots). In the case where v = 0, RCAC places closed-loop poles near the
locations of the roots of Dp. For σ = 0.1, RCAC fails to place closed-
loop poles near the locations of the roots of Dp, but stabilizes the system.
However, for σ = 0.2, RCAC fails to place closed-loop poles near the
locations of the roots of Dp, and the closed-loop system is unstable at step
k = 500. The closed-loop poles and zeros are shown at step k = 500.

Example 34. Stabilization for the adaptive servo problem
with sensor noise. Consider the unstable, NMP plant from
Example 22 given by (69), for which stabilization requires

an unstable controller. Let r = 0 and d = 0, and let v be
zero-mean Gaussian white noise with standard deviation σ =
0.05. We use the FIR target model (21), and set Rθ = 10−20

and nc = 3. RCAC stabilizes (69) in the presence of sensor
noise, as shown in Figure 40. For σ = 0.15, the closed-loop
system is unstable at step k = 100. �
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Fig. 40. Example 34: Stabilization for the adaptive servo problem with
sensor noise. G̃zw is asymptotically stable at step k = 100. Although
RCAC stabilizes the unstable plant in the presence of sensor noise, RCAC
does not place closed-loop poles at the locations of the poles of Dp. The
closed-loop poles and zeros are shown at step k = 100.

Example 35. Stochastic disturbance rejection for the
adaptive servo problem with sensor noise. Consider the
asymptotically stable, minimum-phase plant

G(q) =
(q2 − 1.6q + 0.73)(q2 − 1.44q + 0.81)

(q− 0.9)(q− 0.95)2(q2 − 1.3q + 0.845)
. (91)

Let v be zero-mean Gaussian white sensor noise with stan-
dard deviation σ = 1. We set kw = 50, Rθ = 10−20, Ru = 0,
nc = 2n = 10, and we use the FIR target model (20). RCAC
does not approximate the closed-loop frequency response
of high-authority LQG. However, RCAC approximates the
closed-loop frequency response of LQG for V2 = 1, as
shown in Figure 41. �

Example 36. Step command following and stochastic
disturbance rejection for the adaptive servo problem with
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Fig. 41. Example 35: Stochastic disturbance rejection for the adaptive servo
problem with zero-mean Gaussian white sensor noise. RCAC approximates
the closed-loop frequency response of LQG for V2 = 1. In addition, the
frequency response of Γ approximates the frequency response of Gf . The
frequency-response plots are shown at step k = 105.

sensor noise. Consider the asymptotically stable plant

A =




0.8882 1 0 0 0
−0.1715 0.8882 −0.3624 −0.3238 0.6679

0 0 0.693 1 0
0 0 −0.4802 0.693 0.7276
0 0 0 0 0.5



,

(92)

B =




0
0
0
0
1



, D1 =




0.5537
0.0603
−0.5457
0.5596
−0.2806



, D̄2 = 0, D̄0 = 0,

(93)
C̄ = [0.2158 0.4234 − 0.3861 − 0.3449 0.7115],

(94)

where Gu and Gd are minimum phase. Let r be a unit step
command, and let v be zero-mean Gaussian white noise
with standard deviation σ = 0.025. We set nc = 8n = 40,
and we use the FIR target model (20). RCAC follows the
step command and approximates the closed-loop frequency
response of LQG except at DC due to the internal model,
which is evident in the form of the notch at DC, as shown
in Figure 42. This example shows that RCAC approximates
the closed-loop frequency response of LQG in the presence
of sensor noise, that is, the closed-loop frequency response
of LQG for V2 = 1. �

VII. ROBUSTNESS TO MODEL ERROR

As shown by the construction of Gf given by (20), (21),
(22), and (23), the modeling information required by RCAC
is dzu, Hdzu , and the NMP zeros of Gzu. In this section we
investigate the effect of modeling errors in this data.
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Fig. 42. Example 36: Command following and stochastic disturbance
rejection for the adaptive servo problem with zero-mean Gaussian white
sensor noise. RCAC approximates the closed-loop frequency response of
LQG for V2 = 1 except at DC due to the internal model. The internal
model is evident in the form of the notch at DC corresponding to the
closed-loop zero at 1. This example shows that RCAC approximates the
closed-loop frequency response of LQG in the presence of sensor noise.
The frequency-response plots and closed-loop poles and zeros are shown at
step k = 105.

Example 37. Erroneous dzu for the adaptive servo
problem. Consider the asymptotically stable, minimum-phase
plant

G(q) =
q− 0.95

(q− 0.85)(q2 − 1.5q + 0.985)
. (95)

Let r be the harmonic command r(k) = cosωk, where
ω = 0.15 rad/sample, and let d = v = 0. We set Rθ = 10
and nc = 6. For G given by (95), dzu = 2. We use the
FIR target model (20), but with dzu replaced by d̂zu,
where d̂zu is an estimate of dzu. Figure 43 shows the
command-following performance for d̂zu = 1, d̂zu = 3,
and d̂zu = 4. For d̂zu = 3 and d̂zu = 4, RCAC follows the
harmonic command. For d̂zu = 1, RCAC does not follow
the harmonic command, and the plant output y0 diverges.
RCAC follows the command for 2 ≤ d̂zu ≤ 4. Moreover,
by using Ru = z2, RCAC follows the command for
1 ≤ d̂zu ≤ 10. This example shows that RCAC is robust to
over-estimates of dzu, but is less robust to under-estimates
of dzu. Note that d̂zu > dzu accounts for an unmodeled
time delay of d̂zu − dzu steps in the sense that, if the
plant experiences an unmodeled time delay of d̂zu − dzu
steps, then d̂zu is the true relative degree. The next example
considers time delay explicitly. �

Example 38. Unmodeled time delay for the adap-
tive servo problem. Consider the asymptotically stable,
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Fig. 43. Example 37: Effect of erroneous relative degree on command-
following performance for the adaptive servo problem. For d̂zu = 3 (upper
left) and d̂zu = 4 (upper right), RCAC follows the harmonic command. For
d̂zu = 1 (lower left), RCAC does not follow the harmonic command, and
the plant output y0 diverges. However, by using the performance-dependent
control weighting Ru = z2 (lower right), RCAC follows the harmonic
command, although the transient response is poor. This example shows
that RCAC is robust to over-estimates of dzu, but is less robust to under-
estimates of dzu.

minimum-phase plant G = GTDG0, where

GTD(q)
4
= q−kd , G0(q) =

q− 0.95

(q− 0.85)(q2 − 1.6q + 0.89)
,

(96)

and GTD represents an unmodeled time delay of kd steps. Let
r be the harmonic command r(k) = cosωk, where ω = 0.35
rad/sample, and let d = v = 0. We set Rθ = 0.03, Ru = z2,
and nc = 10. Since GTD is unmodeled, we use the FIR target
model (20) based on G0. Figure 44 shows the command-
following error e0 for kd = 1, kd = 2, kd = 3, and kd = 4.
RCAC follows the harmonic command in each case. �

Example 39. Erroneous Hdzu for the adaptive servo
problem. Consider the asymptotically stable, minimum-phase
plant

G(q) =
(q− 0.99)(q− 0.90)

(q− 0.95)(q2 − 1.6q + 0.89)
. (97)

Let r be a unit step command, and let d = v = 0. We set
Rθ = 10 and nc = 5. We use the FIR target model (20)
with Hd replaced by Ĥd, where Ĥd is an estimate of the
true value Hd = 1. Figure 45 shows the command-following
performance for Ĥd = −1, Ĥd = 0.1, and Ĥd = 10. RCAC
follows the command for Ĥdzu = 0.1 and Ĥdzu = 10, but
not for Ĥd = −1. This example shows that RCAC is robust
to errors in the magnitude of the estimate of Hd, but is not
robust to errors in the sign of the estimate of Hd. �

Example 40. Unmodeled NMP zero in G for the adaptive
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Fig. 44. Example 38: Unknown time delay for the adaptive servo problem.
For kd = 1 (top left), kd = 2 (top right), kd = 3 (bottom left), and kd = 4
(bottom right). RCAC follows the harmonic command in each case.
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Fig. 45. Example 39: Effect of erroneous Hd on command-following per-
formance for the adaptive servo problem. Command-following performance
in for Ĥd = Hd = 1 (top), Ĥd = 0.1 (middle left), Ĥd = 10 (middle
right), Ĥdzu = −1 (bottom left), and Ĥdzu = −1 with performance-
dependent control weighting Ru = z2 (bottom right). RCAC follows the
command for Ĥd = 0.1 and Ĥd = 10, however, note that the transient
response degrades compared to Ĥd = Hd. For Ĥd = −1, RCAC causes
instability if Ru = 0, but the closed-loop remains asymptotically stable at
step k = 5000 by using Ru (not shown). This example shows that RCAC
is robust to errors in the magnitude of the estimate of Hd, but is not robust
to errors in the sign of the estimate of Hd.

servo problem. Consider the Lyapunov-stable, NMP plant

G(q) =
(q− 1.1)(q− 0.9)

(q− 0.8)(q− 0.95)(q− 1)
. (98)

3404



Let r be a unit step command, and let d = v = 0. We set
Rθ = 1 and nc = 15. We assume that the NMP zero of G
is unmodeled, and we thus use the FIR target model (20)
for minimum-phase plants. Figure 46 shows the command-
following performance. Note that RCAC cancels the NMP
zero of Gzu in order to match the frequency response of
Γ to the frequency response of Gf . Because of unstable
pole-zero cancellation, the output y0 diverges. Next, we use
the performance-dependent control weighting Ru = z2. In
this case, unstable pole-zero cancellation does not occur,
and RCAC follows the command without knowledge of the
unmodeled NMP zero. �
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Fig. 46. Example 40: Unmodeled NMP zero in Gzu and unstable pole-
zero cancellation for the adaptive servo problem. Since Gf does not capture
the NMP zero of Gzu, unstable pole-zero cancellation occurs, and the
closed-loop system is unstable. Using the performance-dependent control
weighting Ru = z2, unstable pole-zero cancellation does not occur, and
RCAC follows the command without knowledge of the unmodeled NMP
zero. The frequency-response plots and closed-loop poles and zeros are
shown at step k = 2000.

Example 41. Unmodeled NMP zero in G for the adaptive
servo problem for unstable G. Consider the unstable, NMP
double integrator

G(q) =
q− 1.15

(q− 1)2
. (99)

Let r be the harmonic command r(k) = cosωk, where
ω = 0.55 rad/sample, and let d = v = 0. We set nc = 10,
Rθ = 104, and Ru = z2. We assume that the NMP zero of
G is unmodeled, and we thus use the FIR target model (20)

for minimum-phase plants. Figure 47 shows the command-
following performance. As z becomes unbounded, the term∑k
i=1 λ

k−iθ̂TΦT
f (i)Ru(i)Φf(i)θ̂ in (24) dominates the re-

maining terms, and u converges to 0. Therefore, the closed-
loop system reverts back to the unstable open-loop system,
and RCAC does not follow the harmonic command. This
example shows that RCAC is not robust to unmodeled NMP
zeros for unstable systems, despite using the performance-
dependent control weighting Ru = z2. �
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Fig. 47. Example 41: Unmodeled NMP zero in G for the adaptive
servo problem. RCAC does not follow the harmonic command, and as z
becomes unbounded, the closed-loop system tends to the unstable open-loop
system. This example shows that RCAC is not robust to unmodeled NMP
zeros for unstable systems, despite using the performance-dependent control
weighting Ru = z2.

Example 42. Erroneous NMP-zero locations for the
adaptive servo problem. Consider the asymptotically stable,
NMP plant

G(q) =
(q− 0.85)(q− 0.90)(q− 1.1)

(q− 0.95)2(q2 − 1.4q + 0.98)
. (100)

Let r be the harmonic command r(k) = cosωk, where
ω = 0.4 rad/sample, and let d = v = 0. We use the target
model Gf(q) =

Hdzu (q−1.265)
q2 , where the estimate 1.265 of

the NMP zero 1.1 is erroneous by 15%, and set Rθ = 30
and nc = 8. Figure 48 shows the command-following
performance. In this example, the error in the NMP zero
estimate can be increased to approximately 32% above the
true value without causing instability. �
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Fig. 48. Example 42: Erroneous NMP-zero locations for the adaptive servo
problem. RCAC follows the command and develops an internal model of
the command despite a 15% error in the estimate of the NMP zero used by
the Gf . In this example, the error in the NMP zero estimate can be increased
to approximately 32% above the true value without causing instability. The
controller poles are shown at step k = 1000.
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VIII. APPLICATION TO CONTROL SATURATION

We now investigate the performance of RCAC in the
presence of control magnitude and rate saturation, as shown
in Figure 49. The output of RCAC is the requested control
ur(k), and the input to the plant is the actual control u(k).
In all examples, the regressor Φ(k) contains u(k). This
means that either the nonlinearity is known or its output is
measured. The case where the nonlinearity is unknown and
its output is not measured is considered in [21].

r
Gc,k

[Gd Gu]ur u

d

−

z

z0

v
yn

−
y0

Fig. 49. Adaptive servo problem with control magnitude and rate saturation.

Example 43. Magnitude saturation for the adaptive servo
problem. Consider the unstable, NMP double integrator

G(q) =
q− 1.05

(q− 1)2
. (101)

Let r be the ramp command r(k) = 0.1k. We set nc = 12,
Rθ = 10−3, and we use the FIR target model (21). The
control u is magnitude-saturated at ±2. Figure 50 shows
that RCAC follows the command despite the magnitude
saturation. Next, u is magnitude-saturated at ±0.5. In this
case, RCAC cannot follow the ramp command, but the error
remains bounded. �
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Fig. 50. Example 43: Magnitude saturation for the adaptive servo
problem. RCAC follows the command despite the magnitude saturation. The
performance degrades as the control magnitude saturation limits is decreased
from 2.0 and 0.5. The command-following error e0 diverges for a saturation
limit of 0.05.

Example 44. Control magnitude and rate saturation for
the adaptive servo problem. Consider the unstable, NMP
double integrator (101). Let r be the ramp command r(k) =
0.1k. We set nc = 12 and Rθ = 10−3, and we use the FIR
target model (21). The control u is magnitude-saturated at
±2 and rate-saturated at ±1.5, which means that the one-step
change in the control signal is magnitude-saturated at 1.5.
Despite the magnitude and rate saturation, Figure 51 shows
that RCAC follows the command, but more time is needed
to reach zero error. Next, the rate saturation is decreased to
±1. In this case, RCAC cannot follow the ramp command,
and the command-following error e0 diverges. �
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Fig. 51. Example 44: Control magnitude and rate saturation for the adaptive
servo problem. Despite the magnitude and rate saturation, RCAC follows the
command, but the time taken to reach zero error is longer than in the case
where u is not saturated. In the case where the rate saturation is decreased to
±1, RCAC cannot follow the ramp command, and the command-following
error e0 diverges.

Example 45. Magnitude and rate saturation for the
adaptive servo problem. Consider the unstable, NMP triple
integrator

G(q) =
(q− 1.075)(q− 0.95)

(q− 1)3
. (102)

Let r be the ramp command r(k) = k. We set nc = 10,
Rθ = 10−2, and Ru = 0, and we use the FIR target model
(21). The control u is magnitude-saturated at ±200 and rate-
saturated at ±160. Despite the magnitude and rate saturation,
Figure 52 shows that RCAC follows the command. Note
that this example demonstrates saturated control of the triple
integrator using output feedback. In contrast, [45], [46] use
full-state feedback. �

Example 46. Magnitude saturation for the adaptive servo
problem. Consider the asymptotically stable, minimum-phase
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Fig. 52. Example 45: Magnitude and rate saturation for the adaptive
servo problem. Despite the magnitude and rate saturation, RCAC follows
the command.

plant from [47]

G(q) =
q2 − 0.4q + 0.29

(q2 − q + 0.5)(q− 0.9)
. (103)

Let r be a square wave with unit amplitude and with period
1000 steps, and let d = v = 0. Consider the fixed-gain
controller

GPI(q) = 0.2 +
0.02

q− 1
. (104)

Figure 53 shows the command-following performance for
GPI with u unsaturated and with u magnitude-saturated at
±0.03. Note that, in the case where u is magnitude-saturated,
the asymptotic error is nonzero and the requested control
ur exhibits integrator windup. The windup causes phase lag
in y0 relative to the command. Next, we use RCAC with
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Fig. 53. Example 46: For unsaturated u (upper plots), GPI follows the
command, and the asymptotic error is zero. For u saturated at ±0.03 (lower
plots), the asymptotic error is nonzero, and the unsaturated control signal
ur exhibits integrator windup.

nc = 10, Rθ = 1, and the FIR target model (20). The
control u is magnitude-saturated at ±0.03. Figure 54 shows
the command-following performance. RCAC develops an
internal model in the form of an integrator (not shown). Due
to the magnitude saturation, the asymptotic error is nonzero.
However, RCAC does not exhibit integrator windup, and y0

remains in phase with r. �

Example 47. Deadzone for the adaptive servo problem.
Consider the asymptotically stable, MP plant given by (95).
Let r be a harmonic command with amplitude 3 and fre-
quency ω = 0.45 rad/sample, and let d = v = 0. We use
the FIR target model (20), and set nc = 12 and Rθ = 0.5.
Figure 55 shows the command-following performance, with

0 2000 4000 6000 8000
Time Step

-1

-0.5

0

0.5

1

y
0
(k

)

r

y0

0 2000 4000 6000 8000
Time Step

-0.5

0

0.5

1

3
(k

)

0 2000 4000 6000 8000
Time Step

-1.5

-1

-0.5

0

0.5

1

1.5

u
(k

)

u

ur

Fig. 54. Example 46: Magnitude saturation for the adaptive servo problem.
RCAC develops an internal model in the form of an integrator (not shown).
Due to the magnitude saturation, the asymptotic error is nonzero. However,
RCAC does not exhibit integrator windup.

and without control deadzone. �
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Fig. 55. Example 47: Deadzone for the adaptive servo problem. The control
u has a deadzone of ±0.2. RCAC follows the command and develops an
internal model of the command, despite the deadzone.

Example 48. Cubic nonlinearity for the adaptive servo
problem. Consider the asymptotically stable, MP plant given
by (95), let r be the harmonic command r(k) = cosωk,
where ω = 0.45 rad/sample, and let d = v = 0. We use
the FIR target model (20), and set nc = 12 and Rθ = 0.5.
Figure 56 shows the command-following performance, with
and without cubic nonlinearity. �

IX. CONCLUSIONS

This paper described the rationale and motivation for
RCAC, provided a concise description of this adaptive feed-
back control algorithm, and presented a diverse collection of
examples to illustrate some of the features of RCAC. The
examples show the effect of the tuning parameters, the mod-
eling requirements of RCAC, and the robustness of RCAC
to mismodeled and unmodeled dynamics. Some of these
features are well understood based on the current theoretical
development of RCAC. Others, however, are empirical, and
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Fig. 56. Example 48: Effect of cubic nonlinearity on command-following
performance for (95).

much theoretical work remains to be done to establish a fully
developed foundation for this technique. The goal of this
paper has thus been to provide a comprehensive tutorial of
RCAC as an adaptive control technique with enough detail to
convey the potential of this method in diverse applications.
RCAC is based on re-optimization of the controller, which
is a variation of quadratic optimization that is effective with
surprisingly little modeling information. This technique has
application beyond adaptive control, for example, in system
identification and state estimation. To this extent, RCAC can
lead to new algorithms that may be effective for a wide range
of problems in systems and control theory.

APPENDIX

It is shown in [20], [48] that the closed-loop poles of
high-authority LQG control without sensor noise converge to
locations that depend on the zeros of Gzu and Gyw. Consider
the factorizations of the numerators Nzu and Nyw of Gzu
and Gyw, respectively, given by

Nzu(q) = Nzu,s(q)Nzu,u(q), (105)
Nyw(q) = Nyw,s(q)Nyw,u(q), (106)

where the roots of Nzu,s(q) and Nyw,s(q) are minimum-
phase zeros and the roots of Nzu,u(q) and Nyw,u(q) are
NMP zeros. Let dzu denote the relative degree of Gzu and let
dyw denote the relative degree of Gyw. Then the closed-loop
poles of high-authority LQG control without sensor noise are
the roots of

D̃(q) = qdzu+dywNzu,s(q)Nzu,u(1/q)Nyw,s(q)Nyw,u(1/q).
(107)

Note that the zeros of Nzu,u(1/q) are the reflections across
the unit circle of the NMP zeros of Gzu, that is, reciprocals.
For example, if Nzu,u(q) = q − 1.2, then Nzu,u(1/q) =
q− 1

1.2 .
Example A1: High-authority LQG control without sensor

noise for a plant with y 6= z and with w not matched with
u. Consider the asymptotically stable plant with y 6= z, and
with w not matched with u, shown in Figure 57. We apply
LQG to this plant with zero control cost weighting. The
resulting closed-loop pole locations are shown in Figure
57. �
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Fig. 57. Example A1: High-authority LQG control without sensor noise
for a plant with y 6= z and with w not matched with u. The closed-loop
transfer function G̃zw has poles at the minimum-phase zeros of Gzu and
Gyw and at the reflections of the NMP zeros of Gzu and Gyw . Each
remaining closed-loop pole is either canceled by a closed-loop zero or is
located at zero.

Example A2: High-authority LQG control without sensor
noise for a plant with y = z and with w matched with u.
Consider the asymptotically stable plant with y = z and
with w matched with u, shown in Figure 58. We apply LQG
to this plant with zero control cost weighting. The resulting
closed-loop pole locations are shown in Figure 58. �
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Fig. 58. Example A2: High-authority LQG control without sensor noise for
a plant with y = z and with w matched with u. Note that, in this case, the
closed-loop transfer function G̃zw has double poles at the minimum-phase
zeros of the plant and double poles at the reflections of NMP zeros of the
plant. Each remaining closed-loop pole is either canceled by a closed-loop
zero or is located at zero.
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