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Abstract— We investigate a NARMAX controller structure
involving hysteretic nonlinearities. A weighted combination of
backlash nonlinearities constitutes a Prandtl-Ishlinskii hys-
teresis model. The rationale for using a Prandtl-Ishlinskii
NARMAX (PIN) controller is due to the fact that the describing
function of a backlash nonlinearity has both gain and phase
shift. By combining backlash nonlinearities into a NARMAX
control law it is reasonable to expect that arbitrary gain and
phase shift can be attained by adaptively updated controller
coefficients.

I. INTRODUCTION

Hysteresis arises naturally in a wide variety of phenomena,
from biological to engineering systems [1][2]. Hysteresis
is beneficial when the objective is energy dissipation, but
may degrade performance when hysteretic actuators are used
for precision motion control [3][4]. As a feedback control
element, hysteretic control laws are often used intentionally.
For example, thermostats are typically employed to avoid
chattering, which can damage on-off actuators [5]. Hysteretic
actuators also help avoid chattering due to noise in switching
controllers [5].

In the present paper we investigate a NARMAX controller
structure involving hysteretic nonlinearities. NARMAX con-
trollers are ARMAX control laws with nonlinear functions
of the past inputs and outputs [6][7]. Although NARMAX
control laws are nonlinear, they are linear in the controller
parameters, which facilitates their use in control and identi-
fication. In the present paper we consider NARMAX control
laws with backlash nonlinearities. A weighted combination
of backlash nonlinearities constitutes a Prandtl-Ishlinskii
hysteresis model [13][14]. Consequently, the control law we
consider is a Prandtl-Ishlinskii NARMAX (PIN) controller.

The rationale for using the PIN controller is due to the fact
that the describing function of a backlash nonlinearity has
both gain and phase shift. By combining backlash nonlinear-
ities into a NARMAX control law it is reasonable to expect
that arbitrary gain and phase shift can be attained by suitable
choice of controller coefficients. The PIN control law would
then be applicable to command-following problem involving
harmonic exogenous signals. Unfortunately, no guidelines
are known for tuning a PIN control law. Consequently, in
the present paper we adopt an adaptive control approach,
where we let the adaptation mechanism tune the coefficients
of the PIN control based on the closed-loop performance.
For this purpose we use retrospective cost adaptive control
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(RCAC), which uses measurements of past performance to
update the controller coefficients [9].

The objective of this paper is to numerically investigate the
feasibility of using the adaptively tuned PIN control law for
command-following problem involving harmonic exogenous
signals. We thus consider a collection of examples that
are chosen to illustrate the performance of the combined
RCAC/PIN controller. We are particularly interested in exam-
ining the speed of adaptation, the transient and steady-state
performance, the ability of RCAC/PIN to stabilize unstable
systems, and the performance of RCAC/PIN in the presence
of nonminimum-phase zeros.

The contents of the paper are as follows. In Section II,
we formulate the problem. Section III presents the Prandtl-
Ishlinskii NARMAX (PIN) controller. Section IV presents
the simulation results. Section V concludes the paper.

II. PROBLEM FORMULATION

In this section we consider

x(k + 1) = Ax(k) +BN (u(k)), (1)
v(k) = N (u(k)), (2)
y(k) = Cx(k), (3)
z(k) = r(k)− y(k), (4)

where N : R → R and the linear plant G. The goal
is to develop an adaptive output feedback controller that
minimizes the command-following error z with minimal
modeling information about the plant G, and input nonlinear-
ity N . We assume that measurements of y(k) are available
for feedback; however, measurements of v(k) = N (u(k))
are not available.

III. A DESCRIBING-FUNCTION FOR THE
PRANDTL-ISHLINSKII HYSTERESIS

In this section a describing function for the Prandtl-
Ishlinskii Hysteresis is presented. Let w(k) = Re{AweΩk},
where Aw is a complex number. For i = 1, . . . , n, let

ui(k) = Φdi [w](k). (5)

For |Aw| > di,

ui(k) ∼= Re
{
|Aw||Fi(|Aw|)|e(Ωk+∠Fi(|Aw|))

}
, (6)

where the amplitude |Fi(|Aw|)| and phase ∠Fi(|Aw|) of the
describing function of the backlash operator are given by
[11]

|Fi(|Aw|)| =
1

|Aw|
√
ai2 + bi2, (7)
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∠Fi(|Aw|) = tan−1 ai
bi
, (8)

where

ai
4
=

2di
π

(ηρi − 1) , (9)

bi
4
=
|Aw|
π

(π
2
− sin−1 ηρi − ηρi

√
1− η2

ρi

)
, (10)

where
ηρi
4
=

2di
|Aw|

− 1.

The describing function of the Prandtl-Ishlinskii hysteresis
model is given approximately by

H(Ω, |Aw|)
4
=

n∑
i=1

κiRe
{
|Fi(|Aw|)|e(∠Fi(|Aw|))

}
. (11)

Then, the output of the Prandtl-Ishlinskii hysteresis model is
thus given approximately by

u(k)
4
=

n∑
i=1

κiRe
{
Aw|Fi(|Aw|)|e(Ωk+∠Fi(|Aw|))

}
. (12)

The describing function of the Prandtl-Ishlinskii hystere-
sis has both gain and phase shift. By combining Prandtl-
Ishlinskii nonlinearity into a NARMAX control law it is
reasonable to expect that arbitrary gain and phase shift can be
attained by suitable choice of controller coefficients. The PIN
control law would then be applicable to command-following
problem involving harmonic exogenous signals.

IV. PRANDTL-ISHLINSKII NARMAX (PIN)
CONTROLLER

In this section we present the Prandtl-Ishlinskii NARMAX
(PIN) controller. Consider the controller of order nc given
by

u(k) = κ1u(k − 1) +

nc∑
i=2

κi(k)Φri [z](k − 1), (13)

where, for all i = 1, . . . , nc and κi(k) ∈ R and

Φri [z](k − 1) = (14)
max(z(k − 1)−di,min(z(k − 1)− di, ξi(k − 2))),

where
ξi(k − 2) = Φri [z](k − 2).

The control (13) can be expressed as

u(k) = θ(k)φ(k − 1),

where

θ(k)
4
=
[
κ1(k) · · ·κnc(k)

]
is the controller gain matrix θ(k) ∈ Rnc , and the regressor
vector φ(k) ∈ Rnc is given by

φ(k − 1)
4
= [u(k − 1) Φr2 [z](k − 1) · · · Φrnc

[z](k − 1)]T.

A. Retrospective Cost Adaptive Control

We use retrospective cost adaptive control (RCAC), which
uses measurements of past performance to update the con-
troller coefficients of the Prandtl-Ishlinskii NARMAX (PIN)
controller. For i ≥ 1, define the Markov parameter

Hi
4
= CAi−1B.

For example, H1 = CB and H2 = CAB. Let ` be a positive
integer. Then, for all k ≥ `,

x(k) = A`x(k − `) +
∑̀
i=1

Ai−1BN (sat(u(k − i))), (15)

and thus

z(k) = CA`x(k − `)− r(k) + H̄Ū(k − 1), (16)

where

H̄
4
=
[
H1 · · · H`

]
∈ R1×`

and

Ū(k − 1)
4
=

 N
(
sat(u(k − 1))

)
...

N
(
sat(u(k − `))

)
 .

Next, we rearrange the columns of H̄ and the components
of Ū(k− 1) and partition the resulting matrix and vector so
that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (17)

where H′ ∈ R1×(`−lU ), H ∈ R1×lU , U ′(k − 1) ∈ R`−lU ,
and U(k − 1) ∈ RlU . Then, we can rewrite (16) as

z(k) = S(k) +HU(k − 1), (18)

where

S(k)
4
= CA`x(k − `)− r(k) +H′U ′(k − 1). (19)

Next, for j = 1, . . . , s, we rewrite (18) with a delay of kj
time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (20)

where (19) becomes

Sj(k − kj)
4
= E1A

`x(k − kj − `) +H′jU ′j(k − kj − 1)

and (17) becomes

H̄Ū(k − kj − 1) = H′jU ′j(k − kj − 1) +HjUj(k − kj − 1),

where H′j ∈ R1×(`−lUj
), Hj ∈ R1×lUj , U ′j(k − kj − 1) ∈

R`−lUj , and Uj(k−kj−1) ∈ RlUj . Now, by stacking z(k−
k1), . . . , z(k − ks), we define the extended performance

Z(k)
4
=

 z(k − k1)
...

z(k − ks)

 ∈ Rs. (21)
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Therefore,

Z(k)
4
= S̃(k) + H̃Ũ(k − 1), (22)

where

S̃(k)
4
=

 S1(k − k1)
...

Ss(k − ks)

 ∈ Rs,

Ũ(k − 1) has the form

Ũ(k − 1)
4
=

 N
(
sat(u(k − q1))

)
...

N
(
sat(u(k − qlŨ ))

)
 ∈ RlŨ ,

where, for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks+`, and H̃ ∈ Rs×lŨ is
constructed according to the structure of Ũ(k−1). The vector
Ũ(k− 1) is formed by stacking U1(k− k1− 1), . . . , Us(k−
ks− 1) and removing copies of repeated components. Next,
for j = 1, . . . , s, we define the retrospective performance

ẑj(k − kj)
4
= Sj(k − kj) +HjÛj(k − kj − 1), (23)

where the past controls Uj(k − kj − 1) in (20) are replaced
by the retrospective controls Ûj(k − kj − 1). In analogy
with (21), the extended retrospective performance for (23) is
defined as

Ẑ(k)
4
=

 ẑ1(k − k1)
...

ẑs(k − ks)

 ∈ Rs

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃U(k − 1), (24)

where the components of ˆ̃U(k−1) ∈ RlŨ are the components
of Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) ordered in the same
way as the components of Ũ(k − 1). Subtracting (22) from
(24) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃ ˆ̃U(k − 1). (25)

Finally, we define the retrospective cost function

J( ˆ̃U(k − 1), k)
4
= ẐT(k)R(k)Ẑ(k), (26)

where R(k) ∈ Rs×s is a positive-definite performance
weighting. The goal is to determine refined controls ˆ̃U(k −
1) that would have provided better performance than the
controls U(k) that were applied to the system. The refined
control values ˆ̃U(k− 1) are subsequently used to update the
controller. Next, to ensure that (26) has a global minimizer,
we consider the regularized cost

J̄( ˆ̃U(k − 1), k)
4
= ẐT(k)R(k)Ẑ(k)

+ η(k) ˆ̃UT(k − 1) ˆ̃U(k − 1), (27)

where η(k) ≥ 0. Substituting (25) into (27) yields

J̄( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1) (28)

+ B(k) ˆ̃U(k − 1) + C(k),

where

A(k)
4
= H̃TR(k)H̃+ η(k)IlŨ ,

B(k)
4
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)],

C(k)
4
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1).

If either H̃ has full column rank or η(k) > 0, then A(k) is
positive definite. In this case, J̄( ˆ̃U(k− 1), k) has the unique
global minimizer

ˆ̃U(k − 1) = −1

2
A−1(k)B(k). (29)

Next, let d be a positive integer such that Ũ(k− 1) contains
u(k − d) and define the cumulative cost function

JR(θ, k)
4
=

k∑
i=d+1

λk−i‖φT(i− d− 1)θT(k)− ûT(i− d)‖2

+ λk(θ(k)− θ0)P−1
0 (θ(k)− θ0)T, (30)

where ‖ · ‖ is the Euclidean norm, and λ ∈ (0, 1] is the
forgetting factor. Minimizing (30) yields

θT(k) = θT(k − 1) + β(k)P (k − 1)φ(k − d− 1)

· [φT(k − d)P (k − 1)φ(k − d− 1) + λ(k)]−1

· [φT(k − d− 1)θT(k − 1)− ûT(k − d)],

where β(k) is either zero or one. The error covariance is
updated by

P (k) = β(k)λ−1P (k − 1) + [1− β(k)]P (k − 1)

− β(k)λ−1P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d) + λ]−1

· φT(k − d− 1)P (k − 1).

We initialize the error covariance matrix as P (0) = αI2nc
,

where α > 0. Note that when β(k) = 0, θ(k) = θ(k−1) and
P (k) = P (k − 1). Therefore, setting β(k) = 0 switches off
the controller adaptation, and thus freezes the control gains.
When β(k) = 1, the controller is allowed to adapt.

B. The Phase Shift

We use the phase shift between the command input r(k)
and the output y(k) and the command-following error z(k)
to investigate whether the output of the Prandtl-Ishlinskii
NARMAX (PIN) controller inverts the Hammerstein system
consisting of the linear plant G(z) and a memoryless or
hysteretic nonlinearity. To assess performance, we consider
the phase shift of the most significant harmonic component
in the output v(k).
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V. NUMERICAL EXAMPLES

A. Numerical Examples: Linear systems

In this section we consider

x(k + 1) = Ax(k) +Bu(k), (31)
y(k) = Cx(k), (32)
z(k) = r(k)− y(k), (33)

which may be stable or unstable.
Example 5.1: We consider the command r(k) =

2 sin(ωk) + sin(ω2 k), where ω = π
10 rad/sample with the

asymptotically stable linear plant G(z) = z−0.5
(z−0.9)(z−0.6) . We

use the Prandtl-Ishlinskii NARMAX (PIN) controller with
nc = 8 and P0 = 0.01. Figure 1 shows the simulation results.
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Fig. 1. Example 5.1: (a) shows the error for the command signal r(k) =
2 sin(ωk) + sin(ω

2
), where ω = π

10
rad/sample and the asymptotically

stable linear plant G(z) = z−0.5
(z−0.9)(z−0.6)

. (b) shows the evolution of the
controller coefficients θ, (c) shows r(k) versus u(k), and (d) shows u(k)
versus y(k).

Example 5.2: We consider the command r(k) =
2 sin(ωk) + sin(ω2 k), where ω = π

10 rad/sample with the
Lyapunov stable plant G(z) = 1

z−1 . We use the Prandtl-
Ishlinskii NARMAX (PIN) controller with nc = 8 and
P0 = 0.01. Figure 2 shows the simulation results. �

Example 5.3: We consider the command r(k) =
2 sin(ωk) + sin(ω2 k), where ω = π

10 rad/sample with the
unstable plant G(z) = z−0.5

(z−1.1)(z−0.6) . We use the Prandtl-
Ishlinskii NARMAX (PIN) controller with nc = 8 and
P0 = 0.01. Figure 3 shows the simulation results. �

B. Numerical Examples: Hammerstein systems with memo-
ryless nonlinearities

In this section we consider Hammerstein systems with
memoryless nonlinearities.

Example 5.4: We consider the following saturation non-
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Fig. 2. Example 5.2: (a) shows the error for the command signal r(k) =
2 sin(ωk) + sin(ω

2
k), where ω = π

10
rad/sample and the asymptotically

stable linear plant G(z) = z−0.5
(z−0.9)(z−0.6)

. (b) shows the evolution of the
controller coefficients θ, (c) shows r(k) versus u(k), and (d) shows u(k)
versus y(k).

0 500 1000 1500 2000
−3

−2

−1

0

1

2

3

time step k

er
ro

r 
 z

(k
)

β=1β=0

(a)

0 500 1000 1500 2000
−0.6

−0.4

−0.2

0

0.2

0.4

time step (k)

θ(
k)

β=1β=0

(b)

−3 −2 −1 0 1 2 3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

r(k)

y(
k)

−163.97o

(c)

−0.2 −0.1 0 0.1 0.2
−3

−2

−1

0

1

2

3

u(k)

y(
k)

161.62o

(d)

Fig. 3. Example 5.3:(a) shows the error for the command signal
r(k) = 2 sin(ωk) + sin(ω

2
), where ω = π

10
rad/sample and the unstable

plant G(z) = z−0.5
(z−1.1)(z−0.6)

. (b) shows the evolution of the controller
coefficients θ, (c) shows r(k) versus u(k), and (d) shows u(k) versus
y(k).

linearity

N
(
u
)

=


κ, if u ≥ κ,
u, if − κ ≤ u ≤ κ,
−κ if u ≤ κ,

(34)

where κ = 0.1. We consider the command r(k) =
3 sin(ωk) + 2 sin(ω2 k), ω = π

10 rad/sample with the Lya-
punov stable plant G(z) = 1

z−1 . We use the Prandtl-Ishlinskii
NARMAX (PIN) controller with nc = 8 and P0 = 0.1.
Figure 4 shows the simulation results. �

Example 5.5: We consider the deadband nonlinearity

N
(
u
)

=

{
u, if u ≥ σ or u ≤ −σ,
0, if − σ ≤ u ≤ σ,

(35)
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Fig. 4. Example 5.4:(a) shows the command following error z with the
Lyapunov stable plant G(z) = 1

z−1
and the saturation nonlinearity (34),

(b) shows the control signal u(k), (c) shows the evolution of the controller
coefficients θ, (d) shows the output y(k), (e) shows r(k) versus u(k), (f)
shows u(k) versus y(k).

where σ = 0.2. We consider the command r(k) =
3 sin(ωk) + 2 sin(ω2 k), ω = π

10 rad/sample with the Lya-
punov stable plant G(z) = 1

z−1 . We use the Prandtl-Ishlinskii
NARMAX (PIN) controller with nc = 8 and P0 = 0.1.
Figure 5 shows the simulation results. �

C. Numerical Examples: Hammerstein systems with hys-
teretic nonlinearities

In this section we consider the Hammerstein systems with
hysteretic nonlinearities.

Example 5.6: We consider the backlash nonlinearity

v(k) = max{u(k)− dη,min{u(k) + dη, v(k − 1)}}, (36)

with

v(1) = max{u(1)− dη,min{u(1) + dη, 0}}, (37)

where dη = 0.2. We consider the command r(k) =
3 sin(ωk) + 2 sin(ω2 k), ω = π

10 rad/sample with the Lya-
punov stable plant G(z) = 1

z−1 . We use the Prandtl-Ishlinskii
NARMAX (PIN) controller with nc = 8 and P0 = 0.1.
Figure 6 shows the simulation results. �

Example 5.7: We consider the sampled-data Duhem
hysteresis model

v̇(t) = κ1|u̇(t)|(κ2u(t)− v(t)) + κ3u̇(t), (38)

where the positive constants κ1 = 1, κ2 = 2, and κ3 = 1
determine the shape and the area of the hysteresis loop. The
model (38) is implemented using Simulink with sampling
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Fig. 5. Example 5.5: (a) shows the command following error z with the
Lyapunov stable plant G(z) = 1

z−1
and the saturation nonlinearity (34),

(b) shows the control signal u(k), (c) shows the evolution of the controller
coefficients θ, (d) shows the output y(k), (e) shows r(k) versus u(k), (f)
shows u(k) versus y(k).
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Fig. 6. Example 5.6: (a) shows the command following error z with the
Lyapunov stable plant G(z) = 1

z−1
and backlash nonlinearity (36), (b)

shows the control signal u(k), (c) shows the evolution of the controller
coefficients θ, (d) shows the output y(k), (e) shows r(k) versus u(k), (f)
shows u(k) versus y(k).
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time Ts. We consider the command r(k) = 3 sin(ωk) +
2 sin(ω2 k) + sin( 10ω

6 k), ω = π
10 rad/sample with the stable

plant G(z) = z−0.8
(z−0.3)(z−0.6) . We use the adaptive Prandtl-

Ishlinskii controller with nc = 8 and P0 = 0.1. Figure 7
shows the simulation results. �
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Fig. 7. Example 5.7: (a) shows the command following error z, (b) shows
the control signal u(k), (c) shows the evolution of the controller coefficients
θ, (d) shows the output y(k), (e) shows r(k) versus u(k), (f) shows u(k)
versus y(k).

Example 5.8: We consider the sampled-data Bouc-Wen
hysteresis model

v̇(t) = κ1u̇(t)− κ2|u̇(t)||v(t)|n−1v(t)− κ3u̇(t)|v(t)|n,
(39)

where the positive constants κ1 = 1, κ2 = 2, κ3 =
0.1, and n = 2 determine the shape and the area of
the hysteresis loop. The model (39) is implemented using
Simulink with sampling time Ts. We consider the command
r(k) = 0.3 sin(ωk) + 0.2 sin(ω2 k) + 0.3 sin( 10ω

6 k), ω = π
10

rad/sample with the stable plant G(z) = z−0.8
(z−0.3)(z−0.6) . We

use the Prandtl-Ishlinskii NARMAX (PIN) controller with
nc = 8 and P0 = 0.1. Figure 8 shows the simulation results.

�

VI. CONCLUSIONS

The numerical investigation is carried out to show that the
proposed Prandtl-Ishlinskii NARMAX (PIN) control law can
achieve internal model control in the presence of the plant
input nonlinearities. In the future work, theoretical studies
will be carried out.

0 200 400 600 800 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time step k

 z
(k

)

β=1
β=0

(a)

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

time step k

θ(
k)

β=1
β=0

(b)

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.6

u(k)

y(
k)

4.109o

(c)

−0.5 0 0.5
−0.4

−0.2

0

0.2

0.4

r(k)

u(
k)

−3.885o

(d)

Fig. 8. Example 5.8: (a) shows the command following error z, (b) shows
the control signal u(k), (c) shows the evolution of the controller coefficients
θ, (d) shows the output y(k), (e) shows r(k) versus u(k), (f) shows u(k)
versus y(k).

REFERENCES

[1] D. Angeli, J. Ferrell,and E. Sontag, “Detection of multistability,
bifurcations, and hysteresis in a large class of biological positive-
feedback systems,” Proc Natl Acad Sci, vol. 101, no. 7, pp. 1822-1827,
2004.

[2] J. Kopfov, “Hysteresis in biological models,” J. Phys.: Conf. Series,
vol. 55, pp. 130-134, 2006.
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