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Abstract— We design an adaptive controller for a quadrotor
UAV transporting a point-mass payload connected by a flexible
cable modeled as serially-connected rigid links. The mass of
the payload is uncertain. The objective is to transport the
payload to a desired position while aligning the links along the
vertical direction from an arbitrary initial condition. A fixed-
gain nonlinear proportional-derivative controller is presented
to achieve the desired performance for a nominal payload
mass, and a retrospective cost adaptive controller is used to
compensate for the payload mass uncertainty.

I. INTRODUCTION

Quadrotor unmanned aerial vehicles have the desirable
capabilities of hovering and vertical take-off and landing.
They have been envisaged for various applications, including
mobile sensor network, aerial photography, and educational
research. In particular, several aggressive maneuvers have
been demonstrated by utilizing their high thrust-to-weight
ratio [1]–[3].

Autonomous aerial transportation of a cable-suspended
load has been studied traditionally for helicopters [4], [5].
Small-size single or multiple autonomous vehicles are con-
sidered for load transportation and deployment [6]–[8]. How-
ever, these results are based on a simplified dynamic model,
where the dynamic effects of the payload on the quadrotor
are approximated by unstructured disturbances without con-
sidering the dynamic coupling between the payload and the
quadrotor. As such, they may not be suitable for rapid load
transportation, where the dynamics of the payload can be
excited significantly.

A coordinate-free form of the equations of motion is devel-
oped in [9] for the integrated dynamics of a quadrotor, cable,
and payload. Based on this complete dynamic model, geo-
metric tracking control systems are constructed for a single
quadrotor transporting a cable-suspended point mass [9], and
for a cooperative group of quadrotors transporting a common
payload connected by multiple cables, while controlling the
relative formation among them [10]. It is further generalized
to the case where a payload is connected to a quadrotor via
a flexible cable [11].
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Fig. 1. Quadrotor UAV with a cable-suspended load. The cable is modeled
as a serial connection of an arbitrary number of links (We show 5 links here
as an example). It is assumed that the mass of the payload is unknown.

These approaches incorporate the dynamic coupling be-
tween the payload and the quadrotor explicitly in the control
system design and stability analysis. However, it is assumed
that the mass of the payload is exactly known. If various
payloads with a broad range of mass properties must be
delivered at low cost, then it is desirable that the quadrotor
transports the payload autonomously without relying on the
exact knowledge of the payload mass.

The objective of this paper is to design an adaptive con-
trol system for a quadrotor that delivers a cable-suspended
payload without knowledge of the payload mass. The cable
is modeled as serially-connected rigid links and the pay-
load is modelled as a point-mass. A fixed-gain geometric
nonlinear PD controller is first presented to achieve desired
performance for a nominal payload mass. Retrospective cost
adaptive control (RCAC) is then constructed to compensate
for the payload mass uncertainty.

RCAC is a direct adaptive control technique that re-
quires limited modeling information [12]–[14]. The algo-
rithm has been applied to various dynamic systems, such
as aircraft [14], multiple linkages [15], [16], and spacecraft
attitude dynamics [17]. RCAC is based on optimizing the
retrospective performance, which re-optimizes the current
controller based on past data. This strategy enables RCAC to
control a system based on a simplified input-output relation
instead of a detailed state-space model. In this paper, RCAC
uses components of the impulse response of the quadrotor
with a fixed-gain controller in the loop.

II. DYNAMIC MODEL OF A QUADROTOR WITH A
FLEXIBLE CABLE

Consider a quadrotor UAV with a payload that is con-
nected by a chain of n links, as illustrated at Fig. 1. The
inertial frame is defined by the unit vectors e1

4
= [1 0 0]T,

e2
4
= [0 1 0]T, and e3

4
= [0 0 1]T ∈ R3, and the third axis e3
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corresponds to the direction of gravity. Define a body-fixed
frame {~b1,~b2,~b3} whose origin is located at the center of
mass of the quadrotor, and its third axis ~b3 is aligned with
the axis of symmetry of the quadrotor.

The location of the mass center, and the attitude of the
quadrotor are denoted by x

4
= [x1 x2 x3]T ∈ R3 and

R ∈ SO(3), respectively, where the special orthogonal group
is SO(3)

4
= {R ∈ R3×3 |RTR = I3, detR = 1}.

A rotation matrix represents the linear transformation of a
representation of a vector from the body-fixed frame to the
inertial frame.

The dynamic model of the quadrotor is identical to [1].
The mass and the inertia matrix of the quadrotor are denoted
by m ∈ R and J ∈ R3×3, respectively. The quadrotor can
generate a thrust −fRe3 ∈ R3 relative to the inertial frame,
where f ∈ R is the total thrust magnitude. It also generates
a moment M

4
= [M1 M2 M3]T ∈ R3 relative to the body-

fixed frame. The pair (f,M) is considered as the control
input of the quadrotor.

Let qi ∈ S2 be the unit vector representing the direction of
the i-th link, measured outward from the quadrotor toward
the payload, where the two-sphere is the manifold of unit-
vectors in R3, i.e., S2 4= {q ∈ R3 | ‖q‖ = 1}. For simplicity,
we assume that the mass of each link is concentrated at the
outboard end of the link, and the point where the first link is
attached to the quadrotor corresponds to the mass center of
the quadrotor. The mass and length of the i-th link are defined
by mi and li ∈ R, respectively. Thus, the mass of the payload
corresponds to mn, which is unknown. The corresponding
configuration manifold of this system is R3×SO(3)×(S2)n.

To derive the kinematics equations, let Ω
4
=

[Ω1 Ω2 Ω3]T ∈ R3 be the angular velocity of the
quadrotor represented relative to the body-fixed frame,
and let ωi ∈ R3 be the angular velocity of the i-th
link represented relative to the inertial frame. The angular
velocity is normal to the direction of the link, i.e., qi ·ωi = 0.
The kinematics equations are given by

Ṙ = RΩ̂, (1)
q̇i = ωi × qi = ω̂iqi, (2)

where the hat map ·̂ : R3 → so(3) is defined such that
x̂y = x × y for x, y ∈ R3, and the lie algebra is defined
as so(3)

4
= {A ∈ R3×3 |A = −AT }. The inverse of the

hat map is denoted by ∨ : so(3) → R3. The 2-norm of a
matrix A is denoted by ‖A‖, and the dot product is denoted
by x · y = xT y.

A. Euler-Lagrange equations [11]

For a quadrotor with a cable-suspended payload, the Euler-
Lagrange equations on R3 × SO(3)× (S2)n are given by

JΩ̇ + Ω̂JΩ = M, (3)

m00ẍ+

n∑
i=1

m0iq̈i = −fRe3 +m00ge3, (4)

miiq̈i − q̂2
i (mi0ẍ+

n∑
j=1
j 6=i

mij q̈j)

= −mii‖q̇i‖2qi −
n∑
a=i

magliq̂
2
i e3, (5)

where the inertia values are given by

m00 = m+

n∑
i=1

mi, m0i =

n∑
a=i

mali, mi0 = m0i,

mij =

 n∑
a=max{i,j}

ma

 lilj . (6)

B. Actuator Model

The actuator model is identical to [1]. The total thrust f
and the total moment M

4
= [M1 M2 M3]T can be written as

f
M1

M2

M3

 =


1 1 1 1
0 −d 0 d
d 0 −d 0
−cτf cτf −cτf cτf



f1

f2

f3

f4

 , (7)

where d is the distance from the mass center of the quadrotor
to the center of each rotor in the ~b1, ~b2 plane, cτf is a fixed
constant, and fi is the thrust of the i-th propeller.

III. RCAC ALGORITHM STATEMENT

Consider the MIMO system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (8)
z(k) = Cx(k) +D2w(k), (9)

where x(k) ∈ Rlx , z(k) ∈ Rlz , u(k) ∈ Rlu , and w(k) ∈
Rlw .

For nf > 0, z(k) is given by

z(k) =CAnfx(k − nf) +D2w(k) +

nf∑
i=1

CAi−1D1w(k − i)

+

nf∑
i=1

Hiu(k − i), (10)

where Hi
4
= CAi−1B.

The signal w(k) represents either disturbances to be
rejected or commands to be followed, or both. The goal
is to develop an adaptive output feedback controller that
minimizes the performance variable z in the presence of
the unknown exogenous signal w(k) with limited modeling
information about (8) and (9). The required modeling data
is described below.

A. Control Law

We use a strictly proper time-series controller of order nc

of the form

u(k) =M0(k) +

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)z(k − i),

(11)
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where M0(k) ∈ Rlu and, for all i = 1, . . . , nc, Mi(k) ∈
Rlu×lu and Ni(k) ∈ Rlu×lz . The controller (11) can be
represented as

u(k) = θ(k)φ(k), (12)

where

θ(k)
4
= [N1(k) · · · Nnc

(k)

M1(k) · · · Mnc
(k) M0] ∈ Rlu×(nc(lu+lz)+1),

φ(k)
4
= [zT(k − 1) · · · zT(k − nc)

uT(k − 1) · · · uT(k − nc) 1]T ∈ Rnc(lu+lz)+1.

B. Retrospective Performance

For θ̂ ∈ Rlu×nc(lu+lz)+1 and nf ≥ 1, we define the
retrospective performance

ẑ(θ̂, k)
4
= z(k) +

nf∑
i=1

Hi[û(k)− u(k − i)], (13)

where

û(k)
4
= θ̂φ(k) (14)

is the retrospective control. The retrospective performance
ẑ(θ̂, k) can be interpreted as the performance assuming that
θ̂ was used in the past.

Defining Θ(k) = vec θ(k) ∈ Rnclu(lz+lu)+lu and Θ̂ =
vec θ̂ ∈ Rnclu(lz+lu)+lu , it follows that

ẑ(Θ̂, k)
4
= z(k) +

nf∑
i=1

ΦT(k)[Θ̂−Θ(k − i)]

= z(k)−
nf∑
i=1

ΦT(k)Θ(k − i) + ΨT(k)Θ̂, (15)

where, for all i = 1, . . . , nf , Φi(k)
4
= φ(k − i) ⊗

HT
i ∈ R(nclu(lz+lu)+lu)×lz and Ψ(k)

4
=
∑nf

i=1 Φi(k) ∈
R(nclu(lz+lu)+lu)×lz .

C. Cumulative Retrospective Cost Optimization

The cumulative retrospective cost function is defined by

J(Θ̂, k)
4
=

k∑
j=0

λk−iẑ(Θ̂, k)TRz ẑ(Θ̂, k)

+ λk(Θ̂−Θ(0))TRΘ(Θ̂−Θ(0)),

(16)

where RΘ ∈ R(nclu(lz+lu)+lu)×(nclu(lz+lu)+lu) and Rz ∈
Rlz are positive definite, and λ ∈ (0, 1] is the forgetting
factor.

Let P (0) = R−1
Θ and Θ(0) ∈ R(nclu(lz+lu)+lu). Then, for

all k ≥ 0, the unique global minimizer of (16) is given by
Θ̂ = Θ(k), where

Θ(k + 1) = Θ(k)− P (k)Ψ(k)ẑ(Θ(k), k)

λR−1
z + ΨT(k)P (k)Ψ(k)

, (17)

P (k + 1) =
1

λ

[
P (k)− P (k)Ψ(k)ΨT(k)P (k)

λR−1
z + ΨT(k)P (k)Ψ(k)

]
. (18)

IV. RCAC FOR QUADROTOR TRANSPORTING A
CABLE-SUSPENDED LOAD

Let xp,d ∈ R3 be the fixed desired location of the payload.
We assume that all of the states of (1)-(5) are measured.
The control objective is to move a payload of uncertain
mass mn to xp,d while aligning the links in the vertical
direction. Note that the position of the payload is given by
xp
4
= [xp,1 xp,2 xp,3] = x+

∑n
i=1 liqi.

Since xp,1 and xp,2 are not linearly controllable for the
total force f and the moment M in the hanging equilibrium,
the controller of a quadrotor is separated into a trajectory
control loop and an attitude control loop.

To achieve the control objective, the trajectory control loop
directly uses the total thrust as the command to be designed.
A simplified dynamic model is first derived for the design
of the trajectory control loop. In this loop, a PD controller
is designed to make the hanging equilibrium asymptotically
stable for x, ẋ, qi and ωi with a nominal payload mass.
The RCAC controller is then designed to compensate for the
payload mass uncertainty.

To orient the propellers in the direction of the thrust
command given by the trajectory control loop, the attitude
control loop uses f and M as the command to be designed.
In this loop, a geometric nonlinear PD controller is designed
to achieve asymptotic tracking of the thrust command. The
control architecture is given by Figure 2.

A. Simplified Dynamic Model

For the given equations of motion (4), the control thrust is
given by −fRe3. This implies that the total thrust magnitude
f can be arbitrarily chosen within a total thrust bound, but
the direction of the thrust vector is always along the third
body-fixed axis. Also, the rotational attitude dynamics of the
quadrotor are not affected by the translational dynamics of
the quadrotor or the dynamics of the links. Therefore, we
replace the term −fRe3 in (4) with F

4
= [F1 F2 F3]T ∈ R3,

as shown in (19). Note that the simplified dynamics (19) are
independent of the quadrotor attitude dynamics given by (3).
This is equivalent to separating the dynamics into an outer
loop, where the attitude R is assumed to be instantaneously
achievable, and an inner loop that controls the attitude R.
The simplified dynamics are given by (5) and

m00ẍ+

n∑
i=1

m0iq̈i = F +m00ge3. (19)

B. PD Trajectory Controller

In this subsection, a fixed-gain PD trajectory controller is
designed to make states of the simplified dynamics converge
to the hanging equilibrium, where x = xp,d −

∑n
i=1 lie3,

ẋ = 03×1 and, for all i ≤ n, ωi = 03×1 and qi = e3. Note
that the PD trajectory controller is designed for a nominal
payload mass. We define the nominal payload mass as m̄n,
and define the payload mass uncertainty as m̃n

4
= mn−m̄n.
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Fig. 2. Closed-loop quadrotor system. The measurements needed by the control system are xp, x, ẋ, R, Ω, qi, and ωi, for all i ≤ n. Note that xp can
be calculated from x and qi using knowledge of the length of each link. xp and ẋ are used for feedback in the RCAC trajectory controller. x, ẋ, qi, and
ωi for all i ≤ n are used for feedback in the PD trajectory controller. R and Ω are used for feedback in the PD attitude controller.

The control from the PD trajectory controller is given by

uP =−Kxex −Kẋeẋ −
n∑
i=1

Kωieωi

−
n∑
i=1

Kqieqi − (m00 − m̃n)ge3, (20)

where

ex
4
= x− xp,d +

n∑
i=1

lie3, eẋ
4
= ẋ,

eωi

4
= [e1 e2]Tωi, eqi

4
= [e1 e2]T (e3 × qi).

Note that m00 − m̃n is the total mass of the quadrotor and
links with a nominal payload mass.

C. RCAC Trajectory Controller

In this subsection, an RCAC trajectory controller is de-
signed to compensate for the payload mass uncertainty. Since
RCAC is used to control thrust only in the z-axis direction,
the control is given by uR(k)

4
= [0 0 uR,3(k)]T. We define

the performance vector for RCAC as

z(k)
4
=

[
x̃p,3(k)
ẋ3(k)

]
∈ R2, (21)

where x̃p,3 is the third entry of the payload position error

x̃p(k)
4
= xp(k)− xp,d. (22)

The parameters Hi for RCAC are obtained from the impulse
response of the simplified dynamics and the PD controller
given by (5), (19), and (20) with m̃n = 0. The initial
condition is given by x(0) = xp,d−

∑n
i=1 lie3, ẋ(0) = 03×1,

for all j, qj(0) = e3 and ωj(0) = 03×1. Specifically, for all
k ≤ nf , we define

Hk
4
= z(k), (23)

where z(k) ∈ R2 is the column performance vector with the
unit impulse input to the third channel with the PD trajectory
controller given by (20) in the loop. Thus, the input used to
obtain z(k) can be given by Fc(0) = uP(0) + e3, Fc(1) =
uP(1), Fc(2) = uP(2), . . . , Fc(nf) = uP(nf). This is shown
in Figure 3.

The thrust command uR,3(k) ∈ R is calculated from the
RCAC algorithm given by (12), (15), (17), and (18).

?

Unit Impulse

PD Trajectory
Controller

-
xp,d

-
-

uP

+

+

e Simplified
Quadrotor
Dynamics

-Fc -z

x, ẋ, qi, ωi

Fig. 3. Method for obtaining Hi. Note that the PD trajectory controller
is in the loop. x, ẋ, qi, and ωi for all i ≤ n are used for feedback in
the PD trajectory controller. Note that the attitude controller and quadrotor
dynamics are replaced by the simplified dynamics given by (5) and (19).

D. Attitude Controller

In this subsection, a fixed-gain geometric nonlinear PD
controller is designed to asymptotically follow the total thrust
command Fc ∈ R3. The thrust command on the step k is
given by

Fc = uR(k) + uP(k). (24)

The desired direction of the third body-fixed axis is

b3d
= − Fc

‖Fc‖
. (25)

There is an additional one-dimensional degree of freedom of
the quadrotor attitude that corresponds to the rotation about
the third body-fixed axis. To resolve it, the desired direction
of the first body-fixed axis, namely, b1d

∈ S2 is chosen to
be the initial first body-fixed axis b10 .

The corresponding desired attitude is chosen as

Rd =

[
−

b̂23d
b1d

‖b̂23d
b1d
‖

b̂3d
b1d

‖b̂3d
b1d
‖

b3d

]
, (26)

which is in SO(3). The desired angular velocity is obtained
by the attitude kinematics equation

Ωd = (RTd Ṙd)∨. (27)

Next, we define the tracking error variables for the attitude
and the angular velocity as

eR
4
=

1

2
(RTdR−RTRd)∨, (28)

eΩ
4
= Ω−RTRdΩd. (29)
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The thrust magnitude command and moment command
vector of the quadrotor are chosen as

fc = −Fc ·Re3, (30)
Mc = −KReR −KΩeΩ + Ω× JΩ

− J(Ω̂RTRdΩd −RTRdΩ̇d), (31)

where KR
4
= ω2

n‖J‖ and KΩ
4
= 2ωnζ‖J‖, where ωn and ζ

are positive.

V. NUMERICAL EXAMPLES

The sample time for each example is chosen as 0.01 sec.
Properties of the quadrotor are chosen as

m = 0.5 kg, J = diag[0.557 0.557 1.05]× 10−2 kgm2.

Three identical links with n = 3, mi = 0.1 kg, and li =
0.2 m are considered in the case with a nominal payload
mass. The payload mass uncertainty is m̃3 = 0.1 kg, thus
m3 = 0.2 kg with the actual payload mass. Four rotors with
maximum thrust 5 N, d = 0.2 m, and cτf = 0.01 m are used
as actuators.

The desired location of the payload is selected as xp,d =
03×1. The initial conditions for the quadrotor are given by

x(0) = [0.6 − 0.7 0.2]T, ẋ(0) = 03×1,

R(0) = I3, Ω(0) = 03×1.

The initial directions of the links are chosen such that the
cable is curved along the horizontal direction, as illustrated
at Figure 4, and the initial angular velocity of each link is
chosen as zero.

Fig. 4. Initial state of the links.

The chosen parameters of the RCAC trajectory controller
are

nc = 2, nf = 30, RΘ = 0.1I7, Rz = diag[1 0.1], λ = 1.

The chosen parameters of the PD trajectory controller are

Kx = I3, Kẋ = diag[1.75 1.75 1.67],

Kq1 =

 0 −4.8
4.8 0
0 0

 ,Kω1 =

 0 −0.6
0.6 0
0 0

 ,
Kq2 =

 0 3.8
−3.8 0

0 0

 ,Kω2
=

 0 −0.02
0.02 0

0 0

 ,
Kq3 =

 0 −0.2
0.2 0
0 0

 ,Kω3
=

 0 −0.006
0.006 0

0 0

 .
The parameters of the PD attitude controller are chosen as

ωn = 10 rad/sec, ζ = 0.707.

A saturation block is added for the moment command.
The amplitude limit for M1 and M2 is chosen as 1 N-m,
and the amplitude limit for M3 is chosen as 0.01 N-m.

To show the stabilizing performance for the links, we
define the error functions

eq
4
=

n∑
i=1

‖qi − e3‖, eω
4
=

n∑
i=1

‖ωi‖. (32)

A. PD controller

In this example, the RCAC controller is turned off. There-
fore Fc(k) = uP(k). Figure 5 shows that the closed-loop is
stable and the links are aligned in the vertical direction, but
there is an asymptotic error of the payload position about 1
m along the z-axis.
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Fig. 5. PD example. (a) shows that the closed-loop is stable. (b) shows
that there is a constant asymptotic error of the payload position about 1 m
along the z-axis for m̃n = 0.1 kg. The asymptotic error is due to the extra
gravity provided by the positive payload mass uncertainty. Nevertheless, (c)
shows that the links are asymptotically aligned in the vertical direction and
stop swinging in about 4 sec.

B. PID controller

Since there is a large asymptotic error along the z-axis in
the example with the PD controller alone, we add an extra
integral term in the force command in this example to deal
with the asymptotic error. Thus,

Fc(k) = uP(k)−
k∑
i=0

 0 0 0
0 0 0
0 0 0.25

 x̃p(k)Ts,

where x̃p(k) is given by (22) and Ts is the sample time.
Figure 6 shows that the asymptotic error along the z-axis is
slowly eliminated. Figure 6(a) shows that the payload first
arrives below the desired position and then moves upward to
the desired position.
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Fig. 6. PID example. (a) shows that the payload first arrives below the
desired position and then moves upward to the desired position (b) shows
that compared with the case with the PD controller alone, the asymptotic
error of the payload position along the z-axis is eliminated. (c) shows
that the links are asymptotically aligned in the vertical direction and stop
swinging in about 4 sec as in the PD example.

C. RCAC controller + PD Controller

In this example, the RCAC controller is turned on, and
thus Fc(k) = uP(k) + uR(k). Figure 7 shows that the
asymptotic error along the z-axis is eliminated. Compared
with the case with the PID controller, the error of the payload
position along the z-axis converges faster and the payload
does not approach the desired position from below but rather
from the same horizontal plane.

VI. CONCLUSION

We design a tracking controller for a quadrotor UAV with
a point-mass payload connected by a flexible cable modeled
as serially-connected rigid links. A fixed-gain geometric
nonlinear PD controller is first presented to achieve desired
performance for a nominal payload mass. Enabled by the
impulse response with the PD controller in the loop, a retro-
spective cost adaptive controller is designed to compensate
for the payload mass uncertainty in the case of aggressive
maneuvers. Compared with the performance of the fixed-
gain controller with an integral control term, the adaptive
controller has smaller settling time and overshoot.
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