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Abstract— Motivated by passive health monitoring applica-
tions, we consider identification where only sensor measure-
ments are available. The goal is to exploit unknown ambient
disturbances and thus avoid the need for controlled actuation.
To achieve this, we identify a pseudo transfer function (PTF)
between sensor measurements. For the single-input case, one
sensor is designated as the pseudo input to the system, while the
second sensor measurements constitute the pseudo output. We
show that the identified PTF is independent of the unknown
initial state and unknown exogenous input. We demonstrate
this method on two- and three-degree-of-freedom mass-spring-
damper systems and validate the identified PTFs by comparing
them with analytical results.

I. INTRODUCTION

In many applications of system identification, the system

is driven by external signals that are not measured. In

this situation, blind identification techniques can be used

to obtain estimates of the system dynamics [1], [2]. Also,

frequency-domain [3] and subspace-based [4] system identi-

fication techniques have been applied. Since the input signal

is unknown, its statistical properties are usually assumed to

be known in order to compensate for lack of knowledge of

its time history.

In the present paper we develop an identification technique

that uses multiple sensors but does not require measurements

of or assumptions about the statistical properties of the

external signal. We designate a subset of the sensor signals

as the pseudo input(s) and another subset as the pseudo

output(s). The resulting pseudo transfer function (PTF) from

the pseudo input(s) to the pseudo output thus provides a map

between the sensor signals.

The use of PTFs was introduced in [5] for the case of

2 sensors. In the present paper we extend this technique to

m ≥ 2 sensors, and we extend the theoretical foundation by

providing detailed identities that allow us to reduce the order

of the PTFs despite unknown nonzero initial conditions. We

also investigate how sensor noise affects PTF identification.

Fig. 1. Method for identifying pseudo transfer functions (PTFs).

To illustrate the notion of a PTF, consider the system in

Figure 1, which has one input u and two outputs y1 and
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y2. To account for the initial state and resulting transient

response, we cast the dynamics in terms of the forward shift

operator q, which yields

δ(q)yi = ηi(q)u, (1)

where δ(q), η1(q), and η2(q) are polynomials in q, and

y1, y2, and u denote time sequences, that is, y1 =
{y1(0), y1(1), . . .}, and qy1 = {y1(1), y1(2), . . .}. For con-

venience, we can rewrite (1) in the transfer function form

yi = Gi(q)u =
ηi(q)

δ(q)
u, (2)

although we stress that (2) represents the difference equation

(1) rather than a relation between z-transforms, which play

no role in this paper.
It follows from (1) that

η2(q)δ(q)y1 = η2(q)η1(q)u, (3)

η1(q)δ(q)y2 = η1(q)η2(q)u, (4)

and thus
η2(q)δ(q)y1 = η1(q)δ(q)y2, (5)

which can be viewed as the PTF from y1 to y2 given by

y2 =
η2(q)δ(q)

η1(q)δ(q)
y1. (6)

Note that (6) is independent of the input u and could rep-

resent a transmissibility [6]. Hence identification is feasible

despite lack of knowledge of the input u or its statistical

properties. Because (6) is expressed in terms of the forward

shift operator q, (6) fully accounts for nonzero initial con-

ditions. If we replace q with z in (6), the resulting relation

would not account for nonzero initial conditions. A related

approach, proposed in [7], does not consider IIR systems.

Furthermore, we note that (6) is a rational function in q, an

operator. Unlike a rational transfer function in z, a complex

number, a common factor in q cannot generally be canceled

from the numerator and denominator of (6), as illustrated by

the following example.

Example 1.1: Consider the distinct sequences

y1 = {y1(0), y1(1), . . .} = {1, 2, 3, . . .}, (7)

y2 = {y2(0), y2(1), . . .} = {6, 7, 8, . . .}. (8)

Operating on (7) and (8) with q − 1, we obtain

(q−1)y1={2−1,3−2,4−3,...}={1,1,1,...}, (9)
(q−1)y2={7−6,8−7,9−8,...}={1,1,1,...}. (10)

Hence (q − 1)y1(k) = (q − 1)y2(k), whereas y1 6= y2.

Despite Example 1.1, we show that cancellation of the
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common factor is permissible for PTFs. Consequently, δ(q)
does not appear in the PTF from y1 to y2. However, some

pole information contained in δ(q) is captured in the PTF

through the effect of the system dynamics on the zeros,

which are contained in η1(q) and η2(q).

To determine a PTF, output data are collected from sen-

sors. As shown in Figure 1, one output (here sensor 1) is

chosen to be the pseudo input while the other output (here

sensor 2) is chosen to be the pseudo output. Then a system

identification algorithm is used to identify the PTF from the

pseudo input data y1 to the pseudo output data y2. We use

Markov parameters to characterize the PTF because they

exhibit consistency, that is, assuming u(k) is white noise,

the Markov parameters of the transfer function from u to y
converge to their true values as the amount of data increases

[8]. By comparing PTF estimates, we can detect a fault in

the system if the PTF estimate changes.

II. INPUT-OUTPUT MODEL

Let A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, and D ∈ R

p×m,

and consider the discrete-time MIMO LTI system

x(k+1)=Ax(k)+Bu(k), y(k)=Cx(k)+Du(k), (11)

where
u(k),[u1(k) ··· um(k)]T, y(k),[y1(k) ··· yp(k)]T. (12)

We also write

yi(k) = Cix(k) + Diu(k), (13)

where, for i ∈ {1, . . . , p}, Ci ∈ R
1×n and Di ∈ R

1×m,

C,
[

CT
1 · · · CT

p

]T
, D,

[

DT
1 · · · DT

p

]T
. (14)

We rewrite (13) in terms of q as

δ(q)yi = Ni(q)u, (15)

where

δ(q) , det(qI − A), (16)

Ni(q) ,
[

ηi,1(q) · · · ηi,m(q)
]

, (17)

ηi,j(q) , Ciadj(qI − A)Bj + Di,jδ(q), (18)

adj(·) denotes the adjugate operator, and, for Bi ∈ R
n and

Di,j ∈ R,

B,
[

B1 · · · Bm

]

, Di,
[

Di,1 · · · Di,m

]

. (19)

Assuming p ≥ m, we can write

δ(q)
[

y1 · · · ym

]T
= E(q)u, (20)

where

E(q) ,
[

NT
1 (q) · · · NT

m(q)
]T

∈ R
m×m. (21)

III. OUTPUT-ONLY MODEL FOR p ≥ m

Assuming E(q) is invertible, we multiply (20) on the left

by E−1(q) to obtain

δ(q)E−1(q)
[

y1 · · · ym

]T
= u. (22)

Next, we note that

δ(q)ym+1=Nm+1(q)u. (23)

Then, we multiply (22) on the left by Nm+1(q) to obtain

δ(q)Nm+1(q)E−1(q)
[

y1 · · · ym

]T
=Nm+1(q)u. (24)

Comparing (23) and (24), we see

ym+1 =
δ(q)Nm+1(q)E−1(q)

δ(q)

[

y1 · · · ym

]T
, (25)

which can be interpreted as a multi-input, single-output PTF

from
[

y1 · · · ym

]T
to ym+1.

IV. TWO-SENSOR, SINGLE-INPUT CASE

For m = 1, p = 2, we let ηi(q) = ηi,1(q) so that (25)

reduces to (6). For i = {1, 2} we formulate an equivalent

matrix representation of (6) by writing

ηi(q)=
∑ n

j=0 βi,jqn−j , δ(q)=qn+
∑ n

j=1 αjqn−j . (26)

The following result shows that sampling a continuous-time

transfer function G(s) yields a discrete-time transfer function

Gh(q) whose relative degree is d = 1.

Fact 4.1: Let G be a continuous-time system with

relative degree d. Then the relative degree of the discretized

system Gh is 1, where h is the sampling period. Furthermore,

as h → 0, d − 1 zeros of Gh approach the roots of Jd(z),
where

Jd(z) , Jd,1z
d−1 + Jd,2z

d−2 + · · · + Jd,d, (27)

and, for i = 1, . . . , d,

Jd,i ,

i
∑

γ=1

(−1)i−γγd

(

d + 1
i − γ

)

. (28)

Proof: See [9], Theorem 1.

Numerical results suggest that the roots of Bd(z) are real

for all h > 0.

Fact 4.2: Consider the continuous-time system

ẋ(t)=Acx(t)+Bcu(t), y(t)=Cx(t)+Du(t), (29)

discretized using a zero-order hold to obtain

x(k+1)=eAcT x(k)+A−1
c (A−I)Bcu(k), y(k)=Cx(k)+Du(k), (30)

where T is the sampling period, and
(

qn +
n

∑

i=1

αiq
n−i

)

y =

(

n
∑

i=0

βiq
n−i

)

u. (31)

Then β1 6= 0.

Proof: The result follows from Fact 4.1.

We then express (6) as

∆v=0, (32)

where, for l > 2n data points, we define

∆ ,















αn . . . α1 1 0 . . . 0

0 αn . . . α1 1
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 αn . . . α1 1















∈ R
(l−2n)×(l−n)

. (33)
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Furthermore,

v = NY ∈ R
l−n, (34)

where

N ,
[

N2 −N1

]

∈ R
(l−n)×2l, (35)

and for i ∈ {1, 2},

Ni,





















βi,n . . . βi,0 0 . . . 0

0 βi,n . . . βi,0
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 βi,n . . . βi,0





















∈R
(l−n)×l. (36)

Finally, we define

Y ,[Y T
1 Y T

2 ]
T

,[y1(0) ··· y1(l−1) y2(0) ··· y2(l−1)]T∈R
2l. (37)

Combining (32) and (34) yields

∆NY = 0, (38)

which is an equivalent matrix formulation of (6).
For i = {1, 2}, from (11) and (13) we have [10, p. 129]

Yi=Γix0+HiU, (39)

where

Γi ,









Ci

.

.

.

CiA
l−1









∈ R
l×n

, U ,









u(0)

.

.

.

u(l − 1)









∈ R
l

Hi ,















Di 0 . . . 0

CiB Di

. . .
.
.
.

.

.

.
. . .

. . . 0

CiA
l−2B . . . CiB Di















,















Hi,0 0 . . . 0

Hi,1 Hi,0

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

Hi,l−1 . . . . . . Hi,0















∈ R
l×l

. (40)

Then we define

Yi,free,Γix0, Yi,forced,HiU, (41)

so that

Yi = Yi,free + Yi,forced. (42)

Furthermore,

Y =Γx0+HU, (43)

where

Γ ,
[

ΓT
1 ΓT

2

]T
, H ,

[

HT
1 HT

2

]T
. (44)

Finally,

Y =Yfree+Yforced, (45)

where

Yfree,[Y T
1,free Y T

2,free]
T

, Yforced,[Y T
1,forced Y T

2,forced]
T

. (46)

Hence, (38) can be written as

∆N(Yfree + Yforced) = 0. (47)

Lemma 4.3: N2Γ1 = N1Γ2.
Proof: Assume l > 2n. Then

N2Γ1 =







∑n
i=0 β2,iC1A

i

...
∑n

i=0 β2,iC1A
l−n−1+i






, (48)

N1Γ2 =







∑n
i=0 β1,iC2A

i

...
∑n

i=0 β1,iC2A
l−n−1+i






. (49)

Using (65), it follows that the first component of (48)

and the first component of (49) are identical. Furthermore,

multiplying (65) on the right by Aq−1 implies that, for

q ∈ {2, 3, . . . , l − n}, the qth component of (48) and the

qth component of (49) are also identical.

Proposition 4.4: NYfree = 0.
Proof: With u(k) ≡ 0, (39) implies

N2Y1,free = N2Γ1x(0), (50)

N1Y2,free = N1Γ2x(0). (51)

Subtracting (51) from (50) and invoking Lemma 4.3, we have

NYfree = N2Y1,free − N1Y2,free

= N2Γ1x(0) − N1Γ2x(0) = 0. ¥

Lemma 4.5: N2H1 = N1H2.
Proof: Assume l > 2n. Then

N2H1 =








σ2,1(1, 1) . . . σ2,1(1, n + 1) 0 0

.

.

.
. . .

. . .
. . .

.

.

.

σ2,1(l − n, 1) . . . σ2,1(1, 1) . . . σ2,1(1, n + 1)









,

N1H2 =








σ1,2(1, 1) . . . σ1,2(1, n + 1) 0 0

.

.

.
. . .

. . .
. . .

.

.

.

σ1,2(l − n, 1) . . . σ1,2(1, 1) . . . σ1,2(1, n + 1)









,

are Toeplitz and

σj,k(r, s) ,

n
∑

i=s−1

βj,n−iHk,i+r−s.

For q ∈ {0, 1, . . . , l − n − 2}, multiplying (65) on the right

by AqB implies that, for r ∈ {2, 3, . . . , l − n},

σ2,1(r, 1) = σ1,2(r, 1).

Furthermore, setting k = s − 1 in (66) implies that, for

s ∈ {1, 2, . . . , n + 1},

σ2,1(1, s) = σ1,2(1, s). ¥

Proposition 4.6: NYforced = 0.
Proof: With x0 = 0, (39) implies

N2Y1,forced = N2H1U, (52)

N1Y2,forced = N1H2U. (53)
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Subtracting (53) from (52) and invoking Lemma 4.5 yields

NYforced = N2Y1,forced − N1Y2,forced

= N2H1U − N1H2U = 0. ¥

Propositions 4.4 and 4.6 yield the following result, which

is stronger than (38).

Theorem 4.7: NY = 0.
We note that Theorem 4.7 is an equivalent matrix formu-

lation of

y2 =
η2(q)

η1(q)
y1. (54)

Comparing (54) with (6), we see Theorem 4.7 implies

cancellation of the δ(q) in the numerator and denominator

of (6) is valid. The following result implies that PTFs are

always causal.

Fact 4.8: Assume the PTF in (54) is obtained by

sampling a continuous time system using zero-order hold.

Then the PTF has order n − 1 and relative degree 0.

Proof: From Fact 4.2, it follows that η1(q) and η2(q)
have degree n − 1.

V. THREE-SENSOR, TWO-INPUT CASE

Let p = 3 and m = 1. Then the PTF from y1 to y3 is

given by (25) as

y3 =
δ(q)η3,1(q)

δ(q)η1,1(q)
y1. (55)

Next, let m = 2. Then the PTF from [y1 y2]
T

to y3 is

δ(q) [η3,1(q) η3,2(q)]

[

η1,1(q) η1,2(q)
η2,1(q) η2,2(q)

]

−1

[y1 y2]
T

= δ(q)y3, (56)

which implies

y3 =
δ(q) [η3,1(q)η2,2(q) − η3,2(q)η2,1(q)]

δ(q) [η1,1(q)η2,2(q) − η2,1(q)η1,2(q)]
y1+

δ(q) [η3,2(q)η1,1(q) − η3,1(q)η1,2(q)]

δ(q) [η1,1(q)η2,2(q) − η2,1(q)η1,2(q)]
y2. (57)

Therefore, the SISO PTF from y1 to y3 given by (55) does

not equal the corresponding component of the MISO PTF

given by (57). This implies physically that the location and

number of inputs affect the PTF, even though the statistical

characteristics of the input do not.

VI. SINGLE INPUT EXAMPLES
Consider the mass-spring-damper structure in Figure 2,

which has equations of motion given by

Mẍ + Cẋ + Kx = F, (58)

where

x =

[

q1

q2

]

, M =

[

m1 0
0 m2

]

, C =

[

c1 + c2 −c2

−c2 c2 + c3

]

,

K =

[

k1 + k2 −k2

−k2 k2 + k3

]

, F =

[

f1

f2

]

=

[

1
0

]

u. (59)

We derive the numerically exact PTF from q1 to q2 by

discretizing (58) and (59).
A. Square-Wave Input, x0 6= 0

We choose {xi(0)}4
i=1 ∼ N(0, 1) and {u(k)}49

k=0 to be a

square wave with amplitude 1 and frequency 1/2π. We then

simulate (58)–(59) to obtain {q1(k)}49
k=0 and {q2(k)}49

k=0.

Next, we use standard least squares to estimate the first 3

Markov parameters of the PTF from q1 to q2 and compare

Fig. 2. 2 DOF Mass-spring-damper structure.

the estimated Markov parameters with their true values in

Figure 3, which shows that the estimated Markov parameters

approach their true values for sufficiently large l.

0 5 10 15 20 25 30 35 40 45 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

l

|H1−Ĥ1|
|H1|

|H2−Ĥ2|
|H2|

|H3−Ĥ3|
|H3|

Fig. 3. Numerical simulation with unknown nonzero initial conditions.
u(k) is a square wave with amplitude 1 and frequency 1/2π, and
{xi(0)}

4

i=1
∼ N(0, 1). The error between the estimated and true Markov

parameters is small, but bias is present in the estimate.

B. Sum of Sinusoids Input, x0 6= 0

We choose {xi(0)}4
i=1 ∼ N(0, 1) and {u(k)}49

k=0 to be a

sine wave with amplitude 1 and frequency 0.25 Hz added to

a sine wave with amplitude 1 and frequency 0.5. We then

simulate (58) and (59) to obtain {q1(k)}49
k=0 and {q2(k)}49

k=0.

Next, we use standard least squares to estimate the first 3

Markov parameters of the PTF from q1 to q2 and compare

the estimated Markov parameters with their true values in

Figure 4, which shows that the estimated Markov parameters

approach their true values for sufficiently large l.
C. Parameter Change Detection - White Noise Input, x0 6= 0

We investigate whether changes in PTFs can be used to de-

tect changes in system parameters. We choose {xi(0)}4
i=1 ∼

N(0, 1) and {u(k)}99
k=0 ∼ N(0, 1) and simulate (58)–(59)

to obtain {q1(k)}99
k=0 and {q2(k)}99

k=0. At k = 49, the

stiffness ki are reduced by a factor of 2 and the damping

ci are increased by a factor of 3. From Figure 5 we observe

an abrupt increase in Markov parameter error at k = 50.

Since we use recursive least squares in this example with

a forgetting factor of 0.7, we see the Markov parameter

estimates converge to their new values after damage occurs.
D. Effect of Sensor Noise on PTF Identification

We investigate the effect of sensor noise on the accuracy of

the identified PTF by considering noise added to the pseudo
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Fig. 4. Numerical simulation with {xi(0)}4

i=1
∼ N(0, 1). The input is

a sum of two sinusoids with amplitude 1 and frequencies 0.25 Hz and 0.5
Hz. The error between the estimated and true Markov parameters is small,
but bias is present in the estimate.

0 10 20 30 40 50 60 70 80 90 100
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

l

H1
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H3

Ĥ1

Ĥ2

Ĥ3

Fig. 5. Damage detection with unknown nonzero initial conditions. The
input is {u(k)}99

k=0
∼ N(0, 1), {xi(0)}4

i=1
∼ N(0, 1), and damage

occurs at 5 seconds. The identified Markov parameters approach their true
values both before and after damage occurs.

output and pseudo input. We quantify the difference between

the estimated and actual Markov parameters by defining

εTµ
, σmax

(

Tµ − T̂µ

)

, (60)

where

Tµ ,







H0 · · · 0
...

. . . 0
Hµ−1 · · · H0






(61)

is the truncated Toeplitz operator [8]. We choose

{xi(0)}4
i=1 ∼ N(0, 1) and {u(k)}l−1

k=0 ∼ N(0, 1) and

simulate (58)–(59) to obtain {q1(k)}l−1
k=0 and {q2(k)}l−1

k=0. We

also choose 100 Gaussian white noise sequences {w(k)}l−1
k=0.

Using a µ−Markov model structure [8], we assume the

PTF is order 3 and estimate the first µ = 10 Markov

parameters of the PTF from y1 to y2 for each noise sequence.

For pseudo output noise, we choose y1 = {q1(k)}l−1
k=0 and

y2 = {q2(k) + w(k)}l−1
k=0. We use the estimated and true

Markov parameters to compute εTµ
, which we average over

all noise sequences by computing ε̄Tµ
= 1

100

∑100
j=1 εTµj

.

For pseudo input noise, we instead compute the estimated

Markov parameters for each white noise sequence using

y1 = {q1(k) + w(k)}l−1
k=0 and y2 = {q2(k)}l−1

k=0.

Figure 6 shows that ε̄Tµ
decreases as SNR and l increase

for sensor noise added to the pseudo output and pseudo input.

For large SNR, Figure 6 shows that PTF Markov parameter

estimates in the presence of pseudo input noise are more

accurate than estimates in the presence of pseudo output

noise, which implies that noisier sensors should be chosen

as pseudo inputs. For a given SNR, Figure 6 shows that ε̄Tµ

does not decrease monotonically with l, which implies that

PTF Markov parameter estimates are not consistent.
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Fig. 6. Plot of ε̄T10
for the PTF from q1 to q2. We see that the estimated

Markov parameters approach their true values as the SNR and l increase,
but the estimation is not consistent. For large SNR, we see that estimation
in the presence of pseudo input noise is more accurate than estimation in
the presence of pseudo output noise.

VII. MULTIPLE INPUT EXAMPLES

We consider the two-input case for the 2-DOF system

given by (58). Then we have

F =

[

1 0
0 1

] [

u1

u2

]

. (62)

We choose {xi(0)}4
i=1 ∼ N(0, 1), {u1(k)}99

k=0 ∼ N(0, 1),
and {u2(k)}99

k=0 ∼ N(0, 1). We then simulate (58)–(59) to

obtain {q1(k)}99
k=0 and {q2(k)}99

k=0. Next, we compare the

estimated and exact Markov parameters of the PTF from q1

to q2 in Figure 7. We see from Figure 7 that the estimated

and exact Markov parameters do not match no matter how

much data is included in the regressor. Therefore, a PTF

with a single pseudo input cannot characterize the simulated

2-DOF system with 2 inputs. To characterize a system with

m inputs, the PTF must have m pseudo inputs. As evidence,

we investigate a 3-DOF system with 2 inputs.
Consider the mass-spring-damper structure shown in Fig-
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Fig. 7. PTF identification for m = 2 using 1 pseudo input. The inputs are
{u1(k)}99

k=0
∼ N(0, 1) and {u2(k)}99

k=0
∼ N(0, 1), and {xi(0)}

4

i=1
∼

N(0, 1). Since the Markov parameter error does not decrease with l, a PTF
with 1 pseudo input does not properly characterize a system with m > 1.

ure 8, which has equations of motion given by (58), where

x =





q1

q2

q3



 , M =





m1 0 0
0 m2 0
0 0 m3



 , F =





f1

f2

f3



 =





1 0
0 1
0 0



 u,

C =





c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3 + c4



 ,

K =





k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3 + k4



 . (63)

We derive the numerically exact PTF from [q1 q2]
T

to q3

by discretizing (58) and (63).

Fig. 8. 3 DOF Mass-spring-damper structure.

A. White Input (m = 2), x0 6= 0
We choose {xi(0)}6

i=1 ∼ N(0, 1), {u1(k)}99
k=0 ∼

N(0, 1), and {u2(k)}99
k=0 ∼ N(0, 1). We then simulate

(58) with (63) to obtain {q1(k)}99
k=0, {q2(k)}99

k=0, and

{q3(k)}99
k=0. The error between the estimated and exact

Markov parameters of the PTF from [q1 q2]
T

to q3 is

plotted in Figure 9, which shows the PTF with two pseudo

inputs is identified for the 3-DOF system with m = 2.
VIII. APPENDICES

Let A ∈ R
n×n, B ∈ R

n×1, C1, C2 ∈ R
1×n, D1, D2 ∈ R,

r = {1, 2}, and

Hr,i,







Dr, i = 0,
CrA

i−1B, else.
(64)

Then
n

∑

i=0

β2,n−iC1A
i =

n
∑

i=0

β1,n−iC2A
i, (65)
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Fig. 9. PTF identification for m = 2 using 2 pseudo inputs. The inputs are
{u1(k)}99

k=0
∼ N(0, 1) and {u2(k)}99

k=0
∼ N(0, 1), and {xi(0)}6

i=1
∼

N(0, 1). Because the Markov parameter error decreases with l, a PTF with
2 pseudo inputs can characterize a system with m = 2.

and for all k ∈ {0, 1, . . . , n},

n
∑

i=k

β2,n−iH1,i−k =

n
∑

i=k

β1,n−iH2,i−k, (66)

where βr,j are the coefficients of
(

q
n

+ α1q
n−1

+ · · · + αn

)

yr =
(

βr,0q
n

+ βr,1q
n−1

+ · · · + βr,n

)

u,

(67)

which corresponds to the discrete-time system

x(k+1)=Ax(k)+Bu(k), yr(k)=Crx(k)+Dru(k). (68)
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