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Abstract 

In this paper we derive new guaranteed cost bounds for robust 
stability and performance with real structured uncertainty for 
discretetime systems. In particular. we obtain a shifted bounded 
real bound, a linear bound, a shifted linear bound, an inverse 
bound, a shifted inverse bound, and a shifted Popov bound. Sev- 
eral examples are used to compare these new bounds. 

1. Introduction 

The analysis and synthesis of robust controller has been of intense 
interest during the past three decades [l]. While unstructured 
complex-valued uncertainty can be addressed nonconservatively 
using quadratic bounds [2], structured real-valued uncertainty is 
a more difficult problem due to the discontinuity of the struc- 
tured singular value and stability margins [3]. The most effective 
approach to this problem has been the development of frequency- 
dependent scales and multipliers that account for phase restric- 
tions on the parametric or dynamic uncertainty [4, 51. 

For stability analysis with real polytopic uncertainty, LMI tech- 
niques can be used to solve multiple Lyapunov equations to de- 
termine stability bounds (61. This approach avoids the need for 
frequency-dependent multipliers and utilizes convex optimization 
methods to obtain common Lyapunov functions. 

An alternative approach that is applicable to controller synthesis is 
Riccati-based methods which provide guaranteed cost bounds for 
the worst-case Hz performance. For continuous-time systems a 
large class of guaranteed cost bounds have been developed. While 
the small gain bounds are the best known due to their connections 
with the small gain theorem (7, 81, alternative bounds have been 
developed as well [9]-[13]. For structured real-valued uncertainty, 
these bounds have significantly reduced conservatism as compared 
to small gain bounds. 

For discrete-time systems quadratic bounds have been developed 
in the context of bounded-real theory (see [14] and the references 
given therein). Discrete-time Popov bounds given in [15, 161 also 
provide quadratic tests for robust stability and performance. For a 
sampled-data system with parametric uncertainty, a nonquadratic 
bound was developed in [17]. Compared to continuous-time sys- 
tems, however, there has been relatively little effort devoted to the 
development of discrete-time bounds. 

The objective of the present paper is to develop novel bounds 
for structured real uncertainty for discrete-time systems. Some of 
these bounds can be viewed as the counterpart of bounds devel- 
oped for continuous-time systems in (131. Unlike [17] we consider 
general uncertainty structures rather than sampled-data uncer- 
tainty structures. We consider parameter-independent bounds. 
each equivalent to a common Lyapunov function, and parameter- 
dependent bounds which are equivalent to multiple Lyapunov func- 
tions. 

In Section 2 we present the main robustness result that provides 
the basis for specific bounds given later in the paper. In Section 3 
we present an LMI approach to bounding polytopic uncertainties. 
In Sections 4. 5. 6. and 7. we present the discrete-time forms 
of the shifted bounded real bound. the linear and shifted linear 
bounds. the inverse and shifted inverse bounds. and the shifted 
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Popov Bound. Finally, in Section 8, we present several numerical 
examples to compare the different bounds. 

Notation 
Rd d x 1 real column vectors 
Rt73”” m x n real matrices 
In, N” n x n identity matrix, nonnegative-definite matrices 
S”, P” n x n symmetric matrices, positive-definite matrices 
A<B B - A is nonnegative definite 
Et.) expectation operator 
tr trace operator 

IHI (HHT)i, where H E R”‘” 

2. Robust Performance and Guaranteed Cost Bounds 

Let U c R”‘” denote an uncertainty set and consider the discrete- 
time system 

z(k + 1) = (A + AA)s(k) + Dw(k), (1) 

where z E R” and w E R* are the state and disturbance, respec- 
tively, AA E U, and the disturbance w is a standard zero-mean 
white noise process. We assume throughout that A is asymptoti- 
cally stable. Next, consider the performance variable 

z(k) = Er(k). (2) 
If A+ AA is asymptotically stable for all AA E U, then define the 
worst-case Hs performance measure 

J(U) = sup tr PuV, (3) 
AAU4 

where V 4 DDT and PAA is the nonnegative-definite solution to 
the Lyapunov equation 

PAA = (A + AA)TPa~(A + AA) + R, 

where R 2 ETE. 

(4) 

The following result, which is an extension of Theorem 3.1 of (181, 
provides a bound for the worst-case cost J(U). 

Theorem 1 Let Q : N C S” + S” be such that there exists 
P E N satisfying 

P = ATPA + Q(P) + R, (5) 

and let PO : U -+ S” be such that 

0 < P + Po(AA), AA E U. (6) 
and 

0 5 Q(P) - [(A + AA)TPo(AA)(A+ AA) - Po(AA)] 

- [AATPA + ATPAA + AATPAA], AA E U. (7) 

Then (A + AA, E) is detectable for all AA E U if and only if 
A + AA is asymptotically stable for all AA E U. In this case. 

PAA 5 P + Po(AA), AA E U, (8) 
where PAA E N” is given by (4), and 

J(U) 5 tr PV + sup tr Po(AA)V. (9) 
AA& 

If. in addition. there exists ps E S” such that 

Po(AA) 2 &, AA E U, 

then 

(10) 

J(U) 5 tr[(P + &)V]. (11) 
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The pair (f?, PO) is a bound. A bound is parameter-independent 
if Pc is constant. In this case, we write PO for Pc(AA) and set 
pc = PO. Finally, a bound is parameter-dependent if PO depends 
on AA. For a givenabound (0, PO), the following result yields an 
equivalent bound (0, PO). 

Proposition 3 Define N = {P E N” : BrPBo < I}. Suppose 
there exists P E N satisfying 

P = ATPA+ATPB,,(Z-B,TPE,,)-‘B,TPA+C:MC,,+R. (17) 

Then (6) and (7) are satisfied with PO = 0. 

Proposition 1 Let R : NC S” 4 S”, P EN, and PO : U d S” 
satisfy (5)-(7), and let & E S” satisfy (IO). Let Z$ E S”, and 
define~jSSn,n:/iT-,S”and~~:U-,S”byrirfN+4-~~, 

Next we present a variation of Proposition 3, the shifted bounded 
real bound. 

f?(P + p. - $0) 4 Q(P) - AT@ - so)A + (& - K), (12) 

and 

Proposition 4 Let T E Pkl, N, H E Rklxn, and 2 E S”. Define 
N = {P E N” : B~PB,J < T}. Suppose there exists P E N 
satisfying 

@AA) 9 Po(AA) - 4 + 60. (13) 

Then Theorem 1 is satisfied with N, R, P, PO, and & replaced 
hy~,~,P+~~--~,~~,and~~. 

P = A~P~+(A~P&-HT)(T-B~PB~)-l(B~PA~-H)+Z+R, 
(18) 

where 

Remark 1 In Proposition 1, if Po(AA) = PO = &, AA E Li, 
then &AA) = &‘c = 4, AA E U. In particular, choosing ?c = 0 
implies @AA) = 0, AA E u. 

(NTTN + HTN + NTH) + (N*T + HT)FC, (19) 
+ C,TFT(TN + H) + C,TFTTFC, 5 Z, F E 3, 

and A. g A - Z&N. Then (6) and (7) are satisfied with PO = 0. 

3. LMI’s for Robust Performance Note that the shifted bounded real equation (18) with H = 0, 
In this section we use linear matrix inequalities to determine the T = I, N = 0 and 2 = CMCe yields the bounded real bound 
least conservative parameter-independent bound for robust stabil- equation (17). Letting H = 0 and T = I, we obtain the the 
ity and performance with polytopic uncertainty. Let U have the discretetime version of the continuous-time shifted bounded real 
form bound [Zl]. 

U = AA c AA = e&Ail where ]Si] 5 y, i = 1, . , r , (14) 
i=l 

where Al,. . , & E R”““. 

Proposition 2 Let P E N” satisfy the 2’ constraints 

(A+~A~+...+TA,)~P(A+~A~+...+~A,)-P+R 5 0, 
(A-yA,+..,+7A,)TP(A-yA1+...+yA,)-P+R 5 0, 

(A-yAl-... + rklTP(A - r-4 - . ..+y&)-P+R 5 0, 
(A-7A1-... --yA,)TP(A-yAl-...-yA,)-P+R 5 0. 

Then 

(A + AA)TP(A + AA) - P + R 5 0, AA E U. 

Then (A + AA,E) is detectable for all AA E U if and only if 
A c AA is asymptotically stable for alI AA E U. In this case, 

PAA 5 P, AA E U. 

Remark 2 Minimizing the convex objective J(U) = tr PV sub- 
ject to the LMI’s given in Proposition 2, is a convex optimization 
problem. In addition, the optimal cost J(U) from this optimiza- 
tion provides the lowest possible cost for a parameter-independent 
bound under polytopic uncertainty. 

4. Shifted Bounded Real Bound 

Let the uncertainty set U be given by 

U = {AA : AA = BeFCc, where F E 3}, 

where 3 is a subset of 

(15) 

3BR 2 {F E RklXkl : FTF 5 M}, 06) 

where M E Nka, Z3c E Rnxkl. and Cc E Rkaxn. The following 
result concerns the classical bounded real bound 119, 20, 15). 

Corollary 1 Define N = {P E N” : B~PB~ < I}. Suppose 
there exists P E N satisfying 

P = CPA. + ATP&(Z - B:P&)-‘BrPA. + M. + R, (20) 

where M, E N” satisfies 

NTN + NTFCo + C:FTN + C,TFTFCo 5 M., F E 3. (21) 

Then (6) and (7) are satisfied with PO = 0. 

Next, assume that U is given by (14), where Al,. , A, E R”““. 
Furthermore, let Bi E Rnxki and Ci E R”” satisfy Ai = B‘Ci, 
i= l,... , T, and let Cl 

Bo= [ B1 ... Bv] E R”“‘, CO= f cRkx”, [ 1 (22) 
CT 

where k = CT=, ki. Then AA = BQFC~, where F E 3? and 3 is 
given by 

3 = {F=block-diag(&Zk,, . c&Z,) E R?“where 6, E I--r, y]} ~ 

(23) 
and M in (16) can be chosen to be r21k. Note that 3 is a proper 
subset of Tan. 

One choice for M, is given by 

M. = NTN + y \NTC,, + C,TN) + r”C,‘C,,, (24) 

where (H] = (HHT)‘12. With this choice of M., (20) becomes 

P = ATPA, + ATP&,(Z - B;PB&‘B,TPA, 

+ NTN + y INTC,, + C,TN( + y”C,‘C, + R. (25) 

Similarly, (19) is satisfied with 

Z = (NTTN+HTN+NTH) 

+ Y I(N~T + H~)C~ + C,T(TN + H)I + -?c:~c,. 
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Proposition 5 Suppose r = 1, A = AT is invertible, and A1 = 
-AT. Furthermore, suppose there exists m > 0, such that 

&ARA < A - A([A + y2A;A-‘Al])A. 

Then 
P = m(A + T~ATA-‘A~) + R 

is a solution to (18) where Be = A, Co = A-‘A1 N = 0, T = mA, 
and H = T. Furthermore, if P 1 0 then (6) and (7) are satisfied 
with PO = 0. 

5. Shifted Linear Bound 

In this section, we let the uncertainty set U be given by (14). The 
following result provides the discretetime form of the continuous- 
time linear bound [22]-(241. 

Proposition 6 Define Ar, = C:=i Ai. Let 0 < (r < 1, and suppose 
there exists P E N” satisfying 

P = &A*PA + gG,TpA,, + R. (26) 

Then (6) and (7) are satisfied with PO = 0. 

The solution to (26) can be written as 

P = WC-’ ([Z-~(A~CXJA~)-~(A;OA:)]-~WCR). 

Next we obtain the &fled lineor bound, the discrete-time version 
of the continuous-time shifted Iinear bound [13]. 

Proposition 7 Define & = CT=1 A+ Let a > 0, N E S”, and 
defineN={PEN”:(l-a)(P-N)>O}. Supposethereexists 
P E N satisfying 

P = rl;iA*PA + gA*PA,, - *A*NA - +r’&*NA,, 

+ yL [A’NA + ATNAil + R. (27) 
,=l 

Then (6) and (7) are satisfied with PO = 0. 

6. Shifted Inverse Bound 

In this section we let the uncertainty set U be given by (14). The 
following result provides a discrete-time form of the inverse bound 
POI. 
Proposition 8 Let o > 0, suppose A is invertible, and suppose 
there exists P E P” satisfying 

P = (l+yar)A*PA+R+yfJyATPAi 
*=l 

(28) 

+ &(ATPA + A*PAi)(A*PA)-‘(ATPA + A*PAi)] 

Then (6) and (7) are satisfied with PO = 0. 

Note that (28) can be written as 

P = (1 + ycxr)ATPA + 2 AT [&(iiTP + P& 
,=I 

x Pwl(A;TP + PA,) + r2$P&] A + R, 

where A, = AiA-‘. Next we obtain the shifted inverse bound. the 
discrete-time version of the continuous-time shifted inverse bound 
]131. 

Proposition 9 Let a > 0, M, N E S”, suppose A is invertible, 
and suppose there exists P E N” n (P” + N) satisfying 

P = (1 + ay)A*PA + k AT (y’$Pdi - a-yN (29) 
i=l 

+&[AT(P-M)+(P-M)Ai](P-N)-’ 

x[$(P - M) + (P - M)&] +@M + M.&l) A+ R. 

Then (6) and (7) are satisfied with PO = 0. 

If N = M then (29) becomes 

P = (1+ ay)A*PA + &A* (y’A:PA, - cryN 
a=1 

(30) 

+ &[,lT(P - N) + (P - N)A,](P - N)-’ 

X[AT(P-N)+(P-N)Ai]+yIATN+NAil)A+R. 

With N = M = 0, the shifted bound (28) is obtained. Alterna- 
tively, with M = 0, (29) becomes 

P = (I+ ay)ATPA + 2 AT (r*$P& - WN (31) 
a=1 

+jff;[‘TP + Pk]( P - N)-‘[ATP + PAi]) A + R. 

7. Shifted Popov Bound 

Define the Popov uncertainty set J&, as 

3~0~ p {F E Sk : ML 5 F I MI.,}, (32) 

where ML, Mu E Sk are such that M 4 Mu - ML is positive 
definite. The following result concerns the Popov bound [15. 161. 
Let U be given by (15), where 3 C 3~~~. 

Proposition 10 Let N E Rkxk and ~1 E Sk satisfy 

NT(F-ML)=(F-ML)Nsp, FEN, (33) 

& 4 2M-’ - NC,,B, - (NC,B,-,)* - B,TC,T/.G,B, - BZPB,, > 0. 
(34) 

Furthermore, suppose there exists P E P” satisfying 

P = ~~~&,,, + (.&,, - Z)TC,T~C,,(&w - I) + R (35) 

+ [Co + (NC,, + B~C,T&)(&,~ - I) + B:PA,lT 

x &’ [Co + (NC,, + B~C;f&,)(.&.,, - I) + B,TP&.] . 

where &, 2 A+ BoMLCO. Then (7) is satisfied with PO : U + S” 
given by 

Pc(AA) = C,T(F - ML)NC,. 

Remark 3 Pa = CT/.&c satisfies (10) 

(36) 

Next we present a shifted Popov bound. Let U be given by (15), 
where 3 C 3pop. 

Proposition 11 Let N E Rkxk. p E Sk, Z E N” and H E Pk 
satisfy 

(F-M‘)N=N*(F-ML)<~L, FEN'. (37) 

H(F- ML)N=NT(F-ML)H, FEN: (38) 

H(F - ML) = (F - M,JH, FE 3. (3% 

& e 2M-' -NC,,BoH-' -(NC,B,,H-')* 
- H-‘B:C;H&BoH-’ - H-‘B,TPBoH-l > 0, 
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and 

[B~x*(F- M~)H~~+C,TH(F- M~)XB,T] 

+(Apop - Z)*C,TH~C,(A,, - I) 5 Z, F E 3. 

Furthermore, suppose there exists P E P” satisfying 

P = A;o,,PApop+ [HCo+(NCo+H-'B,TC,TH~Co)(Apo, - I) 

+H-'B,TPAp,, - XB,T]*@ [HCo+ H-'B,TPApo, 

+(NC, + H-'B,TC,THpCo)(Ap,, - I)- XB:] 

i-R-i-Z (40) 

Then (7) is satisfied with PO : U 4 S" given by 

Po(AA) = C,TH(F- ML)NCo. (41) 

Remark 4 Proposition 11, gives the discrete-time version of the 
continuous-time shifted Popov bound [13]. 

Remark 5 Setting X = 0, Z = 0, and H = Z in Proposition 11 
yields Proposition 10. 

Figure 1: Cost bounds for Example 1 

8. Examples 
LMI methods can be used to calculate solutions along with optimal 
scalings for bounds such as the linear, bounded real, inverse, and 
Popov bounds, as well as their shifted counterparts. For more on 
the setup of LMI’s for solving bounds. see [13]. In the numerical 
examples that follow, LMI methods were used to obtain the best 
parameter-independent bound along with the Popov and shifted 
Popov bounds. 

Example 1 Let 

Furthermore, let R = 1: :I. Figure1 

shows the actual worst case cost,‘along withLthe be:t possible 
parameter-independent bound given by Remark 2. Next, let Bo 
and Co be given by 

where E # 0 is a free parameter used for optimization. The 
bounded real bound, shifted bounded real, linear, and Popov bound, 

predict stability for IS] 5 0.4. Figure 1 shows the inverse bound 
and the shifted linear bound, with N = OZ. predicting stability 
for ]d( < 0.45, with the inverse bound giving a tight fit to the 
worst case cost in this range. Finally, the shifted Popov bound 
predicts stability for 161 < 0.48, with performance coinciding with 
the actual worst case performance in that region. 

Example 2 Consider the problem given in Example 1, with A = 

I 

0.523 -0.307 1 -0.307 0.523 Figure 2 shows the actual worst case cost, 

along with the best possible parameter-independent bound given 
by Remark 2. In this example, the inverse and Popov bounds are 
conservative predicting stability for 161 5 0.035 and (61 < 0.11. 
respectively. The bounded real bound and linear bound predict 
stability for 161 < 0.17 and 161 < 0.27 respectively. The shifted 
bounded real bound given in Proposition 5 performs slightly bet- 
ter than the linear bound giving better performance for /6] < 0.28. 
The shifted linear bound with N = pZ extends the predicted sta- 
bility range to ]6( < 0.4, which falls short of the LMI bound predic- 
tion of 161 < 0.45. In contrast, the shifted Popov bound predicts 
stability beyond the LMI bound, up to 161 < 0.48. 

Example 3 Final1 
0 1 with Ac = o o 

[, 1 

, consider the problem given in Example 2 

Figure 3 shows the actual worst case cost, 

along with t e best possible parameter-independent bound given 
by Remark 2. The inverse bound predicts stability for 161 2 0.07 
and shifted inverse bound with M = 0 and N = p diag(0, 1) pre- 
dicts stability for 161 < 0.125. The Popov bound predicts stability 
for 161 < 0.125 with increased performance. Finally, the shifted 
Popov bound predicts stability for ]d] < 0.425 and coincides with 
the performance prediction of the LMI bound. 

Figure 2: Cost bounds for Example 2. 
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Figure 3: Cost bounds for Example 3. 

10. Appendix 

Proof of Theorem 1. Note that for aII AA E U, (5) is equivalent 
to 

0 = (A + AA)*P(A + AA) - P (42) 
+ l?(P) - (AATPA + ATPAA + AA=PAA) + R. 

Adding and subtracting (A+AA)*Po(AA)(A+AA) - Po(AA) to 
(42) yields 

0 = (A + AA)*(P + PO(AA))(A + AA) - (P + Po(AA)) 
+ 0(P) - [(A + AA)*P,(AA)(A + AA) - P,,(AA)] 
- (AA*PA + ATPAA + AA*PAA) + R. (43) 

Hence, by assumption, (43) has a solution P E N for all AA E 
R”X”. If AA is restricted to the set U. then, by (7). Q(P) - 
[(A+AA)*Po(AA)(A+AA) - Po(AA)] - (AATPA+ATPAA+ 
AA*PAA) is nonnegative definite. Thus if (A + AA, E) is de- 
tectable for ail AA E U, then Theorem 3.6 of [25] implies (A + 
AA, [R + fi(P, AA) - (AA*PA + ATPAA + AATPAA)]“‘) is 
detectable for all AA E U, where 

5006 



fi(P, AA) 2 Q(P) - [(A + AA)*Pc(AA)(A + AA) - Po(AA)]. 

It now follows from (43) and Lemma 12.2’ of [25] that A + AA is 
asymptotically stable for all AA E U. Conversely, if A + AA is 
asymptotically stable for all AA E U, then it follows immediately 
that (A + AA, E) is detectable for all AA E U. Now, subtracting 
(4) from (43) yields 

0 = (A + AA)*(P + Pa(AA) - PAA)(A + AA) 
- (P + Po(AA) - Paa) + R(P) 
- [(A + AA)*P,(AA)(A + AA) - Pc(AA)] 
- (AATPA + ATPAA + AA*PAA), AA E U (44) 

or, equivalently, since A+AA is asymptotically stable for all AA E 
U 

0 5 2 (A +AA)kT[i?(P. AA) 
k=O 

- (AA*PA + A*PAA + AATPAA)](A + AA)’ 
= P + Po(AA) - Paa, AA E U 

which implies (8). The performance bounds (9) and (11) are now 
an immediate consequence of (3), (8), and (10). q 

Proof of Proposition 1. Let AA E U, and let 

P = B - (4 - R). (45) 

Then since P E N: it follows that P E &‘. Substituting (45) into 
(7) yields 

0 5 -hATPA - A*PAA - AA*PAA + Q(P) 
- [(A + AA)*P,(AA)(A + AA) - Pa(AA)] 

= -AAT(P - PO + &)A - A*@ - 4 + po)AA 

- AAT(P - PO + Ei,)AA + fl(P - P0 + Fo) 
- [(A + AA)*P,(AA)(A + AA) - Po(AA)] 

= -(AA=PA + ATPAA + AA*PAA) + Q(P - PO + A) 
- [(A + AA)*Po(AA)(A + AA) - Po(AA)] 

+ AAT(Po - i;)A + AT( Pb - Fo)AA + AAT(Po - po)AA 
= -(AA*PA + ATBAA + AA*PAA) + J?(P) 

- [(A + AA)*P,(AA)(A + AA) - P,(AA)] 

+ (A + AA)T(Po - co)(A + AA) - (4 - PO) 
= -(hATPA + ATpAA + AA*PAA) + d(P) 

- [(A + AA)*(P,(AA) - Pa + &)(A + AA) 

- (Ps(AA) - $ + $1 
= -(AA*PA + AT?AA + AA*PAA) + h(P) 

- [(A + AA)*q(AA)(A + AA) - Po(AA)] 

which completes the proof. 0 

Proof of Proposition 4. Let X = (2’ - BzPBo). Then 

0 5 [X-‘(B,TPA - H) - XFC,,]T[X-‘(B,TPA - H) - XFCo] 
+ 2 - (HTFCo + C,TFTH + C,TFTTFCo) 

= (ATPBo - HT)X-=(B,TPA - H) + C,TFTXZFCo 
- C,TFT(B,TPA - H) + Z - (ATPBo - H*)FC, 
- (HTFCo + C,TFTH + C,TF*TFC,) 

= (ATPBo - HT)(T - BTPBo)-‘(BZPA - H) 
+ C,TF*(T - B~PBo)FCo - C,TFTB,TPA + Z 
- ATPB,,FCo - CTFTTFC 0 0 

= (ATPBo - HT)(T - B;PBt,)-‘(BTPA - H) + Z 
- C,TF*B,TPA - ATPBoFCo - C,TFTB,TPBoFCo 

= (ATPBo - HT)(T - B:PBo)-‘(B,TPA - H) + Z 
- AA*PA - A*PAA - AATPAA 

= Q(P) - AA*PA - A*PAA - AA*PAA. 

which completes the proof. q 

Proof of Proposition 7. Define X = (1 - a)( P - N) 2 0, and 
As = C:=i Ai. Then 

0 5 a+6,A’ - AT(P - N)crX-‘) 
t=l 

x X(&A, - arX-‘(P - N)A) 
1=1 

= aA*(P-N)X-‘(P-N)A+a-’ 26AT X &.A 
L, ’ 1) L ’ J 

- AA*( P - N)A - AT(P - N)AA 

I &A*(P - N)A + y*a-‘A,T(P - N)Ao 

+ T~A,TNA~ + 72 IA:NA + A*NA<~ 
*=l 

- AA*PAA - AA*PA - ATPAA 
= G’(P) - AA*PA - ATPAA - AA*PAA. 

which completes the proof. 

Proof of Proposition 11 

q 

([HCo + (NC0 + H-‘B;C,TH&o)(Ap, - I) 

+H-‘B,TPAp,p - XBZ ] - &H(F - WCo)* R;;’ 

x ([HCo + (NC,, + H-‘B,TC,TH/Lo)(Apo, - I) 

+ H-‘B*PA 0 pop - X4?] - RoH(F - WCo) 

+ [(AP.~ - I) + AA - B,,M&,]‘(Pa - PO(F)) 

x [(Atop - 0 + AA - BoM&ol 
+2C;H ((F - ML) - (F - ML)M-‘(F - ML)) HC, 

- [BoXT(F - ML)HCo + C,TH(F - ML)XB,T] 

- (Apop - I)*C,THpCo( Apop - I) + Z 

[ HCt, + (NC,, + H-‘B,TC,TH/So)(Ap, - I) 

+H-‘B,TPAp,, - XB: I’&’ [HC,, - XBO’ 

+(NCo + H-‘B,TC,TH&‘o)(Ap,, - I) + H-‘B,TPApop] 

- P,(F)(AA - BoM&,) - (AA* - C,TM‘B,T)P,(F) 
- (AAT - C,Tn/i,B,T)P(AA - BoMLCo) 

- [(&p - W’o(F) + A:.,,,P(AA - BoKCo,] 

- [Po(F)(Apop - I) + (AAT - C,TM,B,T)PA,,,] 

- [A-I + AAITPo(F)[A - I + AA] + Z 

[HCo - XB,’ + (NC, + H-‘B,TC,TH/Ko)(Ap,, - I) 

+H-lBzPAp,]T R,’ [HCo - XB,T 

+(NC,,+ H-‘B;C,TH&o)(Ap, -I) + H-‘B$PAp,,] 

+ A*PBoM& + C,TMLB,TPA + C,TM,B,TPBoMLCo 
+ Z - (AATPAA + A*PAA + AATPA) 
- (A + AA)TP,(F)(A + AA) + PO(F) 
f&(P) - (AA*PA + ATPAA + AA=PAA) 
- [(A + AA)*P,(F)(A + AA) - PO(F)] 

which completes the proof. 0 
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