
Closed-Loop Identification of Unstable Systems Using

Noncausal FIR Models

Khaled Aljanaideh1, Benjamin J. Coffer1, and Dennis S. Bernstein2

Abstract— Motivated by the potential advantages of FIR
model structures, the present paper considers the applicabil-
ity of FIR models to closed-loop identification of open-loop-
unstable plants. We show that FIR models can be used effec-
tively for closed-loop identification of open-loop-unstable plants.
The key insight in this regard is to realize that a noncausal
FIR model can serve as a truncated Laurent expansion inside
the annulus between the asymptotically stable pole of largest
modulus and the unstable pole of smallest modulus. The key to
identifying the noncausal plant model is to delay the measured
output relative to the measured input. With this techniques, the
identified FIR model is precisely a noncausal approximation of
the unstable plant, that is, an approximation of the Laurent
expansion of the plant inside the annulus of analyticity lying
between the disk of stable poles and the punctured plane of
unstable poles.

I. INTRODUCTION

Identification of a plant during closed-loop operation is

motivated by the need to monitor plant changes without

opening the loop [1–3]. This need is unavoidable when the

controlled plant is open-loop unstable, in which case opening

the loop for system identification is prohibited. Even for

plants that are open-loop asymptotically stable, opening the

loop for system identification may not be feasible due to

operational constraints. In these cases, system identification

must rely on sensor-actuator data provided under operating

conditions, although in some cases it may be possible to

inject additional signals in order to enhance persistency and

identifiability.

In addition to the fact that closed-loop identification con-

strains the choice of inputs, sensor and process noise inside

the feedback loop lead to an errors-in-variables estimation

problem with correlated noise. When the spectrum of this

noise is known, consistency is achievable [4]. However,

this information is usually not be available in practice, and

decorrelation techniques are needed [5].

In the present paper we consider the problem of closed-

loop identification of open-loop-unstable plants. Modified

output error and Box-Jenkins models for unstable systems

were derived in [6, 7]. Another approach to this problem is to

assume a rational transfer function model whose coefficients

are fit by least squares techniques. If the plant order is not

known, then an overestimate of the order can be used, and

the estimated model can be reduced to a more accurate

order through approximation based on Markov parameters.
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Approximation techniques are typically based on the Ho-

Kalman realization theory [8] and its implementation in

terms of the singular value decomposition [9]. This approach

is highly sensitive to noise, however, although heuristics can

be used to improve its accuracy [10–14].

An alternative approach to coefficient estimation is to use

a µ-Markov model structure, which is an overparameterized

model that explicitly contains Markov parameters of the plant

as a subset of the numerator coefficients [15, 16]. For the

case of a white input signal and arbitrary, unknown output

noise, standard least squares yields consistent estimates of

the Markov parameters [17, 18]. The estimated Markov pa-

rameters can subsequently be used for approximation and

order reduction.

The µ-Markov model can be viewed as a hybrid model

that possesses features of an FIR (finite-impulse-response)

model. In particular, the numerator coefficients of an FIR

model are precisely its Markov parameters, and all of its

poles are located at zero. Although physical plants are rarely

FIR, an FIR model can be considered as a candidate model

structure for an asymptotically stable, IIR (infinite impulse

response) plant. This approach is of interest since estimates

of the numerator coefficients of an FIR model are expected

to be more resistant to noise than the coefficients of an IIR

model. An additional advantage of an FIR model structure is

that Markov parameters are given explicitly by an FIR model

but must be extracted from an IIR model.

Motivated by the potential advantages of FIR model struc-

tures, the present paper considers the applicability of FIR

models to closed-loop identification of open-loop-unstable

plants. At first glance this question seems questionable due

to the fact that FIR models are highly asymptotically stable

in the sense that all of their poles are located at zero. In

the present paper we show that, in fact, FIR models can be

used effectively for closed-loop identification of open-loop-

unstable plants. The key insight in this regard is to realize

that a noncausal FIR model can serve as a truncated Laurent

expansion inside the annulus between the asymptotically

stable pole of largest modulus and the unstable pole of

smallest modulus.

The noncausal FIR model that approximates the Laurent

expansion of an unstable plant involves both positive and

negative powers of the Z-transform variable z. The negative

powers approximate the stable part of the plant outside of a

disk, whereas the positive powers approximate the unstable

part of the plant inside a disk. Inside the common region of

interest, which is the annulus in which the Laurent expansion

converges, the identified model is noncausal, as evidenced by
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the positive powers of z.

The key to identifying the noncausal plant model is to

delay the measured output relative to the measured input.

With this technique, the identified FIR model is precisely

a noncausal approximation of the unstable plant, that is, an

approximation of the Laurent expansion of the plant inside

the annulus of analyticity lying between the disk of stable

poles and the punctured plane of unstable poles.

The contents of the paper are as follows. In Section

II we formulate the problem. In Section III we show the

identification architecture. We show numerical examples in

Section IV. In Section V we show how to reconstruct G
from its noncausal FIR model. Finally, We give conclusions

in Section VI.

II. PROBLEM FORMULATION

Consider the closed-loop system in Figure 1 consisting of

the SISO, discrete-time transfer function G of order n and

the discrete-time controller C. We assume that the closed-

loop system is internally asymptotically stable, although no

assumptions are made on the stability of G. We assume that

G has no poles on the unit circle.

Using partial fractions, G can be represented as

G(z) = Gs(z) +Gu(z) +D, (1)

where D
△
= G(∞), and Gs and Gu are the strictly proper

asymptotically stable and strongly unstable parts of G,

respectively. That is, Gu(z) is a transfer function all of whose

poles are outside the closed unit disk.

The transfer function G is analytic in the annulus between

the asymptotically stable pole of largest modulus and the un-

stable pole of smallest modulus with the Laurent expansion

G(z) =
∞
∑

i=−∞

Hiz
−i, (2)

Hi
△
=











Hu,i, if i < 0,

D, if i = 0,

Hs,i, if i > 0,

(3)

where for all i ≥ 0, Hs,i and Hu,−i are the coefficients of

the Laurent expansions of Gs(z) and Gu(z), respectively, in

the given annulus.

C G
u0c ec y0

−

Fig. 1. Discrete-time closed-loop control system, where C is the controller,
and G is the plant. G can be either an asymptotically stable or an unstable
transfer function, and the closed-loop system is assumed to be internally
stable.

Let d and r be positive integers, and define the FIR

truncation of (2) by

Gr,d(z)
△
=

r
∑

i=−d

Hiz
−i. (4)

Note that

Gr,d(z)
△
= Gs,r(z) +Gu,d(z) +D, (5)

where Gs,r(z) and Gu,d(z) are the causal and noncausal

components of Gr,d(z), respectively, defined by

Gs,r(z)
△
=

r
∑

i=0

Hs,iz
−i, (6)

Gu,d(z)
△
=

d
∑

i=0

Hu,−iz
i. (7)

Let p : C → C be the polynomial

p(z)
△
=

n
∑

i=0

αiz
i, (8)

where z ∈ C, and αi ∈ R for all i ∈ {0, . . . , n}. The flip

F (p) of p is the polynomial

F
(

p(z)
) △
=

n
∑

i=0

αiz
n−i. (9)

Since

F
(

p(z)
) △
=

n
∑

i=0

αn−iz
i, (10)

the flip operator reflects the coefficients of the polynomial

(8) from left to right.

Note that

Gu,d(z)=

d
∑

i=0

Hu,−iz
i = F

(

d
∑

i=0

Hu,−iz
d−i

)

= zdF

(

d
∑

i=0

Hu,−iz
−i

)

= zdF
(

Gu,d(z
−1)
)

.

(11)

Hence (5) can be written as

Gr,d(z) = Gs,r(z) + zdF
(

Gu,d(z
−1)
)

+D. (12)

III. LEAST SQUARES IDENTIFICATION

In this section we use least squares with an FIR model

structure to identify the transfer function G shown in Figure

1. We choose c to be a realization of a stationary white

random process C. Replacing z in (2) with the forward time-

shift operator q yields

G(q) =

∞
∑

i=−∞

Hiq
−i. (13)

It follows that

y0(k) =

∞
∑

j=−∞

Hju0(k − j), (14)
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which can be represented as

y0(k) = ŷ0(k) + e(k), (15)

where the noncausal FIR model output ŷ0(k) is defined as

ŷ0(k)
△
=

r
∑

j=−d

Hju0(k − j), (16)

and e(k) is the difference between the actual output and the

noncausal FIR model output at time k. Note that, as d and

r tend to infinity, e(k) tends to zero for all k ≥ 0. Hence, d
and r are chosen large enough such that e(k) is negligible

for all k ≥ 0 and thus ŷ0(k) ≈ y0(k). Moreover, note from

(16) that calculating the output at time k requires the inputs

u0(k − r), . . . , u0(k + d). That is, to identify a noncausal

FIR model we first apply d time-delay steps to the measured

output data and then perform identification between the input

and the delayed output as we show next.

Consider the block diagram shown in Figure 2, where u0

is the input signal, y0 is the output signal, and v and w are

input noise and output noise, respectively. We assume that v
is zero-mean white noise that is independent of u, and w is

zero-mean colored noise (i.e. not necessarily white) that is

independent of u. Note that u and y represent measurements

of the input u0 and the output y0, respectively, such that

u = u0 + v, (17)

y = y0 + w. (18)

Note that (15) can be expressed as

y0(k) = θr,dφ0r,d(k) + e(k), (19)

where

θr,d
△
=

[

H−d · · · Hr

]

,

φ0r,d(k)
△
=

[

u0(k + d) · · · u0(k − r)
]T

.

Moreover,

y(k)= θr,dφr,d(k) + e(k), (20)

where

φr,d(k)
△
=

[

u(k + d) · · · u(k − r)
]T

. (21)

The least squares estimate θ̂r,d,ℓ of θr,d is given by

θ̂r,d,ℓ = argmin
θ̄r,d

∥

∥Ψy,ℓ− θ̄r,dΦµ,ℓ

∥

∥

F
, (22)

G

ID ++

u0

v
w

y0

y
u

Fig. 2. Identification of the linear plant G. u0 and y0 represent input and
output signals, respectively, where v and w represent input noise and output
noise, respectively.

where θ̄r,d is a variable of appropriate size, || . ||F denotes

the Frobenius norm,

Ψy,ℓ
△
=
[

y(µ) · · · y(ℓ− 2d)
]

,

Φµ,ℓ
△
=
[

φr,d(µ+ d) · · · φr,d(ℓ− d)
]

,

µ
△
= r + d+ 1, and ℓ is the number of samples.

IV. NUMERICAL EXAMPLES

We know from the previous sections that to identify the

noncausal FIR model of a transfer function G we first apply

d delay steps to the measured output data. Then we perform

the identification process discussed in the previous section

between the measured input data and the delayed output

data. If a noncausal component of the identified FIR model

appears, then G has at least one unstable pole; otherwise G
is asymptotically stable.

In this section we show three examples. In each example,

G is the plant in the closed-loop system shown in Figure

1. The input command c in Figure 1 is a realization of a

stationary white random process C with the gaussian pdf

N(0, 1). Moreover, we assume that the intermediate signal

u is accessible and persistently exciting. In this section we

assume noise-free data, that is, v(k) = 0 and w(k) = 0 for

all k ≥ 0.

Define the prediction error (PE) as

ε
△
= ||y − ŷ||2, (23)

where y is the vector of the measured output and ŷ is the

vector of the output of the FIR model structure as given by

(16).

Example 4.1: Consider the unstable transfer function

G(z) =
1

z − 1.5
, (24)

and the PI controller

C(z) = 1.10 + 0.02
1

z − 1
. (25)

Let r = 50 and d = 50. Figure 3 shows the identified

and actual impulse response of G. Note that the causal

component of the impulse response is zero. Now we set

r = 50 and increase d from 0 to 50 output-delay steps to

study the effect of delay on the prediction error. Figure 4

shows that the prediction error decreases as d increases since

the identified FIR model using the delayed output captures

a larger portion of the noncausal component of the Laurent

expansion of G.

Example 4.2: Consider the unstable transfer function

G(z) =
1

(z − 1.5)(z − 0.5)
, (26)

and the controller

C(z) =
0.6z − 0.4103

z − 0.3679
. (27)

Let r = 50 and d = 50. Figure 5 shows the identified and

actual impulse response of G. Note that the impulse response
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has both causal and noncausal components. Now we set r =
50 and increase d from 0 to 50 output-delay steps to study

the effect of delay on the prediction error. Figure 6 shows

that the prediction error decreases as d increases since the

identified FIR model using the delayed output captures a

larger portion of the noncausal component of the Laurent

expansion of G.
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Flipped Impulse Response of G
u
(z

−1
)

Impulse Response of Gu(z−1)

Fig. 3. G has one unstable pole as described in (24), r = 50, and d = 50
output-delay steps. Note that the impulse response of G has only a noncausal
component.
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Fig. 4. G(z) = −1
z−1.5

has one unstable pole, r = 50, and d increases

from 0 to 50 output-delay steps. Note that the prediction error decreases as
d increases since the identified FIR model using the delayed output captures
a larger portion of the noncausal component of the Laurent expansion of
G.
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Fig. 5. G(z) = 1
(z−1.5)(z−0.5)

has one asymptotically stable pole and

one unstable stable pole, r = 50, and d = 50 output-delay steps. Note that
the impulse response of G has both causal and noncausal components.

V. RECONSTRUCTING G FROM ITS NONCAUSAL FIR

MODEL

In order to reconstruct G from its noncausal FIR model

we reconstruct the stable and unstable parts of G separately

using the eigensystem realization algorithm (ERA) [9]. Then,

we obtain G by adding these two terms together as given in

(1). Singular values of the Hankel matrix can be used to

estimate the model orders ns of Gs and nu of Gu. We begin

with initial estimates n̂s ≥ ns and n̂u ≥ nu. For Gs, we set

r = 2n̂s − 1 and d = 0 in (22) and we obtain the estimated

Markov parameters of Gs from (22). On the other hand, for

Gu, we set r = 0 and d = 2n̂u−1 in (22) and we obtain the

estimated Markov parameters of Gu(z
−1) from (22). Then,

we construct the Markov block-Hankel matrix

H(Hs)
△
=







Hs,1 · · · Hs,n̂s

...
. . .

...
Hs,n̂s

· · · Hs,2n̂s−1






, (28)

where Hs is the vector of Markov parameters defined as

Hs

△
=
[

Hs,0 · · · Hs,2n̂s−1

]

, (29)

and H(·) is a linear mapping that constructs a Markov block-

Hankel matrix from the components of the vector Hs except

for Hs,0. The rank of H(Hs) is equal to the McMillan degree

of Gs. Similarly, for Gu(z
−1) we construct the Markov

block-Hankel matrix

H(Hu)
△
=







Hu,−2n̂u+2 · · · Hu,−n̂u+1

...
. . .

...
Hu,−n̂u+1 · · · Hu,0






, (30)

where Hu is the vector of Markov parameters defined as

Hu

△
=
[

Hu,−2n̂u+1 · · · Hu,0

]

. (31)

Note that H(·) constructs a Markov block-Hankel matrix

from the components of the vector Hu except for Hu,−2n̂u+1.

The rank of H(Hu) is equal to the McMillan degree of

Gu(z
−1).
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Fig. 6. G(z) = 1
(z−1.5)(z−0.5)

has one asymptotically stable pole and

one unstable stable pole, r = 50, and d increases from 0 to 50 output-
delay steps. Note that the prediction error decreases as d increases since the
identified FIR model using the delayed output captures a larger portion of
the noncausal component of the Laurent expansion of G.
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We compute the singular values of H(Hs) and H(Hu) and

look for a large decrease in the singular values. For noise-

free data, a large decrease in the singular values is evident.

Simulation results show that, even with a small amount of

noise, the large decrease in the singular values disappears

and thus the problem of estimating the model order becomes

difficult.

The nuclear-norm minimization technique given in [10, 11]

provides a heuristic optimization approach to this problem.

In particular, define the optimization parameter vector Ĥs as

Ĥs

△
=
[

Ĥs,0 · · · Ĥs,2n̂−1

]

. (32)

To estimate the model order of Gs we solve the optimization

problem

minimize
Ĥs

∥

∥

∥
H(Ĥs)

∥

∥

∥

N
(33)

subject to

∥

∥

∥
Ĥs −Hs

∥

∥

∥

F
≤ γs, (34)

where ‖ · ‖N denotes the nuclear norm, and γs is varied

from zero to ‖H(Hs)‖F. For each value of γs, we find the

optimal Ĥs(γs), and then we construct the Markov block-

Hankel matrix H(Ĥs(γs)) and compute its singular values.

We define the ǫ-rank of a matrix to be the number of nonzero

singular values after setting all the singular values below ǫ
to zero. If, for a relatively wide range of γs, the same ǫ-rank

value is obtained, then we consider it to be the McMillan

degree of Gs. Finally, we use ERA to construct the estimate

Ĝs of Gs.

Similarly, to estimate the model order of Gu(z
−1) we

solve the optimization problem

minimize
Ĥu

∥

∥

∥
H(Ĥu)

∥

∥

∥

N
(35)

subject to

∥

∥

∥
Ĥu −Hu

∥

∥

∥

F
≤ γu, (36)

where γu is varied from zero to ‖H(Hu)‖F. For each value

of γu, we find the optimal Ĥu(γu), and then we construct

the Markov block-Hankel matrix H(Ĥu(γu)) and compute

its singular values. If, for a relatively wide range of γu, the

same ǫ-rank value is obtained, then we consider it to be

the McMillan degree of Gu(z
−1). Finally, we use ERA to

construct the estimate Ĝu(z
−1) of Gu(z

−1).
The following example illustrates this method.

Example 5.1: Consider the system (26). We use c in

Figure 1 to be a realization of the stationary white random

process C with the gaussian pdf N(0, 1). We add input and

output noise with input signal-to-noise ratio of 100, and

output signal-to-noise ratio of 10. We set r = 50, d = 50,

and ℓ = 50, 000 points and then we identify the noncausal

FIR model of G. Due to the input and output noise, we

expect that the estimated Markov parameters to be within a

small range of the actual Markov parameters. Figure 7 shows

the Markov parameters of the noncausal FIR model of G for

both cases with and without noise.

To choose the model order for Gs(z), we set n̂s = 20 and

we solve the optimization problem (33), (34) for a range of

γs from 0 to ‖H(Hs)‖F. For each value of γs, we find the

optimal Ĥs(γs), and then we construct the Markov block-

Hankel matrix H(Ĥs(γs)) and compute its singular values.

We set ǫ = 1× 10−5, that is, all singular values below this

threshold are set to zero, which yields the ǫ-rank for each

γs. Figure 8 shows a plot of ǫ-rank(H(Ĥs(γs))) versus γs.
We note that, for a relatively large range of γs, we have ǫ-
rank(H(Ĥs(γs))) = 2, which is close but not equal to the

order of Gs (which is 1) due to noise. Using ERA we obtain

Ĝs(z) =
−0.9822z + 0.6657

z2 − 1.17z + 0.3364
. (37)

Similarly, for Gu(z
−1), we set n̂u = 20 and we solve the

optimization problem (35), (36) for a range of γu from 0
to ‖H(Hu)‖F. For each value of γu, we find the optimal

Ĥu(γu), and then we construct the Markov block-Hankel

matrix H(Ĥu(γu)) and compute its singular values. We

set ǫ = 1 × 10−5, that is, all singular values below this

threshold are set to zero, which yields the ǫ-rank for each

γu. Figure 9 shows a plot of ǫ-rank(H(Ĥu(γu))) versus γu.

We note that, for a relatively large range of γu, we have ǫ-
rank(H(Ĥu(γu))) = 1, which in fact is equal to the order of

Gu(z
−1). Using ERA we obtain

Ĝu(z
−1) =

0.6486z

−z + 0.6543
, (38)

that is,

Ĝu(z) =
0.9913

z − 1.5284
. (39)

It follows that the estimate Ĝ of G is

Ĝ(z) = Ĝs(z) + Ĝu(z)

=
0.0091z2 + 1.007z − 0.684

z3 − 2.698z2 + 2.12z − 0.5142
. (40)

Figure 10 shows bode plots for G, Ĝ, and Ĝr,d. Note that

the magnitude and phase plots of G(z), Ĝ(z), and Ĝr,d(z)
are close to each other.

VI. CONCLUSIONS

In this paper we showed that FIR models can be used ef-

fectively for closed-loop identification of open-loop-unstable

plants. To identify the noncausal plant model we delayed

the measured output relative to the measured input, then

we used least squares to estimate the causal and noncausal

Markov parameters of the plant. Nuclear norm minimization

was used to estimate the orders of the asymptotically stable

and unstable parts of the plant. Finally, we reconstructed the

plant from its stable and unstable parts using the eigensystem

realization algorithm.
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Fig. 7. Markov parameters of the noncausal FIR model of G(z) =
1

(z−1.5)(z−0.5)
with noise-free data (blue), and input and output noise

with SNRi = 100 and SNRo = 10 (red).
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Fig. 8. ǫ-rank(H(Ĥs(γs))) versus γs. Note that, for a relatively large range

of γs, we have ǫ-rank(H(Ĥs(γs))) = 2, which is close but not equal to
the order of Gs (which is 1) due to noise.
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Fig. 9. ǫ-rank(H(Ĥu(γu))) versus γu. Note that, for a relatively large

range of γu, we have ǫ-rank(H(Ĥu(γu))) = 1, which is equal to the order
of Gu(z−1)
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Fig. 10. Bode plots of G(z) (blue), Ĝ(z) (red), and Ĝr,d(z) (green).

Note that the magnitude and phase plots of G(z), Ĝ(z), and Ĝr,d(z) are
close to each other.
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