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We apply an extension of retrospective cost adaptive control (RCAC) to a command-
following problem for uncertain Hammerstein systems. In particular, RCAC with a NAR-
MAX controller strucuture is applied to linear systems cascaded with input nonlinearities.
We assume that one Markov parameter of the linear plant is known. RCAC also uses knowl-
edge of the monotonicity properties of the input nonlinearity. The goal is to determine
whether RCAC with a NARMAX controller structure can improve the command-following
performance compared to the linear RCAC controller.

I. Introduction

Many practical systems can be modeled as linear systems cascaded with input and output nonlinear-
ities. Systems with input nonlinearities are called Hammerstein systems. Examples of memoryless nonlin-
earities include saturation and deadzone, while nonlinearities with memory include hysteretic actuators and
sensors. Identification and control techniques have been extensively developed for these systems.1–3,5

In practice, however, the linear component of the system as well as the nonlinearities may be uncertain.
In this case, robust control techniques can be used.4 However, adaptive control methods may be desirable
to allow the controller to tune itself to the actual plant characteristics, especially when unexpected changes
can occur during plant operation.

In recent research6–8 we demonstrated the ability of retrospective cost adaptive control (RCAC)9–14

to control systems involving linear dynamics with input and output nonlinearities. In all of these papers
the goal is to adapt an instantaneously linear controller for a nonlinear plant. Although RCAC is able to
tune the linear controller to the command signal and nonlinear characteristics of the plant, the ability of
the linear controller to produce accurate command following is limited by the distortion introduced by the
nonlinearities. The objective of the present paper is to develop a technique for reducing this distortion.

The approach that we take in the present paper is to replace the linear controller structure of RCAC
by a nonlinear controller structure. A simple and effective way to do this is to use a NARMAX (nonlinear
ARMAX) controller structure that is linear in parameters. NARMAX models have been used extensively for
system identification15–17 and as a plant model for adaptive control.18 The approach of the present paper
differs from prior work by using a NARMAX model structure for the adaptive controller itself, where the
nonlinearities are chosen prior to controller implementation and the controller coefficients are updated online
by RCAC.
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The controller nonlinearities can be applied to either the input to the controller (NARMAX/I), the
output of the controller (NARMAX/O), or both (NARMAX/IO). The choice of NARMAX controller struc-
ture is chosen to reflect the presence of the unknown input or output nonlinearities in the plant with the
goal of at least partially inverting these nonlinearities to reduce the distortion that degrades the command-
following accuracy. In the present paper we investigate various choices of the controller nonlinearities in
order to determine their effectiveness in improving the closed-loop performance. The goal is to determine
controller nonlinearities that are effective for large classes of uncertain input nonlinearities.

The contents of the paper are as follows. In Section II, we describe the Hammerstein command-
following problem. In Section III, we apply the NARMAX controller structure to Hammerstein systems. In
particular, we apply an extension of RCAC using auxiliary nonlinearities, and employ a nonlinear controller
structure to reduce the command-following distortion introduced by the input nonlinearities. Numerical
results are also presented in Section IV, and conclusions are given in Section V.

II. Hammerstein Command-following Problem

Consider the SISO discrete-time Hammerstein system

x(k + 1) = Ax(k) +BN(u(k)), (1)

y(k) = E1x(k), (2)

where x(k) ∈ Rn, u(k), y(k) ∈ R, w(k) ∈ Rd, N : R → R, and k ≥ 0. We consider the Hammerstein
command-following problem with performance variable

z(k) = y(k)− r(k), (3)

where z(k), r(k) ∈ R. The goal is to develop an adaptive output feedback controller that minimizes the
command-following error z with minimal modeling information about the dynamics, and input nonlinearity
N. We assume that measurements of z(k) are available for feedback; however, measurements of v(k) =
N(u(k)) are not available. A block diagram for (1)-(3) is shown in Figure 1.

Figure 1. Adaptive command-following problem for a Hammerstein plant. We assume that measurements of z(k) are
available for feedback; however, measurements of v(k) = N(u(k)) is not available. The feedforward path is optional.

III. Retrospective-Cost Adaptive Control

III.A. Retrospective Cost with Adaptive Regularization

For i ≥ 1, define the Markov parameter

Hi
△
= E1A

i−1B.

For example, H1 = E1B and H2 = E1AB. Let ℓ be a positive integer. Then, for all k ≥ ℓ,

x(k) = Aℓx(k − ℓ) +
ℓ∑

i=1

Ai−1BN((u(k − i)), (4)
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and thus

z(k) = E1A
ℓx(k − ℓ) + H̄V̄ (k − 1)− r(k), (5)

where

H̄
△
=

[
H1 · · · Hℓ

]
∈ R1×ℓ

and

V̄ (k − 1)
△
=


N(u(k − 1))

...

N(u(k − ℓ))

 .

Next, we rearrange the columns of H̄ and the components of V̄ (k − 1) and partition the resulting matrix
and vector so that

H̄V̄ (k − 1) = H′V ′(k − 1) +HV (k − 1), (6)

where H′ ∈ R1×(ℓ−lV ), H ∈ R1×lV , V ′(k − 1) ∈ Rℓ−lV , and V (k − 1) ∈ RlV . Then, we can rewrite (5) as

z(k) = S(k) +HV (k − 1), (7)

S(k)
△
= E1A

ℓx(k − ℓ)− r(k) +H′V ′(k − 1). (8)

Next, for j = 1, . . . , s, we rewrite (7) with a delay of kj time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in
the form

z(k − kj) = Sj(k − kj) +HjVj(k − kj − 1), (9)

where (8) becomes

Sj(k − kj)
△
= E1A

ℓx(k − kj − ℓ) +H′
jV

′
j (k − kj − 1)− r(k − kj)

and (6) becomes

H̄Ū(k − kj − 1) = H′
jV

′
j (k − kj − 1) +HjVj(k − kj − 1),

where H′
j ∈ R1×(ℓ−lVj

), Hj ∈ R1×lVj , U ′
j(k − kj − 1) ∈ Rℓ−lVj , and Vj(k − kj − 1) ∈ RlVj . Now, by stacking

z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=


z(k − k1)

...

z(k − ks)

 ∈ Rs. (10)

Therefore,

Z(k)
△
= S̃(k) + H̃Ṽ (k − 1), (11)

where

S̃(k)
△
=


S1(k − k1)

...

Ss(k − ks)

 ∈ Rs,
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Ṽ (k − 1) has the form

Ṽ (k − 1)
△
=


N((u(k − q1))

...

N(u(k − qlṼ ))

 ∈ RlṼ ,

where, for i = 1, . . . , lṼ , k1 ≤ qi ≤ ks + ℓ, and H̃ ∈ Rs×lṼ is constructed according to the structure of

Ṽ (k− 1). The vector Ṽ (k − 1) is formed by stacking V1(k− k1 − 1), . . . , Vs(k− ks − 1) and removing copies
of repeated components.

Next, for j = 1, . . . , s, we define the retrospective performance

ẑj(k − kj)
△
= Sj(k − kj) +Hj V̂j(k − kj − 1), (12)

where the past controls Vj(k − kj − 1) in (9) are replaced by the retrospective controls V̂j(k − kj − 1). In
analogy with (10), the extended retrospective performance for (12) is defined as

Ẑ(k)
△
=


ẑ1(k − k1)

...

ẑs(k − ks)

 ∈ Rs

and thus is given by

Ẑ(k) = S̃(k) + H̃
ˆ̃V (k − 1), (13)

where the components of ˆ̃V (k − 1) ∈ RlṼ are the components of V̂1(k − k1 − 1), . . . , V̂s(k − ks − 1) ordered
in the same way as the components of Ṽ (k − 1). Subtracting (11) from (13) yields

Ẑ(k) = Z(k)− H̃Ṽ (k − 1) + H̃
ˆ̃V (k − 1). (14)

Finally, we define the retrospective cost function

J( ˆ̃V (k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (15)

where R(k) ∈ Rs×s is a positive-definite performance weighting. The goal is to determine refined controls
ˆ̃V (k − 1) that would have provided better performance than the controls U(k) that were applied to the

system. The refined control values ˆ̃V (k − 1) are subsequently used to update the controller.
Next, to ensure that (15) has a global minimizer, we consider the regularized cost

J̄( ˆ̃V (k − 1), k)
△
= ẐT(k)R(k)Ẑ(k)

+ η(k) ˆ̃V T(k − 1) ˆ̃V (k − 1), (16)

where η(k) ≥ 0. Substituting (14) into (16) yields

J̄( ˆ̃V (k − 1), k) = ˆ̃V (k − 1)TA(k) ˆ̃V (k − 1)

+B(k) ˆ̃V (k − 1) + C(k),

where

A(k)
△
= H̃TR(k)H̃ + η(k)IlṼ ,

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ṽ (k − 1)],

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ṽ (k − 1)

+ Ṽ T(k − 1)H̃TR(k)H̃Ṽ (k − 1).
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If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this case, J̄( ˆ̃V (k − 1), k) has
the unique global minimizer

ˆ̃V (k − 1) = −1

2
A−1(k)B(k). (17)

III.B. NARMAX Controller Construction

In this section, we assume a NARMAX structure for the adaptive controller, which uses a nonlinear
difference equation to model the relation between the input z and output u of the controller. The nonlinear
controller may include nonlinearities on the input to the controller (NARMAX/I), the output of the controller
(NARMAX/O), or both (NARMAX/IO). The NARMAX controller structure is linear in the controller
parameters, and linear regression is used to update the controller coefficients.

The control u(k) is given by the strictly proper time-series controller of order nc written as

u(k) =

p∑
j=1

nc∑
i=1

Mji(k)fj(u(k − i)) +

q∑
j=1

nc∑
i=1

Nji(k)gj(z(k − i)), (18)

where, for all j = 1, . . . , p, i = 1, . . . , nc, Mji(k) ∈ R, and Nji(k) ∈ R. The control (18) can be expressed as

u(k) = θ(k)ϕ(k − 1),

where

θ(k)
△
= [M11(k) ··· M1nc (k) M21(k) ··· M2nc (k) ··· Mp1(k) ··· Mpnc (k)

N11(k) ··· N1nc (k) N21(k) ··· N2nc (k) ··· Nq1(k) ··· Nqnc (k) ] ∈ Rlu×(p+q)nc

and

ϕ(k − 1)
△
= [ f1(u(k−1)) ··· f1(u(k−nc)) ··· fp(u(k−1)) ··· fp(u(k−nc))

g1(z(k−1)) ··· g1(z(k−nc)) ··· gq(z(k−1)) ··· gq(z(k−nc)) ]T ∈ R(p+q)nc .

To illustrate the NARMAX/I controller structure, let f1(u) = u, f2(u) = u2, and f3(u) = u3. Then
θ(k) and ϕ(k − 1) can be expressed as

θ(k)
△
= [M1(k) ··· Mnc (k) Mnc+1(k) ··· M2nc (k) M2nc+1(k) ··· M3nc (k) N1(k) ··· Nnc (k) ] ∈ Rlu×nc(3lu+lz)

and

ϕ(k − 1)
△
= [ u(k−1) ··· u(k−nc) u2(k−1) ··· u2(k−nc) u3(k−1) ··· u3(k−nc) z(k−1) ··· z(k−nc) ]T ∈ Rnc(3lu+ly).

To illustrate the NARMAX/O controller structure, let g1(z) = z and g2(z) = z2. Then θ(k) and g(ϕ(k− 1))
can be expressed as

θ(k)
△
=

[
M1(k) · · · Mnc(k) N1(k) · · · Nnc(k) Nnc+1(k) · · · N2nc(k)

]
∈ Rlu×nc(lu+2lz)

and

ϕ(k − 1)
△
= [u(k − 1) · · · u(k − nc)) z(k − 1) · · · z(k − nc) z2(k − 1) · · · z2(k − nc)]

T ∈ Rnc(lu+2lz).

Next, let d be a positive integer such that Ṽ (k − 1) contains v(k − d) and define the cumulative cost
function

JR(θ, k)
△
=

k∑
i=d+1

λk−i∥ϕT(i− d− 1)θT(k)− v̂T(i− d)∥2 + λk(θ(k)− θ0)P
−1
0 (θ(k)− θ0)

T, (19)
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where ∥ · ∥ is the Euclidean norm, and λ ∈ (0, 1] is the forgetting factor. Minimizing (19) yields

θT(k) = θT(k − 1) + β(k)P (k − 1)ϕ(k − d− 1) · [ϕT(k − d)P (k − 1)ϕ(k − d− 1) + λ(k)]−1

· [ϕT(k − d− 1)θT(k − 1)− v̂T(k − d)],

where β(k) is either zero or one. The error covariance is updated by

P (k) = β(k)λ−1P (k − 1) + [1− β(k)]P (k − 1)− β(k)λ−1P (k − 1)ϕ(k − d− 1)

· [ϕT(k − d− 1)P (k − 1)ϕ(k − d) + λ]−1 · ϕT(k − d− 1)P (k − 1).

We initialize the error covariance matrix as P (0) = αI3nc , where α > 0. Note that when β(k) = 0, θ(k) =
θ(k − 1) and P (k) = P (k − 1). Therefore, setting β(k) = 0 switches off the controller adaptation, and thus
freezes the control gains. When β(k) = 1, the controller is allowed to adapt.

III.C. Auxiliary Nonlinearities and the Adaptive NARMAX Controller

To account for the presence of the input nonlinearity N, the RCAC controller in Figure 2 uses two aux-
iliary nonlinearities.19 The auxiliary nonlinearity N1 modifies uc to obtain the regressor input ur, while the
auxiliary nonlinearity N2 modifies ur to produce the Hammerstein plant input u. The auxiliary nonlinearities
N1 and N2 are chosen based on limited knowledge of the input nonlinearity N, as described below.

Figure 2. Hammerstein command-following problem with the NARMAX RCAC adaptive controller and auxiliary
nonlinearities N1 and N2.

III.C.1. Auxiliary Nonlinearity N1

Define the saturation function sata by

N1(uc) = sata(uc) =


−a, if uc < −a,

uc, if − a ≤ uc ≤ a,

a, if uc > a,

(20)

where a > 0 is the saturation level. For minimum-phase plants, the auxiliary nonlinearity N1 is not needed,
and thus the saturation level a is chosen to be a large number. For NMP plants, the saturation level a is
used to tune the transient behavior. In addition, the saturation level is chosen to provide the magnitude of
the control input needed to follow the command r. This level depends on the range of the input nonlinearity
N as well as the gain of the transfer function G at frequencies in the spectra of r.

III.C.2. Auxiliary Nonlinearity N2

To construct N2, we assume that the intervals of monotonicity of the input nonlinearity N are known;
no further modeling information about N is needed. Since the range of N1 is [−a, a], we need consider only
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ur ∈ [−a, a]. Therefore, let I1, I2, . . . be intervals that partition the interval [−a, a]. If N is nondecreasing

on Ii, then N2(ur)
△
= ur for all ur ∈ Ii. Alternatively, if N is nonincreasing on Ii = (pi, qi), then N2(ur)

△
=

pi + qi − ur ∈ Ii for all ur ∈ Ii. Finally, if N is constant on Ii, then either choice can be used. Thus, N2 ◦N
is a piecewise-linear function that effectively replaces N by its mirror image on each interval within which N

is nonincreasing. Let Ra(f) denote the range of the function f with arguments in [−a, a]. Assume that N2

is constructed by the above rule. Then the following statements hold:

i) N ◦N2 is piecewise nondecreasing.

ii) Ra(N ◦N2) = Ra(N).

Knowledge of only the intervals of monotonicity of N is needed to modify the controller output ur so that
N ◦N2 is piecewise nondecreasing. For details, see.19

III.C.3. NARMAX/O

To choose nonlinear function fj for NARMAX/O controller

u(k) =

p∑
j=1

nc∑
i=1

Mji(k)fj(u(k − i)) +

q∑
j=1

nc∑
i=1

Nji(k)z(k − i), (21)

we assume that the interval of controller outputs [umin, umax] needed to follow the command signal r is
known and N ◦ N2 is piecewise nondecreasing. No further modeling information about N is required. The
function f(u) is chosen to be one-to-one for u ∈ [umin, umax] and satisfies f(0) = 0 if 0 ∈ [umin, umax].

IV. Numerical Examples

Each example is constructed such that the first nonzero Markov parameter Hd = 1, where d is the
relative degree of G. RCAC generates a control signal u(k) that attempts to minimize the performance z(k)
in the presence of the reference signal r and the input nonlinearity N. We assume that measurements of z(k)
are available for feedback; however, measurements of v = N(u) are not available. In all cases, we initialize
the adaptive controller to zero, that is, θ(0) = 0. We do not use a forgetting factor in this paper, that is,
λ = 1 for all examples.

To illustrate the distortion reduction on the closed-loop command-following performance with NAR-
MAX RCAC controllers, we first simulate the Hammerstein plant with a linear RCAC controller. Following
the same procedure, we simulate the Hammerstein plant using a NARMAX RCAC controller. Then, we
compare the command-following performance z for both cases. In all simulations, we run the open-loop
system for the first 100 time steps. Then, at k = 100, we turn the adaptation on, and let RCAC adapt the
NARMAX controller in the presence of the unknown input nonlinearity N.

Example IV.1. We consider the asymptotically stable, minimum-phase plant

G(z) =
(z − 0.5)(z − 0.9)

(z − 0.7)(z − 0.5− ȷ0.5)(z − 0.5 + ȷ0.5)
, (22)

with the input nonlinearity

N(u) = u3. (23)

We consider the sinusoidal command r(k) = sin(θ1k), where θ1 = π/5 rad/sample. As shown in Figure
3(e), the input nonlinearity N is one-to-one and onto. We choose N1(uc) = sata(uc), where a = 10 in (20).
Since N is monotonically increasing for all u ∈ R, we choose N2(ur) = ur. Note that knowledge of only
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the monotonicity of N is used to choose N1 and N2. We consider the NARMAX/O controller structure. In
particular, we choose f1(u) = u, f2(u) = sin(2u), f3(u) = sin(u), f4(u) = sin(0.5u), f5(u) = sin(0.25u), and
f6(u) = sin(0.125u) for the NARMAX/O model. Furthermore, we let nc = 10, P0 = 0.01I8nc , η0 = 0.001,
and H̃ = H1. Figure 3 (a) and (b) show the closed-loop response of command-following performance z and
log |z| with a linear controller structure, and (c) and (d) show the closed-loop response with a NARMAX/O
controller structure. The command-following performance in (c) and (d) are improved by approximately a
two orders of magnitude compared with the performance in (a) and (b) at k = 2000 time step. The NARMAX
controller provides faster convergence compared with the linear controller structure. Figure 3(f) shows the
auxiliary nonlinearity N2(ur(k)). Finally, Figures 3(g) and (h) show the time history of the controller output
u and the controller gain vector θ. �

Example IV.2. We consider the linear plant (22) with the input nonlinearity N(u) = u3 + 5 and
note that N(0) ̸= 0. We choose f1(u) = u and f2(u) = sin(0.25u) for the NARMAX/O model. We consider
the same sinusoidal command r(k) = sin(θ1k), where θ1 = π/5 rad/sample and apply the same control
parameters as in Example IV.1. We let the simulation run for 12, 000 time steps, and Figure 4(a) shows the
closed-loop response of log |z| with the linear controller structure (dotted line) and NARMAX/O structure
(solid line). NARMAX controller improves the steady-state performance.

Next, we further investigate the effect of the condition N(0) ̸= 0. Consider the linear plant (22) with
the input nonlinearity N(u) = u3 + ε, where ε ∈ R. Furthermore, we consider same sinusoidal command
r(k) = sin(θ1k), where θ1 = π/5 rad/sample, and apply the same NARMAX/O controller structure and
controller parameters as in the last example. Figure 4(b) shows that the steady state performance of linear
controller versus the NARMAX controller for various ε. Note that the NARMAX controller compensates
for N(0) ̸= 0.

Example IV.3. We consider the asymptotically stable, nonminimum-phase plant

G(z) =
z − 1.5

(z − 0.8)(z − 0.6)
, (24)

with the input nonlinearity

N(u) = −0.8tanh(u). (25)

We consider the two-tone sinusoidal command r(k) = 0.5 sin(θ1k)+0.5 sin(θ2k), where θ1 = π/5 rad/sample
and θ2 = π/2 rad/sample. As shown in Figure 5(e), the input nonlinearity NH is one-to-one but not onto.
We choose N1(uc) = sata(uc), where a = 2 in (20). Since N is monotonically decreasing for all u ∈ R, we
choose N2(ur) = −ur. Note that knowledge of only the monotonicity of N is used to choose N1 and N2.
We consider the NARMAX/O controller structure. In particular, we choose f1(u) = u, f2(u) = u3, and
f3(u) = u5 for the NARMAX/O model. Furthermore, we let nc = 10, P0 = 0.01I8nc , η0 = 0.8, and H̃ = H1.
Figures 5(a) and (b) show the closed-loop response of command-following performance z and log |z| with
a linear controller structure, and (c) and (d) show the closed-loop response with a NARMAX/O controller
structure. The command-following performance in (c) and (d) are improved by approximately a one order
of magnitude compared with the performance in (a) and (b). Figure 5(f) shows the auxiliary nonlinearity
N2(ur(k)). Finally, Figures 5(g) and (h) show the time history of the controller output u and the controller
gain vector θ. �

Example IV.4. We consider the asymptotically stable, minimum-phase plant

G(z) =
(z − 0.5)(z − 0.9)

(z − 0.7)(z − 0.5− ȷ0.5)(z − 0.5 + ȷ0.5)
, (26)

with the input nonlinearity

NH(u) = cos(u). (27)

We consider the sinusoidal command r(k) = sin(θ1k), where θ1 = π/5 rad/sample. As shown in Figure
6(e), the input nonlinearity N is neither one-to-one nor onto. We choose N1(uc) = sata(uc), where a = 4
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Figure 3. Example IV.1. Closed-loop response of the plant G given by (22). The system runs open loop for 100
time steps, and the adaptive controller is turned on at k = 100 with auxiliary nonlinearity N1 and N2 based on the
knowledge the monotonicity of N. The plant output y follows the command r(k). We choose f1(u) = u, f2(u) = sin(2u),
f3(u) = sin(u), f4(u) = sin(0.5u), f5(u) = sin(0.25u), and f6(u) = sin(0.125u) for the NARMAX/O model. The NARMAX
controller provides faster convergence compared with the linear RCAC, and (a) and (b) show the closed-loop response
of command-following performance z and log |z| with a linear controller structure. The command-following performance
in (c) and (d) are improved by approximately a two orders of magnitude compared with the performance in (a) and
(b) at k = 2000 time step.

in (20). Since N is monotonically increasing for all u ∈ (2nπ − π, 2nπ), n ∈ Z, we choose N2(ur) = ur, and
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Figure 4. Example IV.2. (a) shows the closed-loop response to the command signal r(k) = sin(θ1k), where θ1 = π/5
rad/sample with the nonlinearities N(u) = u3 + 5 and the linear plant (22) with the linear controller structure (solid
line) and NARMAX/O controller (dotted line). NARMAX controller improves the steady state performance with
input nonlinearity satisfying N(0) ̸= 0. (b) shows that the steady state performance of linear controller versus the
NARMAX controller for various ε. Note that |zss| = 0.707 is the performance error for the open-loop system and the
command-following performance distortion is compensated by the NARMAX controller with the input nonlinearity
satisfying N(0) = ε.

since N is monotonically decreasing for all u ∈ (2nπ, 2nπ + π), n ∈ Z, we choose N1(uc) = −ur + (4n +
1)π. Note that knowledge of only the monotonicity of N is used to choose N1 and N2. We consider the
NARMAX/IO controller structure. In particular, we choose g1(z) = z, g2(z) = sin(2z), g3(z) = sin(z),
g4(z) = sin(0.5z), f1(u) = u,f2(u) = sin(2u), f3(u) = sin(u), and f4(u) = sin(0.5u) for the NARMAX/IO
controller. Furthermore, we let nc = 10, P0 = 0.1I14nc , η0 = 0.02, and H̃ = H1. Figures 6 (a) and
(b) show the closed-loop response with a linear RCAC, and (c) and (d) show the closed-loop response
with a NARMAX RCAC controller. The command-following distortion in (c) and (d)are approximately 20%
smaller compared with the performance distortion in (a) and (b). Figure 6(f) shows the auxiliary nonlinearity
N2(ur(k)). Figures 6(g) and (h) show the time history of the controller output u and the controller gain
vector θ. Finally, Figure 6(i) shows the time history of the control ur and the plant input v and v is piecewise
increasing versus ur. �
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Figure 5. Example IV.3. Closed-loop response of the plant G given by (24). The system runs open loop for 500 time
steps, and the adaptive controller is turned on at k = 500 with input nonlinearity N1 and N2 based on the knowledge
the monotonicity of N. The plant output y0 follows the command r(k). We choose f1(u) = u, f2(u) = u3, and f3(u) = u5

for the NARMAX/O model. Figure 5 (a) and (b) show the closed-loop response of command-following performance
z and log |z| with a linear controller structure. The command-following performance in (c) and (d) are improved by
approximately a one order of magnitude compared with the performance in (a) and (b).

V. Conclusions

Retrospective cost adaptive control (RCAC) with a NARMAX control structure was applied to com-
mand following for Hammerstein systems. RCAC was used with limited modeling information. In particular,
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Figure 6. Example IV.4. Closed-loop response of the plant G given by (26). The system runs open loop for 500 time
steps, and the adaptive controller is turned on at k = 500 with input nonlinearity N1 and N2 based on the knowledge the
monotonicity of N. The plant output y0 follows the command r(k). We choose g1(z) = z, g2(z) = sin(2z), g3(z) = sin(z),
g4(z) = sin(0.5z), f1(u) = u,f2(u) = sin(2u), f3(u) = sin(u), and f4(u) = sin(0.5u) for the NARMAX/IO controller. Figures
6(a) and (b) show the closed-loop response with a linear controller structure. The command-following performance
distortion in (c) and (d) are approximately 20% smaller compared with the performance distortion in (a) and (b) using
the NARMAX/IO controller structure.
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RCAC uses knowledge of the first nonzero Markov parameter of the linear system. To handle the effect of
the input nonlinearity, RCAC was augmented by auxiliary nonlinearities chosen based on the monotonicity
properties of the input nonlinearity. We numerically demonstrated that RCAC with a NARMAX controller
structure can improve the command-following performance for the Hammerstein systems over the linear
controller structure for providing fast convergence and compensating performance distortion for N(0) ̸= 0.
Future research will focus on choosing NARMAX structures for RCAC based on limited knowledge of the
uncertain Hammerstein nonlinearities.
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