
A Multiplay Model for Rate-Independent and Rate-Dependent

Hysteresis with Nonlocal Memory

Bojana Drincic and Dennis S. Bernstein

Abstract— We consider the multiplay model for hys-
teresis with nonlocal memory. This model consists of N
mass/spring/dashpot with deadzone elements. The hystere-
sis map of the multiplay model is completely determined
by the stiffness coefficients and widths of the gaps of the
mass/spring/dashpot with deadzone elements. This multiplay
model can be used to model a hysteretic system with a hysteresis
map possessing the symmetry of the cyclic rotation group C2.
Parameters of the multiplay model can be determined based
on the slope of the sampled hysteresis map. Once the multiplay
model is determined, its inverse can be analytically computed.

I. INTRODUCTION

Hysteresis is manifested as a non-vanishing input-output

loop for inputs at asymptotically low frequency. This phe-

nomenon arises in nonlinear systems with multiple attracting

equilibria. In the limit of dc operation, the output is attracted

to different equilibria depending on the direction of the input,

which results in a nontrivial input-output loop called the

hysteresis map [1, 2].

Several types of models can capture hysteretic behavior.

Duhem and nonlinear feedback models are finite dimen-

sional. Differential equations of Duhem models involve

derivatives of the input [3, 4]. Various types of Duhem

models including Maxwell-slip are described in [5]. Non-

linear feedback models consist of a linear system with a

feedback nonlinearity [6]. Preisach and Prandtl-Ishlinskii

models, which are infinite dimensional, consist of an infinite

number of hysterons or unitary hysteresis operators, which

are turned on or off depending on the current direction

of the input [7]. The Prandtl-Ishlinskii model, which is a

special type of the Preisach model, utilizes the play operators

weighted by a density function [4, 8–10].

If the shape of the hysteresis map changes with the

frequency of the input, the model is said to be rate de-

pendent. If the shape of the hysteresis map is identical for

all frequencies of the input, the model is rate independent.

Nonlinear feedback models are rate dependent [6], Preisach

and Prandtl-Ishlinskii models are rate independent [10] and

can be extended to rate dependent [11], and Duhem models

can be either rate independent or rate dependent [5].

Some hysteresis models have nonlocal memory, that is, the

shape and position of the hysteresis map depend on the initial

conditions. Nonlocal memory is manifested as the existence
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of congruent minor loops corresponding to input reversals

[5, 12]. Infinite dimensional Preisach and Prandtl-Ishlinskii

models capture this property [7, 8]. However, we introduce a

finite-dimensional nonlinear feedback model with nonlocal

memory called the multiplay model. This rate-dependent

model is equivalent to the Maxwell-slip model in the limit of

DC operation and can be analytically inverted which makes

it suitable for real-time applications.

In this paper, we first demonstrate that the multiplay

model is a rate-dependent model with nonlocal memory.

Second, we make the connection between the Maxwell-slip

model and the nonlinear feedback model. Third, we extend

the Maxwell-slip model by introducing negative stiffness

coefficients, which give greater flexibility to the shape of

the hysteresis map. Next, we present a method for fitting

the nonlinear feedback model to hysteresis maps possessing

the symmetry of the cyclic rotation group C2. Finally, we

introduce a simple algorithm for analytically inverting a

given hysteresis map.

II. MULTIPLAY

Consider the mass/spring/dashpot system with deadzone

shown in Fig. 1. This system consists of a mass with mass m,

a spring with stiffness k, a dashpot with damping coefficient

c, and a deadzone of width 2∆. The input u is the position of

the right end of the spring, and the output x is the position of

the mass. The system is modeled by the differential equation

mẍ(t)+ cẋ(t)+ kd2∆

(

x(t)−u(t)
)

= 0,

x(0) = x0, t ≥ 0, (1)

where

d2∆(v)
△
=











v + ∆, v ≥ ∆,

0, |v| < ∆,

v−∆, v ≤−∆

(2)

is the deadzone function with width 2∆ ≥ 0.

Fig. 1. Mass/spring/dashpot system with deadzone. The input u is the
position of the right end of the spring, and output x is the position of the
mass. The system is modeled by (1) and the deadzone is modeled by (2).
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The mass/spring/dashpot system with deadzone in Fig.

1 can be represented as in Fig. 2, where the mass with

deadzone is replaced by the play operator discussed in [13].

In the present paper we work directly with the model (1)

rather than the play operator.

Fig. 2. Play operator representation of the mass/spring/dashpot with
deadzone system. The deadzone is replaced by the play operator of width
2∆.

Next, we define multiplay as the parallel connection

of N mass/spring/dashpot systems with deadzone shown

in Fig. 3. The multiplay system has N masses, N play

operators with widths 2∆i, N springs with stiffness coeffi-

cients ki, and N dashpots with damping coefficients ci. The

mass/spring/dashpot system with deadzone are connected by

a rigid bar. The input to the multiplay system is the position

u of the bar. Each element is modeled by the differential

equation

miẍi(t)+ ciẋi(t)+ kid2∆i

(

xi(t)−u(t)
)

= 0,

xi(0) = xi0, t ≥ 0, i = 1, . . . ,N, (3)

where d2∆i
(·) is the deadzone function defined by (2). The

output of the system is defined as

y(t) =
N

∑
i=1

ki(u(t)− xi(t)). (4)

Physically, y(t) represents the sum of spring forces in the

multiplay system. We allow the stiffness coefficients and

masses to be negative. We call (3)-(4) the multiplay model,

and we omit units since we do not physically construct this

system.

Fig. 3. A schematic representation of the multiplay system consisting of N

mass/spring/dashpot with deadzone elements. The elements are connected
in parallel by a rigid bar.

The input-output maps of the multiplay model converge

to a hysteretic map as the frequency of the periodic input

approaches zero as shown in Fig. 4. This figure shows

the input-output response of a multiplay model with two

elements. For simplicity all masses are set to mi = 1, all

stiffness coefficients to ki = 1, all damping coefficients to

ci = 1, and the deadzone widths to ∆1 = 0.8 and ∆2 = 0.2.

Furthermore, the multiplay model in Fig. 4 has nonlocal

memory. When the direction of the input is reversed after

either a half or a full period, the output converges to two

distinct trajectories.
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Fig. 4. Periodic input-output maps of the multiplay model. As the frequency
of the input approaches zero the periodic input-output map approaches
a hysteretic map with nonlocal memory. This hysteretic system is rate
dependent.

III. MULTIPLAY AND MAXWELL-SLIP MODEL

In this section we explore the relationship between the

multiplay model and the Maxwell-slip model. We begin by

taking the time derivative of (3)

mi
...
x i(t)+ ciẍi(t) = kid

′
2∆i

(

u(t)− xi(t)
)(

u̇(t)− ẋi(t)
)

. (5)

In the limit, as the period of the input approaches infinity,

the dynamics in (3) become negligible. The effective mass

and damping coefficient are zero, and (5) becomes

d′
2∆i

(

u(t)− xi(t)
)(

u̇(t)− ẋi(t)
)

= 0, (6)

which means that either

ẋi(t) = u̇(t) (7)

or

d′
2∆i

(

u(t)− xi(t)
)

= 0. (8)

Note that the derivative of the deadzone function exists for

all v except v = −∆i and v = ∆i. Defining the derivative to

be 1 at these two points for convenience, we have

d′
2∆i

(v) =











1, v ≤−∆i,

0, |v| < ∆i,

1, v ≥ ∆i,

(9)

so that (8) holds if and only if

|u(t)− xi(t)| < ∆i. (10)

If (10) holds, the end of the spring inside the play element

is not in contact with either the left or right wall of the play

operator. Thus, the position of the mass is not changing since

the end of the spring is neither pushing nor pulling on the
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play operator. In other words, |u(t)−xi(t)|< ∆i corresponds

to ẋi(t) = 0. Now, (7) corresponds to u(t)− xi(t) ≤−∆i and

u(t)− xi(t) ≥ ∆. If u(t)− xi(t) ≤ −∆i the left end of the

spring is pushing on the left wall of the play operator and

u(t) is decreasing. If u(t)− xi(t) ≥ ∆i the left end of the

spring is pushing on the right wall of the play operator and

u(t) is increasing. Based on this discussion, in the limit, as

the period of the input approaches infinity (3) is equivalent

to

ẋi(t) =











u̇(t), u(t)− xi(t) ≤−∆i, u̇(t) < 0,

0, |u(t)− xi(t)| < ∆i,

u̇(t), u(t)− xi(t) ≥ ∆i, u̇(t) > 0.

(11)

Expression (11) can be rewritten as

ẋi(t) = [U(u(t)− xi(t)−∆i) (12)

1−U(u(t)− xi(t)+ ∆i)]

[

u̇+(t)
u̇−(t)

]

,

y(t) =
N

∑
i=1

ki(u(t)− xi(t)), (13)

where U(v) is the unit step function

U(v)
△
=

{

1, v ≥ 0,

0, v < 0,
(14)

and u̇+(t) and u̇−(t) are defined as

u̇+(t)
△
= max{0, u̇(t)}, u̇−(t)

△
= min{0, u̇(t)}. (15)

Equation (12) is a rate-independent semilinear Duhem model

of friction, known as the Maxwell-slip model. Thus, in

the limit of DC operation, as the frequency of the input

approaches zero, the multiplay model (3)-(4) is equivalent

to the rate-independent Maxwell-slip model (12)-(13).

IV. DETERMINING THE HYSTERESIS MAP FROM

THE MULTIPLAY MODEL

In this section we analyze the properties of the limiting

input-output map, that is, the input-output map in the limit

as the period of the input approaches infinity.

To find the slope of the limiting input-output map, we

differentiate (4) with respect to the input u(t), that is,

dy

du
=

n

∑
i=1

ki(1−
dxi

du
), (16)

where
dxi
du

depends on whether mi is moving or not. Rewriting

ẋi(t) as

dxi

dt
=

dxi

du

du

dt
=

dxi

du
u̇ (17)

and using (11), we have

dxi

du
u̇ =











u̇(t), u(t)− xi(t) ≤−∆i, u̇(t) < 0,

0, |u(t)− xi(t)| < ∆i,

u̇(t), u(t)− xi(t) ≥ ∆i, u̇(t) > 0.

(18)

From (18) we conclude that

dxi

du
=

{

1, |u(t)− xi(t)| ≥ ∆i,

0, |u(t)− xi(t)| < ∆i.
(19)

Substituting (19) into (16) and assuming that, for i = 1, . . . ,r,

|u(t)−xi(t)| ≥ ∆i and, for i = r+1, . . . ,N, |u(t)−xi(t)|< ∆i,

then

dy

du
=

r

∑
i=1

ki(1−
dxi

du
)+

N

∑
i=r+1

ki(1−
dxi

du
) (20)

=
r

∑
i=1

ki(1−1)+
N

∑
i=r+1

ki(1−0) =
N

∑
i=r+1

ki.

Once mass m j starts moving, its stiffness is no longer

included in the summation in (20), and thus does not affect

the slope of the limiting input-output map until the input u

reverses direction and moves 2∆ j in the opposite direction.

The slope of the limiting input-output curve changes each

time a stationary mass starts moving. Assuming that the

input is oscillating between umin and umax > umin + 2∆N , if

u just reached umin and is monotonically increasing, none of

the masses of the multiplay are moving. The slope of the

limiting input-output map, which is equal to the sum of all

of the stiffnesses, first changes when u reaches umin + 2∆1.

The slope becomes the sum of stiffnesses k2 through kN .

Next, when u increases past umin +2∆2 the slope is equal to

the sum of stiffnesses k3 through kN . In general, each time

u becomes larger then umin + 2∆i the slope decreases by ki.

As the input increases from umin to umax the slope changes

according to










s1

s2

...

sN











= A











k1

k2

...

kN











(21)

where s1 is the slope of the section of the hysteresis map

that corresponds to u ∈ [umin,umin + 2∆1] and si is the slope

of the section of the hysteresis map that corresponds to u ∈
[umin +2∆i−1,umin +2∆i], i = 2, . . . ,N, and A∈R

N×N is given

by

A =











1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 1











. (22)

We demonstrate (20) based on the limiting input-output

map of the two-element multiplay shown in Fig. 5(a). The

stiffnesses are k1 = 2 and k2 = 4, the deadzone widths are

∆1 = 1 and ∆2 = 3, and umin = −5 and umax = 5. In the

limit of DC operation, the mass and damping coefficient are

irrelevant, and we thus set them equal to the corresponding

stiffnesses. The transient response is shown by the dashed

line. As the arrows indicate, the hysteresis loop is counter-

clockwise. As u increases from umin =−5 to umin+2∆1 =−3

the slope of the input-output map is s1 = 6 = k1 +k2. At this

point, the first mass starts moving and the slope becomes
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Fig. 5. Hysteresis map of the multiplay model with two elements
and a) positive and b) negative stiffness coefficients. The slope of the
hysteresis map at each point is equal to the sum of the stiffness coefficients
corresponding to the stationary masses.

s2 = 4 = k2. When u increases above umin + 2∆2 = 1, the

second mass moves and the slope becomes zero. When u

reaches umax and starts decreasing, the slope follows the same

rules; in particular the slope is initially 6, then 4, then 0.

The stiffness coefficients ki do not have to be limited to

positive numbers, which allows, the slope of the hysteresis

map to be negative. However, if any of the stiffnesses are

negative, the corresponding mass and damping coefficient

must also be negative in order for system (3)-(4) to be

stable. We demonstrate this with the two-element multiplay

in Fig. 5(b). The stiffness coefficients are k1 = −2 and

k2 = −4. Masses and damping coefficients are equal to

the corresponding stiffnesses. All other parameters are the

same as in the previous example. The hysteresis map is

now counterclockwise, and as u increases from umin = −5

to umax = 5 the slope changes from s1 = −6 = k1 + k2, to

s2 = −4 = k2, to s3 = 0.

Positive and negative stiffness coefficients can be com-

bined in the same multiplay model to give S-shaped loops as

shown in Fig. 6. The stiffness coefficients are k1 = · · ·= k5 =
−1 and k6 = · · · = k10 = 2. Masses and damping coefficients

are equal to corresponding stiffnesses. Deadzone widths are

∆ =
[

1 3 5 7 9 11 13 15 17 19
]′

, where

the i-th entry of ∆ is ∆i.

V. DETERMINING THE MULTIPLAY MODEL

FROM THE HYSTERESIS MAP

Multiplay model can be used to approximate a known

hysteresis map that is symmetric under a 180◦ rotation in the

input-output plane, that is, having the symmetry of the cyclic

rotational group C2. The hysteresis map is approximated
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Fig. 6. S-shaped hysteresis map of a multiplay model with ten elements.
The S-shape is the result of a combination of positive and negative stiffness
coefficients.

by using positive and negative stiffness coefficients to give

the desired slope. We divide the hysteresis map into N + 1

piecewise linear segments, each with slope si. Once the

slopes are known, the stiffness coefficients can be computed

by inverting (21). The matrix A in (21) is nonsingular for all

N and its inverse A−1 ∈ R
N×N is

A−1 =















1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −1

0 · · · · · · 0 1















. (23)

Assuming that the output trajectory from umin to

umax is partitioned into N + 1 segments with endpoints

(umin,y(umin)),(u1,y(u1)), . . . ,(uN ,y(uN)),(umax,y(umax)).
The slope of each segment is found from the endpoint

coordinates, and the stiffness coefficients are computed from






k1

...

kN






= A−1







s1

...

sN






, (24)

where s1, . . . ,sN are the slopes of the consecutive segments

and the slope sN+1 is not used in the calculation. The widths

of the deadzones associated with the stiffness coefficients

calculated from (24) can be found from






∆1

...

∆N






=







(u1 −umin)/2
...

(uN −umin)/2






(25)

The following example is taken from [14]. Note

that this hysteresis map has the symmetry of the

cyclic group C2. However, the actual data presented

in the paper are not available, so the ”true” hysteresis

map was estimated by ”extracting” the points

(umin,y(umin)),(u1,y(u1)), . . . ,(uN ,y(uN)),(umax,y(umax))
from the plot. Stiffness coefficients and deadzone widths are

calculated from (24) and (25), respectively. The estimated

and actual hysteresis maps are identical as shown in Fig. 7.

VI. MINOR LOOPS OF THE MULTIPLAY

As already stated, the multiplay system has nonlocal

memory, which is manifested as existence of external or
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Fig. 7. True and estimated hysteresis maps from [14]. Note that the
hysteresis map is symmetric under 180◦ rotation in the input-output plane,
and that the true and estimated hysteresis maps are identical.

internal minor loops that correspond to input reversals.

The shape of the minor loops is determined by the stiffness

coefficients ki and the deadzone widths ∆i of the masses with

∆i less than the amplitude of the input reversal. After every

input reversal, the initial slope of the reversal loop sr1 is

given by sr1 = ∑
N
i=1 ki.

The slope subsequently changes according to the same

rules as described above. When the input reversal occurs at

a point of the major loop where the slope of the major loop

si satisfies si > ∑
N
i=1 ki, the minor loop is external. When

the reversal happens at the point where the slope of the

major loop satisfies si < ∑
N
i=1 ki, the minor loop is internal.

However, if si = ∑
N
i=1 ki, then the minor loop is internal if

its slope increases and external if its slope decreases when

a stationary mass begins moving.

Minor loops are shown in Figure 8. The figure shows

the hysteresis map of a multiplay system and the mi-

nor loops that correspond to input reversals at different

points along the major loop. The multiplay has 10 masses

with stiffness coefficients k1 = · · · = k4 = −2 and k5 =
· · · = k10 = 2. Masses and damping coefficients are equal

to corresponding stiffnesses. Deadzone widths are ∆ =
[

1 2 4 6 8 10 12 14 16 18
]′

, where the i-

th entry of ∆ is ∆i.
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Fig. 8. Internal and external minor loops of an S-shaped multiplay
hysteresis map. The major and the large minor loop are clockwise while
the small minor loops are counterclockwise.

VII. INVERSE OF THE MULTIPLAY MODEL

In this section we develop the strategy for computing the

inverse of a multiplay model with a known hysteresis map.

The slopes s′i of the inverse hysteresis map are

s′i =
1

si

, si 6= 0, (26)

where si is defined in (24). The stiffness coefficients k′i of

the inverse hysteresis map are calculated from s′i as in (24)






k′1
...

k′N






= A−1







s′1
...

s′N






. (27)

To find the new deadzone widths ∆′
i, we use the points

y(umin), . . . ,y(uN) similarly to (25)






∆′
1
...

∆′
N






=







(y(u1)− y(umin))/2
...

(y(uN)− y(umin))/2






. (28)

One shortcoming of the inverse model obtained through

this procedure is that it cannot handle the segments of infinite

slope. The inverse hysteresis map of the one in Fig. 6 is

shown in Fig 9. Note that the inverse hysteresis maps are

counterclockwise. The true and estimated hysteresis map dif-

fer only in the vertical segments with infinite slope. However,

if the segment of the estimated inverse that corresponds to

the decreasing input is shifted up and the segment of the

estimated inverse that correspond to the increasing input is

shifted down, then the resulting hysteresis map matches the

actual inverse hysteresis map.
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Fig. 9. True and estimated inverse hysteresis maps. Note that the estimated
hysteresis map defers from the true only in the vertical segments with infinite
slope.

The inverse model obtained from (26)-(28) will give much

better results if the original hysteresis map has no zero-slope

segments. Figure 10(a) shows a hysteresis map of a multiplay

with 10 masses. The stiffness coefficients are k1 = · · ·= k5 =
−1 and k6 = · · · = k10 = 2. Masses and damping coefficients

are equal to corresponding stiffnesses. Deadzone widths are

∆ =
[

1 3 5 7 9 11 13 15 17 19
]′

, where

the i-th entry of ∆ is ∆i. The true and estimated inverses

of this hysteresis map are shown in Fig. 10(b). The true and
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Fig. 10. Inversion of a hysteresis map without segments having zero slope.
The true hysteresis map is shown in a), while its true and estimated inverse
is shown in b).

estimated inverse are now identical.

VIII. ALTERNATIVE INVERSE

In this section we develop an alternative strategy for

computing the inverse of any multiplay model given input

stiffness coefficients ki, deadzone widths ∆i, and the output

y(t). If the ki’s and ∆i’s are not given initially, they can

be computed through the procedure outlined in Section V.

Starting with (4) the input u(t) can be expressed as

u(t) =
y(t)+ ∑

N
j=1 k jx j(t)

∑
N
j=1 k j

,
N

∑
j=1

k j 6= 0. (29)

Substituting (29) into (3) we get

miẍi(t)+ ciẋi(t)+ kid2∆i

(

xi −
y + ∑

N
j=1 k jx j

∑
N
j=1 k j

)

= 0. (30)

Introducing the change of variables ū(t) = y(t) and ȳ(t) =
u(t) in (30) gives a new system

miẍi(t)+ ciẋi(t)+ kid2∆i

(

xi(t)−
ū(t)+ ∑

N
j=1 k jx j(t)

∑
N
j=1 k j

)

= 0,

xi(0) = xi0, t ≥ 0, i = 1, . . . ,N,
N

∑
j=1

k j 6= 0,

(31)

with the output

ȳ(t) =
ū(t)+ ∑

N
j=1 k jx j(t)

∑
N
j=1 k j

,
N

∑
j=1

k j 6= 0. (32)

Fig. 11 shows the inverse of the hysteresis loop displayed

in Fig. 6. The output of the multiplay shown in Fig. 6 is used

as the input ū(t) in (31)-(32). Stiffness coefficients, masses,

damping coefficients, and deadzone widths remain the same.

The actual inverse is also shown for comparison.

IX. CONCLUSIONS

In the present paper we introduced the multiplay model

of hysteresis, which consists of a parallel connection of
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Fig. 11. True and recreated inverse hysteresis maps. The inverse is
computed from (31)-(32) based on the known u(t) and y(t).

mass/spring/dashpot with deadzone elements. This hysteresis

model has nonlocal memory. Multiplay model be used to

recreate a known hysteresis map. Parameters of the multiplay

model can be determined based on the slope of the desired

hysteresis map. We also present an algorithm for inversion

of the hysteresis map of the multiplay.
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