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Abstract

One of the major difficulties in designing
implementable active controllers for distributed
parameter systems such as flexible space structures
is that such systems are inherently infinite dimen-
sional while controller dimension is severely con-
strained by on-line computing capability. Subopti-
mal approaches to this problem usually either seek
a distributed parameter control law or design a low-
order dynamic controller for an approximate high-
order finite-element model. This paper presents a
more direct approach by deriving explicit optimality
conditions for finite-dimensional steady-state fixed-
order dynamic compensation of infinite-dimensional
systems., In contrast to the pair of operator Riccati
equations for the "full-order”" LQG case, the optimal
fixed-order dynamic compensator is characterized by
four operator equations (two modified Riccati equa-
tions and two modified Lyapunov equations) coupled
by a projection whose rank is precisely equal to the
order of the compensator and which determines the
optimal compensator gains. The coupling represents
a graphic portrayal of the demise of the classical
separation principle for the reduced-order control-
ler case. The results obtained apply to a semigroup
formulation in Hilbert space and thus are applicable
to control problems involving a broad range of
specific partial and hereditary differential equa-
tions.

1. Introduction

Numerous techniques have been proposed for the
problem of designing an optimal finite~dimensional
fixed-order dynamic compensator for an infinite-
dimensional system. Generally speaking, most of
these methods can be divided into two main categor-
ies. The first category, largely associated with
the engineering literature, consists of methods that
first replace the infinite~dimensional system with a
discretized and truncated model and then seek a rel-
atively low-order controller based upon the approxi-
mate model. A survey of design techniques proposed
for this latter step can be found in Ref. 2; see
also Ref. 3. Methods of the second category,
associated with the mathematical literature,
ially seek a control law for the infinite-
dimensional system of a correspondingly infinite-
dimensional nature.l:9,10 Practical implementa-
tion in this case requires subsequent apgfoxima—
tion by a finite-dimensional controller.

18,23

A more direct approach is to both retain
the infinite~dimensional model and fix the order of
the finite-dimensional compensator. Although this
idea is conceptually the most appealing, progress
in this direction has undoubtedly been impeded by
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the lack of optimality conditions such as are avail-
able for the infinite-dimensional controller case,
i.e., the operator Riccati equations. The purpose

of this paper is to make significant progress in fil-
ling this gap by presenting new, explicit conditions
for characterizing the optimal finite-dimensional
fixed-order dynamic compensator for an infinite-
dimensional system. In contrast to the pair of
operator Riccati equations for the LQG case, the
optimal steady-state fixed-order dynamic compensator
is characterized by four coupled operator equations
(two modified Riccati equations and two modified
Lyapunov equations). This coupling, by means of a
projection (idempotent) operator whose rank is pre-
cisely equal to the order of the compensator, repre-
sents a graphic portrayal of the demise of the clas-
sical separation principle for the finite-dimensional
reduced-order controller case. The optimal gains and
compensator dynamics matrix are determined by the
solutions of the modified Riccati and Lyapunov equa-
tions and by a factorization of the product of the
solutions of the pailr of modified Lyapunov equations.
Considerable insight into the compensator structure
is obtained since the projection operator determines
control and observation subspaces. Because of the
use of a projection in the form of a state-truncation
operation in related model-~reduction schemes,21 these
equations have been termed the "optimal projection
equations”.l7 1In this regard it is briefly pointed
out in this paper that the mathematical steps involved
in characterizing the projection are analogous to the
model-reduction method of Ref. 21. An in-depth in-
vestigation into this topic is reserved for Ref. 17.

It should be stressed that an important problem
which is beyond the scope of the present paper is
stabilizability, i.e., the existence of a dynamic
compensator of a given order such that the closed-loop
system is stable. Our approach 1s to assume that the
set of stabilizing compensators is nonempty and then
characterize the optimal compensator should it exist.
We note that stabilizing compensators do exist for
the class of problems considered in Refs. 4, 8 and 27.

It is important to point out that the results of
this paper can be immediately adapted to finite-
dimensional systems. One need only specialize the
Hilbert space characterizing the dynamical system to
a finite-dimensional Euclidean space. Then all
""dense domain" considerations can be ignored, adjoints
can be interpreted as transposes and other obvious
simplifications can be invoked. The only mathemati-
cal aspect requiring attention is the treatment of
white noise which, for convenient handling of the
infinite~dimensional case, is interpreted according
to Ref. 1. For the finite-dimensional case, however,
the standard classical notions suffice and the
results go through with virtually no modificationmns.
The finite-dimensional case has been discussed in
Refs. 14-16. Proofs of the results in the present
paper can be found in Refs. 5 and 6.
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2, Preliminaries and Problem Statement

Let H and H' denote real separable Hilbert
spaces with inner product <-,+> and let B(H,H'),
Bl(H,H') and B, (H,H') denote, respectively, the
spaces of bounded, trace class and Hilbert-Schmidt
operators fgom H into #'.1,13,19,25 If § = ' then
write B(H) = B(H,H')l*eXC. Thf adjoint of
L e B(H,B') is L*, L. = (L%) and p(L) denotes
the rank of L. L ¢ B(H) is nonnegative definite if
L = L* and <Lx,x> 2 0, x € H. With respect to fixed
orthonormal Baseg in Euclidean spaces we identify
R = B(R ,R ). The franspoges of x_e nd
M E:Ran are denoted by x¥ and M§ and M-T éR(MT)_l.
In is the nxn identity matrix and IH is the identity
operator on H.

We consider the following steady-state fixed-
order dynamic—-compensation problem. Given the con-
trol system

x(t) = Ax(t) + Bu(t) + Hyw(t)

y(t) cx(t) + sz(t),

design a fixed-order dynamic compensator
x (£) = A x (t) + B y(c),
u(t) = chc(t)

to minimize the performance criterion

J(A_,B_.C,) & 1in E[<R x(t),x(t)> + u(t)TRzu(t)].

t oo

f

The following data are assumed. The state x is
an element of a real separable Hilbert space H and
the state differential equation is interpreted in
the weak sense (see, e.g., Ref. 1, pp. 229, 317).
The closed, densely defined operator A: D(A) c >
generates a stronﬁly continugus semigroup e , t 2
The control u e R, B € B(R ,H)mind the operator
Rl € B, (H) and the matrix R, ¢ R are nonnegative
definite and positive defin%te, respectively. w(*)
is a "standard white noise process" in L2((O,w),H')
(see Ref. 1, p. 314), where H' is a real separable
Hilbert space, H, ¢ BZ(H',H), H, € B(H,]Kz) and "E’
denotes expectation. We assume that H . H* = 0, i.e.,
the disturbance ang measurement noises are indepen-
dent, and that V, = H H* is positive definjte, 1i.e.,
all measurements are noisy. Note that Vl
trace class. The observation y ¢ R¥ and
C ¢ B(H,ﬁRZ). The dimension of the compensator
state x 1is of fixed order n_ and the optimization
is performed over the matricés A , B and C .
Under these and the following assumptions,
independent of x(0) and q(0).

H
0.

*
HlHl is

is

In order to guarantee the existence of
J(A ,B ,C ) we confine (A ,B ,C ) to the set of
c C [4 c c
stagillzing compensators

~

44 {(AC,BC,CC): At 1 exponentially stable},

[ N ]
¢
A
c
is a closed, degsely defined operatgr on

D(K)QD(A) X]Rccgllandﬁéﬁemcisareal

separable Hilbert space with inner product

where

A
3 8

B C
[
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<X. ,X,> = <xl,x > 4+ X 12X g5 Xy 4 (xi,x i). Since
the value of ™ J %s indepen&ent of the infernal real-
ization of the compensator, we can further restrict

(Ac’Bc’C ) to

> o

A

.- 1A ,B

c’cc) € A: (Ac’B ) is controllable
and (CC,AC) i§ ofservable}.

3. Characterization of the Optimal Projection
and Symmetrized Equations

In order to state our main result we require a
factorization lemma (Lemma 3.3) concerning the pro-
duct of two finite-rank nonnegative-definite opera-
tors. Since the existence of such a factorization
is crucial to Theorem 3.1, we first discuss simul-
taneous diagonalization of pairs of matrices and
then generalize to the case of finite-rank operators.
It should be noted that since H is a real Hilbert
space we restrict our attention to matrices with
real entries.

Let U e R™™. We shall say U is positive (resp.,
nonnegative) diagonal if U is diagonal with positive
(resp., nonnegative) diagonal elements. U is semi-
simple (Ref. 24, p. 13), or nondefective (Ref. 22,

p. 375), if U has n linearly independent eigenvectors
(i.e., U has a diagonal Jordan canonical form over
the complex field). Call U real (resp., positive,
nonnegative) semisimple if U is semisimple with real
(resp., positive, nonnegative) eigenvalues. Note
that U is real (resp., positive, nonnegative) semi-
simple if and only if there exists nxn invertible

¢ such that oUS L is diagonal (resp., positive
diagonal, nonnegative diagonal).

The followin§ terminology concerns simultaneous
diagonalization.2 Let nxn U, V be symmetric matrices.
Then U and V are cogrediently diagonalizable if there
T

exists nxn invertible ¢ such that both ¢U®T and ¢V®
are diagonal. U and V are contragrediently diagonaliz-

able if there exists nxn invertible ¢ such that both

®U¢T and ¢_TV¢_1 are diagonal. Since these two situa-
tions coincide when ¢ is orthogonal, we shall say in

this case that U and V are orthogonally diagonalizable.

The following lemma gives sufficient conditions
under which symmetric U, V are cogrediently and
contragrediently diagonalizable. Although this
result goes beyond our needs, it serves the useful
purpose of bringing together related results from
the literature and hence places in perspective the
results we actually require (see Ref. 22, p. 428 and
Ref. 24, pp. 122-123).

Lemma 3.1. Suppose that U, V ¢ RY™ are symmet-
ric. Then if either i) one of U and V is positive
definite or ii) both U and V are nonnegative defi-
nite, then U and V are cogrediently and contragred-
iently diagonalizable.

Corollary 3.1. Suppose U, V ejRPXn are nonneg-
ative definite. Then UV is nonnegative semisimple.

In generalizing the preceding results to the
case in which U and V are finite-rank selfadjoint
operators on H, we shall make use of the (infinite-)
matrix representation of an operator with respect to
an orthonormal basis. Note that all matrix repre-
sentations given here will consist of real entries
since the Hilbert spaces are real. Also, recall that

every selfadjoint operator has a diagonal matrix
representation with respect to some orthonormal basis.



Since orthogonal transformations correspond to
a change in orthonormal basis, let us say, in anal-
ogy to the matrix case, that U, V ¢ B(H) are orth-
ogonally diagonmalizable if there exists an ortho-
normal basis for # with respect to which both U and
V have diagonal matrix representations (Ref. 12,
p. 181). Also in analogy to the finite-dimensional
case, call U ¢ B(A) semisimple (resp., real semi-
simple, nonnegative semisimple) if. there exists
invertible L ¢ B(H) such that LUL is normal
(resp., selfadjoint, nonnegative definite). This
implies that LUL 1 has a complete set of orthonor-
mal eigenvectors and, in the real-semisimple or
nonnegative-semisimple cases, has real or nonnega-
tive eigenvalyes, Furthermore, we shall say that
self-adjoint Q, é € B(H) are contragrediently
diagonalizakle if thg;g gfists invertible L ¢ B(H)
such that LQL* and I PL ~ are orthogonally diago-
nalizable. Cogredient diagonalization is not needed
and hence will not be discussed in the sequel. The
next result is based upon Lemma 3.1 and upon Theo-
rem 2.1, p. 240 of Ref. 12.

Lemma 3.2. Suppose 6, P B(H) have finit
rank and are nonnegative definite. Then Q and
are contragrediently diagonalizable.

We now have the following generalization of
Corollary 3.1.

Suppose 6, ﬁ € B(H) haveA in-
Then QP is

Corollary 3.2.

ite rank and are nonnegative definite.
nonnegative semisimple.

The next result is a straightforward conse-
quence of Corollary 3.2.

Lemma 3.3. Suppose 6, p e B(H) R;ve finite
rank, are nonnegative definitenand p(QP) = n_.
Then there exist G, ' ¢ B(H, R C) and n ch posi-
tive-semisimple M such that ¢

of = crmr, (3.1)

IG* = 1.
n
c

(3.2)

n

We shall refer to G, T ¢ B(H, R.c) and n xn
positive-semisimple M satisfyi (3.1) and (B?Z)C
as a (G,M,T')-factorization of g. Also, define
the notation

and

r & 7 tex, T & cxvlc.
2 2

Main Theorem. Suppose (Ac’Bc’C ) € A+ solves
the steady-state fixed-order dynamic-compensation
proble%. Then there exist nonnegative-definite
Q, P, Q, € B, (H) such that A , B and C are

: 1 c c c

given by

A, =T(A - QT - IP)G*, (3.3

B, = rQC*v"l, (3.4)
_ -1

C, = -R, B*PGX, (3.5)

for some (G,M,T)-factorization of éﬁ, and such that
with T = G*T the following conditions are satisfied:

o @ = o) = 0@ = n_, (3.6)

Q: D(A*) » D(A), P: D(A) ~ D(a*), 3.7

§: 5~ Dy, B: 7 > DA, (3.8)
0= AQ + QA* +V, - QIQ + rlQEQri, (3.9)
0 = A*P + PA + R - PIP + TAPSPT , (3.10)
0 = (A - zP)Q + (A - IP)* + QIQ - T,QEQTx, (3.11)
0=(r-qQn* + Ba - QO) + PP - TRPIPT . (3.12)

When H is finite dimensional and

n = dim H (i.e.,A he full-order case), the (G,M,T)-
fgctg ization of QP 1s given by G =T = I and

M= Qg. Since Tt = I,, and thus T, = 0, (§.9) and
(3.10) yield the familiar Riccati equations.

Remark 3.1.

Remark 3.2. Replacing x by Sx , where S is
inverE}ble, yielis the "equivalent" compensator
(SA s ,iB ,CS 7). Since J(A ,B ,C) = J(SA S ~,
SB EC s )con% wouldlexpect th% M5in®Theoren Fo
ap%lycalso to (SA S ",S8B ,C 8 °). This is indeed the
case since transfSrmatiofi of the compensator state
basis corresponds to the alternative factorization

68 = (s Ty T(sms™y sy .

Next we give an alternative characterization
of the optimal projection T by demonstrating how it
can be expre sed in terms of the Drazin pseudo-
inverse of QP. Since QP has finite ramnk, its Drazin
inverseAgxﬁsts (s&e Theorem 6, p. éog of Ref. 20).
Since (9 }0 = GfM ', and hence p(6 Y° = p( ﬁ), the
"index" "’ of Qﬁ is 1. In this case the Drazin
inverse is traditioR l*y called the group inverse
and is denoted by (QP)  (see, e.g., Ref. 7, p. 124,
or Ref. 26).

Proposition 3.1. Let 6, ﬁ and T be as in

Theorem 3.1. Then
r = 8poy*.

It is easy to verify that the condi-
for_ihe

Proof.
tions char§§terizing the Drazin inverse
case th é 9 has index 1 are satisfied by G*M 'T.
Hence (g )" = G*M 1r and (3.2) yields the desired

result. 0

The next result is useful in making connec-
tions with Ref. 21.

Proposition 3.2. Suppose 6, ﬁ ¢ B(H) and

n

G, T ¢ B(H,IR.C) and n xn_ real-semisimple M satisfy
(3.1) and (3.2). Then thére exists invertible
L ¢ B(H) and an orthonormal basis for H with respect
to which

% - L-l[A °]L,
0 0

afr Q
G*T = [ Te L,
0 0

where A 8 diag(kl,...,xn ) and xl,...,xn are the
eigenvalues of M. c c

(3.13)

(3.14)
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We can now point out some interesting similarx
ities between the technique used to obtain T from Q
and certain methods appearing in the model-reduction
literature. In Ref. 21, for example, the positive-
definite controllability and observability gramians,

@ T ® T
w & PepTe® far, w £ o* fcTeettar,
c o

0 Q
are contragrediently diagonalized, i.e., ¢ is
chosen so that ® W ¢ L and ¢'W ¢ are both positive
diagonal. If ¢ is thosen so thdt these matrices
are also equal, the resulting model is said to be
"internally balanced". The magnitudes of the diag-
onal components are then used as a guide for deter-
mining a suitable reduced-order model. Specifi-
cally, the order of the reduced model is chosen to
be the number of "large'" eigenvalues in the product
of the Gramians and the reduced model is obtained
by applying the projection

[I 0
n
c
0 0

in the transformed ('"balanced") basis. Note that
Proposition 3.2 shows that our "optimal" projec-
tion 1 is indeed this form in the basis with
respect to which QP is diagonal (and which may
very well be different from the balancid coo§di—
nates). Hence one would suspect that Q and are
somehow analogous to W and W . Indeed, since the
order of the reduced model is’chosen such that
(3.6) is, in a sense, approximately satisfied, it
is not surprising that in the optimal mode}l-
reduction problem,Aw ang Wo can be shown to be

R . c
approximations to Q and

Since Theorem 3.1 applies to closed-loop
dynamic compensation with quadratic optimization,
further comparison with the model-reduction liter-
ature is not feasible. It is important to point
out, however, that because of the demise of the
separation principle as graphically portrayed by
the presence of t in all four equations (3.8)-
(3.12), it should not be expected that either an
LQG design for a reduced-order model or a reduced-
order LQG controller would correspond to an
optimal fixed~order dynamic compensator as char-
acterized by Theorem 3.1.
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