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Abstract— We apply retrospective cost adaptive control
(RCAC) to a command-following problem for an uncertain
shape-memory-alloy (SMA) actuator. The SMA actuator is
characterized by a Wiener model consisting of linear dynamics
that convert the input voltage or current to a temperature, and
a hysteresis model that characterizes the relationship between
the temperature and the output displacement. We use the
generalized Prandtl-Ishlinskii model to characterize the input-
output relationship between the temperature and the output
displacement in the SMA actuator.

I. INTRODUCTION

In many control applications, the primary source of non-

linearity is often not the plant per se, but rather the actuation,

which gives rise to an input nonlinearity. For example, the

input nonlinearity may represent the properties of an actuator,

such as saturation to reflect magnitude restrictions on the

control input, deadzone to represent actuator stiction, or a

signum function to represent on-off operation. The ability to

invert the nonlinearity may be precluded in practice by the

fact that the nonlinearity may be neither one-to-one nor onto,

and it may also be uncertain.

Beyond these basic nonlinearities lies the fact that actu-

ators are often constructed from smart materials that have

electromechanical or thermomechanical properties that make

them superior to traditional devices such as rotary motors.

For example, piezoelectric devices provide high force with

high bandwidth and low backlash, while shape memory

alloy materials provide high displacement. The challenge

and opportunity in control engineering is to exploit these

properties while addressing the difficulties that arise from

the fact that smart materials are invariably hysteretic.

If the input nonlinearity, which may or may not be

hysteretic, is uncertain, then adaptive control may be useful

for learning the characteristics of the nonlinearity online and

compensating for the distortion that it introduces. Adaptive

inversion control of systems with uncertain input nonlinear-

ities and linear dynamics is considered in [1, 2]. In contrast,

the retrospective-cost adaptive control (RCAC) approach

used in [3, 4] makes no attempt to invert the input nonlin-

earity. This approach is applicable to linear plants that are

possibly MIMO, nonminimum phase (NMP), and unstable

[5–9]. RCAC relies on knowledge of Markov parameters

and, for NMP open-loop-unstable plants, estimates of the

NMP zeros. This information can be obtained from either

analytical modeling or system identification [10].
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The goal of the present paper is to apply the approach

used in [4, 8] to hysteretic actuators based on shape memory

alloys. These materials exhibit highly hysteretic thermome-

chanical behavior [11–13] and thus are challenging to use

in precision motion control systems. Prior applications of

control for systems with SMA actuators have used inversion

techniques to mitigate the effect of the hysteresis. In contrast,

as in [3, 4], we apply RCAC without attempting to invert the

hysteresis nonlinearity.

The contents of the paper are as follows. Section II

presents a Wiener model for the SMA actuator. Section

III formulates the problem. Section IV applies RCAC to

a command-following problem for uncertain SMA systems.

RCAC is validated for uncertain SMA systems through

simulations in section V. Section VI shows the ability of

the RCAC to control a flap positioning system.

II. WIENER MODEL STRUCTURE FOR THE SMA

ACTUATOR

In this section we present a Wiener model for the SMA

actuator. This model is described in [13]. The input to

the SMA actuator is current or voltage, and the output is

displacement. The SMA actuator is heated by the Joule

heating process [12]. The hysteresis nonlinearity existing

in the SMA is a phase transformation from the austensite

phase to the martensite phase, or vice-versa. The martensite

phase occurs at low temperature, where the SMA material

is relatively soft, while the austensite phase occurs at high

temperature, where the SMA material is relatively hard.

The relationship between the applied input voltage or cur-

rent u(t) and the output displacement v(t) can be expressed

as

v(t) = P
(

u(t)
)

, (1)

where P consists of the linear actuator dynamics Ga cas-

caded with the hysteresis nonlinearity N , see Figure 1. The

linear system Ga represents the heating process, while the

hysteresis nonlinearity represents the phase transformation

between the austensite phase and martensite phase.

A. The temperature dynamics model Ga

By applying a voltage or current u(t) across the SMA

actuator, the temperature u0(t) is expressed as

u̇0(t) + σu0(t) = ηu(t), (2)

where σ and η are positive constants. It is important to

note that the temperature u0(t) in the SMA actuator cannot

2013 American Control Conference (ACC)
Washington, DC, USA, June 17-19, 2013

978-1-4799-0176-0/$31.00 ©2013 AACC 3585



Fig. 1. Wiener model of the SMA actuator. This model consists of the
linear actuator dynamics Ga cascaded with the hysteresis nonlinearity N

appearing at the output of the linear system, where u(t) is the applied
input voltage or current, u0(t) is the temperature, and the output v(t) is
the displacement of the SMA actuator.

be measured in real time. The actuator dynamics transfer

function from u to u0 is given by

Ga(s) =
η

s+ σ
. (3)

B. The generalized Prandtl-Ishlinskii model

The relationship between the temperature u0(t) and the

output displacement v(t) can be expressed as

v(t) = N
(

u0(t)
)

, (4)

where N represents the hysteretic nonlinearity in the SMA

actuator. In this paper, we use the generalized Prandtl-

Ishlinskii model to represent the hysteresis nonlinearity N .

This model characterizes the hysteresis nonlinearity between

the temperature u0 and the displacement v in the SMA

actuator [15–18].

Let the input signal u0(t) be continuous in [0, T ]. The out-

put of the generalized Prandtl-Ishlinskii model constructed

as a superposition of the generalized play operators Ψρi
is

expressed as

v(t) = Φ[u0](t) :=

n
∑

i=0

aiΨρi
[u0](t), (5)

where n is the number of generalized play operators and

a0, . . . , an are positive constants. In each interval of a

partition

0 = t0 < t1 < · · · < tl = T,

the output of the generalized play operator Ψρi
for t ∈

(tj−1, tj ] can be expressed as

Ψρi
[u0](t) = max

{

γ
(

u0(t)
)

− ρi,min{γ
(

u0(t)
)

+ (6)

ρi,Ψρi
[u0](tj−1)}

}

,

where γ is a memoryless, continuous, strictly monotonic

function and ρi is a positive threshold.

The generalized Prandtl-Ishlinskii model (5) specializes

to the Prandtl-Ishlinskii model when γ(u0) = u0. The

generalized Prandtl-Ishlinskii model yields clockwise input-

output curves that characterize hysteresis in piezoceramic

and magnetostrictive actuators [15].

C. Discretization of the Wiener model P

The discrete-time model for P is

u0(k + 1) = −σ̄u0(k) + η̄u(k), (7)

v(k) = Φ
(

u0(k)
)

, (8)

where the time step is normalized to 1 and

Ψρi
[u0](k) = max

{

γ
(

u0(k)
)

− ρi,min{γ
(

u0(k)
)

+ (9)

ρi,Ψρi
[u0](k − 1)}

}

.

III. PROBLEM FORMULATION

Consider the Wiener command-following problem

x(k + 1) = Ax(k) +Bv(k) +D1w(k), (10)

y(k) = Cx(k) +D2w(k), (11)

u0(k + 1) = −σ̄u0(k) + η̄u(k), (12)

v(k) = N
(

u0(k)
)

, (13)

z(k) = r(k)− y(k), (14)

where x(k) ∈ R
n is the state, r(k) ∈ R

lr is the command,

u(k) ∈ R
lu is the control, w(k) ∈ R

lw is the exogenous

signal for the linear plant G, N : R → R is the hysteretic

nonlinearity of the SMA actuator, and z(k) ∈ R
lz is the

command-following error. We assume that Ga is uncertain

except for a limited number of Markov parameters. The

hysteresis of the SMA actuator is also uncertain. A block

diagram for (10)–(14) is shown in Figure 1. We apply RCAC

to the SMA system in order to have the output y follow the

command signal r. A block diagram for (10)-(14) is shown

in Figure 2. The goal is to determine a controller that makes

z small.

Fig. 2. Adaptive command-following problem for the SMA actuator. The
discrete-time SMA model P is shown with the RCAC adaptive controller,
auxiliary saturation nonlinearity Nc, and the linear plant G. We assume that
measurements of z(k) are available for feedback; however, measurements
of v(k) and u0(k) are not available.

IV. ADAPTIVE CONTROL FOR UNCERTAIN SYSTEMS

WITH SHAPE-MEMORY-ALLOY ACTUATION

We assume that the temperature dynamics model Ga is

uncertain except for an estimate of a single nonzero Markov

parameter. The input nonlinearity N is uncertain, and the

linear system G is unknown and asymptotically stable. To

account for the presence of the nonlinearity N of the SMA

model P , the RCAC controller in Figure 2 uses the auxiliary

saturation nonlinearity Nc with output uc defined by

Nc(uc) = sata(uc) =











−a, if uc < −a,

uc, if − a ≤ uc ≤ a,

a, if uc > a,

(15)

where a > 0 is the saturation level. For NMP plants, the

saturation level a is used to tune the transient behavior. In

addition, the saturation level is chosen to provide the mag-

nitude of the control input needed to follow the command

r. This level depends on the range of the input nonlinearity
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N as well as the gain of the linear actuator dynamics Ga at

frequencies in the spectra of r and w. For i ≥ 1, define the

Markov parameter

Hi
△
= E1A

i−1B.

For example, H1 = E1B and H2 = E1AB. Let ℓ be a

positive integer. Then, for all k ≥ ℓ,

x(k) = Aℓx(k − ℓ) +
ℓ

∑

i=1

Ai−1BP(Nc(uc(k − i))), (16)

and thus

z(k) = E1A
ℓx(k − ℓ)− E0r(k) + H̄Ū(k − 1), (17)

where

H̄
△
=

[

H1 · · · Hℓ

]

∈ R
1×ℓ

and

Ū(k − 1)
△
=







P
(

Nc(uc(k − 1))
)

...
P
(

Nc(uc(k − ℓ))
)






.

Next, we rearrange the columns of H̄ and the components

of Ū(k− 1) and partition the resulting matrix and vector so

that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (18)

where H′ ∈ R
1×(ℓ−lU ), H ∈ R

1×lU , U ′(k − 1) ∈ R
ℓ−lU ,

and U(k − 1) ∈ R
lU . Then, we can rewrite (17) as

z(k) = S(k) +HU(k − 1), (19)

where

S(k)
△
= E1A

ℓx(k − ℓ)− E0r(k) +H′U ′(k − 1). (20)

Next, for j = 1, . . . , s, we rewrite (19) with a delay of kj
time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (21)

where (20) becomes

Sj(k − kj)
△
= E1A

ℓx(k − kj − ℓ) +H′

jU
′

j(k − kj − 1)

and (18) becomes

H̄Ū(k − kj − 1) = H′

jU
′

j(k − kj − 1) +HjUj(k − kj − 1),

where H′
j ∈ R

1×(ℓ−lUj
), Hj ∈ R

1×lUj , U ′
j(k − kj − 1) ∈

R
ℓ−lUj , and Uj(k−kj −1) ∈ R

lUj . Now, by stacking z(k−
k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=







z(k − k1)
...

z(k − ks)






∈ R

s. (22)

Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (23)

where

S̃(k)
△
=







S1(k − k1)
...

Ss(k − ks)






∈ R

s,

Ũ(k − 1) has the form

Ũ(k − 1)
△
=







P
(

Nc(uc(k − q1))
)

...
P
(

Nc(uc(k − ql
Ũ
))
)






∈ R

l
Ũ ,

where, for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks+ℓ, and H̃ ∈ R
s×l

Ũ is

constructed according to the structure of Ũ(k−1). The vector

Ũ(k− 1) is formed by stacking U1(k− k1 − 1), . . . , Us(k−
ks − 1) and removing copies of repeated components. Next,

for j = 1, . . . , s, we define the retrospective performance

ẑj(k − kj)
△
= Sj(k − kj) +HjÛj(k − kj − 1), (24)

where the past controls Uj(k − kj − 1) in (21) are replaced

by the retrospective controls Ûj(k − kj − 1). In analogy

with (22), the extended retrospective performance for (24) is

defined as

Ẑ(k)
△
=







ẑ1(k − k1)
...

ẑs(k − ks)






∈ R

s

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃U(k − 1), (25)

where the components of
ˆ̃U(k−1) ∈ R

l
Ũ are the components

of Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) ordered in the same

way as the components of Ũ(k − 1). Subtracting (23) from

(25) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃ ˆ̃U(k − 1). (26)

Finally, we define the retrospective cost function

J( ˆ̃U(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (27)

where R(k) ∈ R
s×s is a positive-definite performance

weighting. The goal is to determine refined controls
ˆ̃U(k −

1) that would have provided better performance than the

controls U(k) that were applied to the system. The refined

control values
ˆ̃U(k− 1) are subsequently used to update the

controller.

Next, to ensure that (27) has a global minimizer, we

consider the regularized cost

J̄( ˆ̃U(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k)

+ η(k) ˆ̃UT(k − 1) ˆ̃U(k − 1), (28)

where η(k) ≥ 0. Substituting (26) into (28) yields

J̄( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1)

+ B(k) ˆ̃U(k − 1) + C(k),
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where

A(k)
△
= H̃TR(k)H̃+ η(k)Il

Ũ
,

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)],

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1).

If either H̃ has full column rank or η(k) > 0, then A(k) is

positive definite. In this case, J̄( ˆ̃U(k− 1), k) has the unique

global minimizer

ˆ̃U(k − 1) = −
1

2
A−1(k)B(k). (29)

The control u(k) is given by the strictly proper time-series

controller of order nc given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)z(k − i)

+

nc
∑

i=1

Qi(k)r(k − i), (30)

where, for all i = 1, . . . , nc, Mi(k) ∈ R, Ni(k) ∈ R, and

Qi(k) ∈ R. The control (30) can be expressed as

u(k) = θ(k)φ(k − 1),

where

θ(k)
△
= [M1(k) ··· Mnc (k) N1(k) ··· Nnc (k) Q1(k) ··· Qnc (k) ]

∈ R
lu×3nc

and

φ(k − 1)
△
= [ u(k−1) ··· u(k−nc) z(k−1) ··· z(k−nc) r(k−1)

··· r(k−nc) ]T ∈ R
3nc .

Next, let d be a positive integer such that Ũ(k− 1) contains

u(k − d) and define the cumulative cost function

JR(θ, k)
△
=

k
∑

i=d+1

λk−i‖φT(i− d− 1)θT(k)− ûT(i− d)‖2

+ λk(θ(k)− θ0)P
−1
0 (θ(k)− θ0)

T, (31)

where ‖ · ‖ is the Euclidean norm, and λ ∈ (0, 1] is the

forgetting factor. Minimizing (31) yields

θT(k) = θT(k − 1) + β(k)P (k − 1)φ(k − d− 1)

· [φT(k − d)P (k − 1)φ(k − d− 1) + λ(k)]−1

· [φT(k − d− 1)θT(k − 1)− ûT(k − d)],

where β(k) is either zero or one. The error covariance is

updated by

P (k) = β(k)λ−1P (k − 1) + [1− β(k)]P (k − 1)

− β(k)λ−1P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d) + λ]−1

· φT(k − d− 1)P (k − 1).

We initialize the error covariance matrix as P (0) = αI3nc ,

where α > 0. Note that when β(k) = 0, θ(k) = θ(k−1) and

P (k) = P (k − 1). Therefore, setting β(k) = 0 switches off

the controller adaptation, and thus freezes the control gains.

When β(k) = 1, the controller is allowed to adapt.

V. SIMULATION RESULTS

Example 5.1: We consider Ga(z) = 0.3161
z−0.3679 and

G(z) = 1, and the generalized Prandtl-Ishlinskii model with

n = 4, a0 = 0.6, a1 = 0.14, a2 = 0.25, a3 = 0.33,

ρ0 = 0, ρ1 = 0.223, ρ2 = 0.363, ρ3 = 0.471. We

use γ(u0) = 1.3 tanh(u0). We use the command signal

r(k) = 0.8 sin(ωk) where ω = π
10 rad/sample and ω = π

200
rad/sample. We let a = 7, nc = 24, and P0 = 0.12I3nc . The

RCAC controller is turned on at k = 400. Figure 3 shows

the simulation results.
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Fig. 3. Example 5.1. (a) and (b) show the output of the SMA model P
with Ga(z) = 0.3161

z−0.3679
, G(z) = 1, and the command signal r(k) =

0.8 sin(ωk), where (a) ω = π

10
rad/sample, and (b) ω = π

100
rad/sample.

(c) and (d) show the closed-loop response with (a) and (b), respectively.

Example 5.2: In this example we consider the SMA

model P with the oscillatory plant G(s) = ωn
2

s2+2ζωn+ωn
2 ,

where ζ is the damping coefficient and ωn is the natural

frequency. We consider Ga(z) =
0.65

z−0.35 and the generalized

Prandtl-Ishlinskii Φ model with n = 4, a0 = 0.6, a1 = 0.4,

a2 = 0.2, a3 = 0.1, ρ0 = 0, ρ1 = 0.1, ρ2 = 0.2, ρ3 = 0.4,

and γ(u0) = tanh(u0). We use ωn = π
10 rad/sample,

ζ = 0.4, and the sinusoidal command r(k) = 0.8 sin(ωk)
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with ω = π
10 rad/sample and ω = π

200 rad/sample. The

disturbance signal is w(k) = 0.1. We let a = 6, nc = 35,

and P0 = 0.016I3nc . The RCAC controller is turned on at

k = 400. Figure 6 shows the simulation results.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

u(k)

v
(k

)

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

u(k)

v
(k

)

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

time step k

p
e

rf
o

rm
a

n
c
e

 z
(k

)

β = 0 β = 1

(c)

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

time step k

p
e
rf

o
rm

a
n
c
e
 z

(k
)

β = 0 β = 1

(d)

Fig. 4. Example 5.2. (a) and (b) show output of the SMA model P

with Ga(z) = 0.65

z−0.35
, G(z) = 0.1313z+0.08632

z
2
−1.067z+0.2846

, and the sinusoidal

command r(k) = 0.8 sin(ωk), where (a) ω = π

10
rad/sample, and (b)

ω = π

200
rad/sample. (c) and (d) show the closed-loop response with (a)

and (b), respectively.

VI. FLAP POSITIONING SYSTEM

We consider the flap positioning system described in [19],

where a SMA actuator is used to control the flap position.

We use the SMA model P to characterize the SMA actuator.

This system is modeled by

Jÿ + ξẏ + ksr
2
dy = kcP − w, (32)

where 2rd is diameter of the pulley, y is the rotation angle

of the pulley, J is the moment of inertia of the pulley and

the flap, ξ is the damping coefficient, and w(k) represents

the aerodynamic moment applied to the flap.

The parameters are σ = η = 1, J = 5.0 × 10−5 kg-m2,

ξ = 0.002 kg-m2-s−1, rd = 2 cm, ks = 8, and kc = 0.1.

Then Ga(z) = 0.3161
z−0.3679 and G(z) = 0.5019z+0.00536

z2−0.1883z . We

let a = 7, nc = 20, and P0 = 0.86I3nc . We consider

the command signal r(k) = 0.8 sin(ωk) with ω = π
10

rad/sample, ω = π
20 rad/sample, ω = π

50 rad/sample, and

ω = π
100 rad/sample. The disturbance signal is w(k) =

0.1 sin( π
20k). The RCAC controller is turned on at k = 400.

Figure 5 shows the simulation results.
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Fig. 5. RCAC with a flap positioning system. (a) and (b) show the position
output of the SMA model P with the command signal r(k) = 0.8 sin(ωk)
and the disturbance signal w(k) = 0.1 sin( π

20
k) (a) ω = π

10
rad/sample

and (b) ω = π

100
rad/sample. (c) and (d) show the closed-loop response

with (a) and (b), respectively.

VII. RCAC WITH THE SMA MODEL AND A NONLINEAR

SYSTEM

We consider a nonlinear system preceded by the SMA

model P . Let

x(k + 1) =
1− ex(k)

1 + ex(k)
+ P

(

u(k)
)

+ w(k), (33)

y(k) = x(k). (34)

We consider Ga(z) = 0.5
z−0.25 and the generalized Prandtl-

Ishlinskii model with n = 4, a0 = 0.5, a1 = 0.1, a2 = 0.2,

a3 = 0.3, ρ0 = 0, ρ1 = 0.1, ρ2 = 0.2, ρ3 = 0.3,

and γ(u0) = tanh(u0). We use the sinusoidal command

r(k) = 2 sin(ωk), where ω = π
20 rad/sample and ω = π

200
rad/sample. The disturbance signal is w(k) = 0.1 sin( π

20k).
We let a = 8, nc = 22, and P0 = 0.01I3nc . The RCAC

controller is turned on at k = 400. Figure 6 shows the

simulation results.

VIII. CONCLUSIONS

Retrospective cost adaptive control (RCAC) was applied to

a command-following problem involving an uncertain SMA
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Fig. 6. RCAC with the SMA model and a nonlinear system. (a) and (b)
show output of the SMA model P with Ga(z) = 0.5

z−0.25
, the nonlinear

plant x(k+1) = 1−e
x(k)

1+e
x(k) , and the sinusoidal command r(k) = 2 sin(ωk),

where (a) ω = π

20
rad/sample, and (b) ω = π

200
rad/sample. (c) and (d)

show the closed-loop response with (a) and (b), respectively. (e) and (f)
show the closed-loop response to the constant commands r(k) = 0.7 and
r(k) = 1.4, respectively.

actuator with a linear temperature dynamics model and a hys-

teresis nonlinearity characterized by a generalized Prandtl-

Ishlinskii model. RCAC was used with limited modeling

information about the SMA actuator and the plant. RCAC

was applied to a flap positioning system actuated by the SMA

model. The simulation results show that RCAC can be used

to control the SMA actuator followed by an asymptotically

stable linear plant without using an inverse hysteresis model

in the closed-loop system.
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[2] G. Tao and P. V. Kokotović, Adaptive Control of Systems with Actuator

and Sensor Nonlinearities, Wiley, 1996.
[3] J. Yan, A. M. D’Amato, D. Sumer, J. B. Hoagg, and D. S. Bernstein,

“Adaptive Control of Uncertain Hammerstein Systems Using Auxiliary
Nonlinearities,” Proc. Conf. Dec. Contr., Maui, HI, 2012, pp. 4811-
4816.

[4] M. Al Janaideh, J. Yan, A. M. D’Amato, and D. S. Bernstein,
“Retrospective-Cost Adaptive Control of Uncertain Hammerstein-
Wiener Systems with Memoryless and Hysteretic Nonlinearities,”
AIAA Guid. Nav. Contr. Conf., Minneapolis, MN, August 2012, AIAA-
2012-4449-671.

[5] R. Venugopal and D. S. Bernstein, “Adaptive Disturbance Rejection
Using ARMARKOV System Representations,” IEEE Trans. Contr.

Sys. Tech., vol. 8, pp. 257-269, 2000.
[6] J. B. Hoagg, M. A. Santillo and D. S. Bernstein, “Discrete-Time Adap-

tive Command Following and Disturbance Rejection for Minimum-
Phase Systems with Unknown Exogenous Dynamics,” IEEE Trans.

Autom. Contr., vol. 53, pp. 912-928, 2008.
[7] J. B. Hoagg and D. S. Bernstein, “Retrospective Cost Adaptive Control

for Nonminimum-Phase Discrete-Time Systems Part 1: The Ideal
Controller and Error System; Part 2: The Adaptive Controller and
Stability Analysis,” Proc. Conf. Dec. Contr., pp. 893-904, Atlanta,
GA, December 2010.

[8] M. Aljanaideh, D. Sumer, J. Yan, A. M. D’Amato, B. Drincic, K.
Aljanaideh, and D. S. Bernstein, “Adaptive Control of Uncertain
Hammerstein Systems with Uncertain Hysteretic Input Nonlinearities,”
Proc. Dyn. Sys. and Contr. Conf. , Fort Lauderdale, FL, October 2012,
DSCC2012-MOVIC2012-8573, pp. 1-10.

[9] A. M. D’Amato, E. D. Sumer, and D. S. Bernstein, “Retrospective
Cost Adaptive Control for Systems with Unknown Nonminimum-
Phase Zeros,” AIAA Guid. Nav. Contr. Conf., Portland, OR, August
2011, AIAA-2011-6203.

[10] M. S. Fledderjohn, M. S. Holzel, H. Palanthandalam-Madapusi, R.
J. Fuentes, and D. S. Bernstein, “A Comparison of Least Squares
Algorithms for Estimating Markov Parameters,” Proc. Amer. Contr.

Conf., Baltimore, MD, June 2010, pp. 3735-3740.
[11] J. A. Shaw, “Simulations of localized thermo-mechanical behavior in

a NiTi shape memory alloy,” Inter. J. Plast., vol. 16, pp. 541-562,
2000.

[12] R. Gorbet, K. Morris and D. Wang, “Passivity-Based Stability and
Control of Hysteresis in Smart Actuators,” IEEE Trans. Contr. Sys.

Tech., vol. 9, pp. 5-16, 2001.
[13] M. Elahinia and H. Ashrafiuon, “Nonlinear Control of a Shape

Memory Alloy Actuated Manipulator,” J. Vib. Acous., vol. 124, pp.
566-575, 2002.

[14] Y. Feng, C. Rabbath, H. Hong, M. Al Janaideh, and C-Y. Su,
“Robust Control for Shape Memory Alloy Micro-Actuators Based Flap
Positioning System,” Proc. Amer. Contr. Conf., Baltimore, MD, June
2010, pp. 4181-4186.

[15] M. Al Janaideh, S. Rakheja, and C-Y. Su, “An Analytical Generalized
Prandtl-Ishlinskii Model Inversion for Hysteresis Compensation in
Micro positioning Control,” IEEE/ASME Trans. Mech., vol. 16, pp.
734-744, 2011.

[16] M. Al Janaideh, S. Rakheja, and C-Y. Su, “A Generalized Prandtl-
Ishlinskii Model for Characterizing Hysteresis Nonlinearities of Smart
Actuators,” Smart Mater. and Struct., vol. 18, pp. 1-9, 2009.

[17] M. Al Janaideh, Y. Feng, S. Rakheja, Y. Tan, and C-Y. Su, “Gen-
eralized Prandtl-Ishlinskii Hysteresis: Modeling and Robust Control,”
Proc. Conf. Dec. Contr., Shanghai, China, December 2009, pp. 7279-
7284.

[18] M. Al Janaideh, Y. Feng, S. Rakheja, C-Y. Su, C. Rabbath, “Hysteresis
compensation for smart actuators using inverse generalized Prandtl-
Ishlinskii model,” Proc. Amer. Contr. Conf., St. Louis, MO, June 2009,
pp. 307-312.

[19] N. Lechevin, C.A. Rabbath, F. Wong, and O. Boissonneault, “Synthesis
and Experimental Validation of Two-Step Variable- Structure Control
of a Micro-Actuated Flow Effector,” Proc. Amer. Contr. Conf., New
York, NY, July 2007, pp. 3210- 3215.

3590


