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Abstract— We use retrospective cost adaptive control (RCAC)
with a constant forgetting factor (CFF), variable forgetting
factor (VFF), and Kalman Filter (KF) to control a planar mis-
sile with nonlinear dynamics and aerodynamics. RCAC/CFF,
RCAC/VFF, and RCAC/KF are used within an inner-loop/outer-
loop control architecture, where the normal acceleration com-
mand is used to update the pitch-rate command for use by the
pitch-rate servo loop. This control architecture is necessitated
by the fact that, except for circular arcs with constant velocity,
the appropriate pitch-rate command cannot be inferred from
the normal acceleration command. Aggressive commands are
used to compare RCAC/VFF and RCAC/KF with RCAC/CFF.

I. INTRODUCTION

Autopilot design for high-performance missiles presents
multiple challenges to control technology. Missiles typically
fly through a wide range of Mach numbers, high angles of
attack, and under high ‘g’ loading, leading to strongly non-
linear dynamics [10]. The standard approach to addressing
these nonlinearities is to schedule the control gains based on
the missile’s aerodynamics as they vary during flight [1, 10].

Unfortunately, the standard approach to missile autopilot
design requires aerodynamic lookup tables based on ex-
tensive wind tunnel test data, and thus is expensive and
time-consuming. This situation motivates the use of adaptive
control laws that compensate online for changing aerody-
namics and uncertainty in the aerodynamic model. In order
to successfully control a high-performance missile, however,
an adaptive control law must adapt sufficiently quickly to
rapidly varying commands from the missile guidance system.
With these challenges in mind, the present paper extends [3,
5], where retrospective cost adaptive control (RCAC) was
used to control the planar missile model described in [8].
This model has been used [13] to study the feasibility of
various autopilot control schemes.

RCAC, which was developed in [6, 7, 12], has been shown
to be effective on nonminimum-phase systems. This prop-
erty is relevant to the planar missile model in [8], where
the nose-mounted gyro and tail-fin actuation give rise to
nonminimum-phase normal acceleration dynamics.

The goal of the present paper is to apply RCAC to the
planar missile in [8] under more aggressive commands than
were considered in [3, 5]. To address this objective, we
extend the formulation in [3, 5] to include additional features,
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namely, variable forgetting factor (VFF) and Kalman Filter
(KF) extensions of the recursive least squares (RLS) update
of the controller gains. VFF techniques [2, 4] are used to ad-
just the forgetting factor λ in RLS based on the information
provided by the latest measurement.

An additional novel element of the present paper is
an inner-loop/outer-loop control architecture. Specifically,
RCAC adaptively adjusts the pitch-rate command based on
the normal acceleration command from guidance. This adap-
tation would not be needed if the missile were commanded
to fly along a circular arc with a constant velocity. However,
for arbitrary normal acceleration commands, the appropriate
pitch-rate command cannot be inferred, and this motivates
the use of RCAC/VFF and RCAC/KF to adaptively specify
the appropriate pitch-rate command. The pitch-rate command
is then used to drive an inner-loop controller that acts on
the error between the pitch-rate command and the pitch-rate
measurement. The pitch-rate loop architecture is a static gain
proportional/integral controller that stabilizes the pitch rate
about a single trim point.

II. PROBLEM FORMULATION AND NONLINEAR
MISSILE MODEL

To intercept a moving target, the missile is equipped with
an active seeker with guidance laws that provides the normal
acceleration (‘g’) command that the missile must follow in
order to reach its target. In this section we briefly describe
the model used. See [8] for more details.

The target dynamics in an inertial frame are given by

Ẋt = Vt(0)cosθt(0), Żt = Vt(0)sinθt(0), (1)

where Xt and Zt are the inertial coordinates of the target and
Vt(0), θt(0), Xt(0), Zt(0) are the target’s initial conditions.

The nonlinear three-degree-of-freedom missile dynamics
described in the body frame are given by

mU̇ =
∑

FBX −mQW + TThrust, (2)

mẆ =
∑

FBZ +mQU, (3)

IY Q̇ =
∑

MY , θ̇ = Q, (4)

Ẋ = Ucos θ +W sinθ, (5)

Ż = −Usin θ +W cosθ, (6)

where U(0) = U0, W (0) = W0, Q(0) = Q0, θ(0) = θ0,
X(0) = X0, Z(0) = Z0. Assuming a flat Earth, the moment
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and forces about the center of gravity are∑
FBX = q̄SCA −mgsinθ, (7)∑
FBZ = q̄SCN (α,M, δp) +mgcosθ, (8)∑
MY = q̄SdCm(α,M, δp, Q), (9)

where q̄ = 1
2ρV

2 is the dynamic pressure.
The aerodynamic coefficients are modeled as functions of

Mach number M , angle-of-attack α, fin deflection angle δp,
and pitch rate Q, as

CA = aa,

CN = anα
3 + bnα|α|+ cn

(
2− M

3

)
α+ dnδp,

Cm = amα
3 + bmα|α|+ cm

(
−7 +

8M

3

)
α+ dmδp + emQ,

where α , tan−1(W/U), V 2 , U2+W 2, M , V/a, where
a is the altitude-dependent speed of sound. The missile model
assumes planar flight, and thus only the X,Z coordinates
and pitch are modeled, yielding a 6th-order model. Out-of-
plane effects, such as roll angle, yaw angle, and sideslip
are therefore fixed at zero. Additionally, the fin actuator is
modeled as a second-order system. For realism, an actuator
rate and magnitude saturations are implemented at 500
deg/sec and 30 deg, respectively. Finally, the normalized
normal acceleration is given by nz = FN/(gm) + cosθ.

III. THREE-LOOP AUTOPILOT (3LA)

The goal of the 3LA [9] is to minimize the error between
the commanded normal acceleration, generated by the guid-
ance law, and the normal acceleration measurement provided
by the inertial measurement unit (IMU). The states available
for measurement are the normal acceleration nz and the pitch
rate Q, which is provided by an on-board accelerometer and
gyroscope, respectively. 3LA is implemented as

u(s) = KQQ(s) +
1

s
(KθQ(s) +KI [KSSnz,cmd − nz,IMU]) ,

where KQ,Kθ,KI, and KSS are the control gains determined
by modeling and analysis. Each gain is scheduled on a trim
condition based on the missile angle-of-attack and Mach
number. In practice, a digital version of the control law is
implemented in discrete time.

IV. RCAC CONTROLLER

Consider the discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (10)
y(k) = Cx(k) +D2w(k), (11)
z(k) = E1x(k) + E0w(k), (12)

where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu ,
w(k) ∈ Rlw , and k ≥ 0. The objective of the adaptive
controller is to generate a control signal u(k) that minimizes
the performance variable z(k) in the presence of exogenous
signals w(k). The exogenous signal w(k) can represent a
command signal to be tracked, an external disturbance, or

both. The system (10) – (12) can represent a sampled-data
system based on continuous-time dynamics with sample and
hold operations.

A. The Control Law
Let the control signal be constructed as a strictly proper

dynamic compensator of order nc given by

u(k) =

nc∑
i=1

Ti(k)u(k − i) +

nc∑
i=1

Si(k)y′(k − i), (13)

where, for all i = 1, . . . , nc, Ti ∈ Rlu×lu and Si ∈ Rlu×ly′
are the gain matrices. The signal y(k)′ is usually chosen
to be either the output y(k) or the performance z(k). The
controller in (13) can be rewritten as

u(k) = Φ(k)θ(k), (14)

where Φ(k) is the regressor matrix

Φ(k) , Ilu ⊗



u(k − 1)
...

u(k − nc)
y′(k − 1)

...
y′(k − nc)



T

∈ Rlu×lθ , (15)

where ⊗ is the Kronecker Product and θ(k) =
vec [T (k) S(k)] ∈ Rlθ is the vector of the controller gains
with size lθ = nclu(lu + ly′).

B. Retrospective Performance
We define the retrospective performance variable as

ẑ(θ̂(k), k) , z(k) +Gf(q)[Φ(k)θ̂(k)− u(k)], (16)

Gf(q) , D−1(q)N(q) (17)

where

N(q) ,
nf∑
i=1

Niq
nf−i, D(q) , Ilzq

nf −
nf∑
i=1

Diq
nf−i, (18)

with Ni ∈ Rlz×lu and Di ∈ Rlz×lz and q represents the
forward shift operator. The filter Gf is of order nf ≥ 1
and each polynomial entry of D(q) is asymptotically stable.
Next, we are able to rewrite (16) as

ẑ(θ̂(k), k) = z(k) + Φf(k)θ̂(k)− uf(k), (19)

where the filtered regressor and control are given by

Φf(k) , Gf(q)Φ(k),

=

nf∑
i=1

[NiΦ(k − i) +DiΦf(k − i)] , (20)

uf(k) , Gf(q)u(k),

=

nf∑
i=1

[Niu(k − i) +Diuf(k − i)] , (21)

and θ̂(k) is determined by the optimization below. In the
present paper, Gf is chosen to be a finite-impulse-response
(FIR) filter, which implies that the coefficients Di = 0. The
choice of Gf is discussed in [11].
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C. Cumulative Cost

Define the cumulative cost function to be minimized as

J(θ̂(k), k) ,
k∑

i=k0

ẑ(i)TRz(i)ẑ(i)

+

k∑
i=k0

[Φ(i)θ̂(k)]TRu(i)[Φ(i)θ̂(k)]

+ [θ̂(k)− θ̂(0)]TRθ(k)[θ̂(k)− θ̂(0)], (22)

where Rz(i), Ru(i), and Rθ(k) are positive definite for all
k. Here we assume that the weighting matrices are constant.
Since (22) is a strictly convex function, its minimizer can be
found by computing the partial derivative of J(θ̂(k), k) with
respect to θ̂(k) and obtaining

∂J(θ̂(k), k)

∂θ̂(k)
= 2

k∑
i=k0

[ẑ(i)TRzΦf(i) + [Φ(i)θ̂(k)]TRuΦ(i)]

+2[θ̂(k)− θ̂(0)]TRθ = 2A(k)T + 2θ̂(k)TP(k)−1, (23)

where

A(k) ,
k∑

i=k0

(
Φf(i)

TRz [z(i)− uf(i)]
)
−Rθ θ̂(0),

P(k) , [

k∑
i=k0

(ΦT
f (i)RzΦf(i) + Φ(i)TRuΦ(i)) +Rθ]

−1.

Therefore, θ̂(k) = −P(k)A(k).

D. RCAC Update Laws

In this section, we design an update law for obtaining the
controller parameters θ̂(k). The recursive least squares (RLS)
algorithm is first derived followed by the modifications to
RLS which include the constant forgetting factor (CFF), the
varable forgetting factor (VFF), and the Kalman Filter (KF).

1) Recursive Least Squares (RLS): To find a recursive
solution for the controller parameters, we start with

A(k) = A(k − 1) + Φf(k)TRz [z(k)− uf(k)]

= A(k − 1) +X(k)TR̄ z̄(k), (24)

where A(0) = −Rθ θ̂(0) and

P(k) =
[
P(k − 1)−1 + ΦT

f (k)RzΦf(k) + Φ(k)TRuΦ(k)
]−1

= P(k − 1)− P(k − 1)X(k)TΓ(k)−1X(k)P(k − 1),
(25)

X(k) ,

[
Φf(k)
Φ(k)

]
∈ R(lz+lu)×lθ , (26)

R̄ ,

[
Rz 0
0 Ru

]
∈ R(lz+lu)×(lz+lu), (27)

z̄(k) ,

[
z(k)− uf(k)

0

]
∈ Rlz+lu , (28)

Γ(k) , R̄−1 +X(k)P(k − 1)X(k)T, (29)

and P(0) , R−1θ . Combining (24) and (25) yields

θ̂(k) = −P(k)A(k),

= θ̂(k − 1)− P(k − 1)X(k)TΓ(k)−1 [X(k)θ(k − 1)

−X(k)P(k − 1)X(k)TR̄z̄(k) + Γ(k)R̄z̄(k)
]
,

= θ̂(k − 1) + P(k − 1)X(k)TΓ(k)−1ε(k), (30)

where θ̂(0) = θ̂0 and ε(k) , −z̄(k)−X(k)θ̂(k − 1).
2) RCAC with Constant Forgetting Factor (CFF): The

recursive algorithm based on RLS is modified to include a
constant forgetting factor by redefining the weight matrices

Rz(k, i) = λk−iRz, Ru(k, i) = λk−iRu, Rθ(k) = λkRθ,

where λ ∈ (0, 1 ]. The recursion on (24) and (25) is then

A(k) = λA(k − 1) + Φf(k)TRz(k) [z(k)− uf(k)] , (31)

P(k) =
[
λP(k − 1)−1 +X(k)TR̄(k)X(k)

]−1
, (32)

which yields the recursive update

θ̂(k) = θ̂(k − 1) + P(k − 1)X(k)TΓ̃(k)−1ε(k), (33)

where Γ̃(k) , λR̄(k)−1 +X(k)P(k)X(k)T.
3) Variable Forgetting Factor (VFF): Following [4] and

[2], we define

K(k) , P(k)X(k)TΓ(k)−1, (34)

E(k) , ε(k)T (I −X(k)K(k)) ε(k), (35)

W (k) , P(k)−K(k)X(k)P(k). (36)

The VFF variable λ(k) is then defined as λ(k) , 1 −
E(k)/Σ0, where Σ0 = σ2

0N0, σ2
0 is the expected mea-

surement noise variance, and N0 determines the speed of
adaptation, which corresponds to the nominal asymptotic
memory length [4]. Note that λ(k) is bounded by the rule

if λ(k) < λmin, then λ(k) = λmin,

elseif 1/λ(k)tr(W (k)) > c, then λ(k) = 1,

endif .

The covariance matrix is then updated as

P(k) =
1

λ(k)
W (k), (37)

with P(0) = δI, c > δ, and the update for θ̂(k) is (30).

4) Kalman Filter Update: The Kalman Filter update,
where A = I , is of the form

θ̂(k) = θ̂(k − 1) + wv(k), (38)

where wv(k) is a white sequence with covariance QKF(k).
The Kalman Filter can then be implemented by computing
the Kalman gain as

K(k) = P(k)X(k)TΓ(k)−1. (39)

Note that the structure of K(k) is the same as (34), and
the matrix R̄−1 can be viewed as the measurement noise
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covariance. The next step is to update the estimate and
compute the error covariance as

θ̂(k) = θ̂(k|k − 1) +K(k)[−z̄(k)−X(k)θ̂(k|k − 1)],

P(k) = [I −K(k)X(k)]P(k|k − 1).

Finally, we project ahead as

θ̂(k + 1|k) = θ̂(k), (40)
P(k + 1|k) = P(k) +QKF(k). (41)

V. ADAPTIVE AUTOPILOT ARCHITECTURE

RCAC generates a pitch-rate command by adapting on the
normal acceleration error and by using the normal acceler-
ation command in the controller regressor Φ. As shown in
Fig. 1, this pitch-rate command is then used as the reference
to a fixed-gain proportional-integral (PI) controller. The PI
loop is a pitch-rate stabilizing loop based on a single trim
condition. This differs from [3], where the adaptive control
law acts directly on the normal acceleration error to generate
fin deflection commands based on that error. The steady-state

Fig. 1: Inner-Loop/Outer-Loop Adaptive Autopilot Architecture

pitch-rate command for the missile flying in a circular arc
with a constant velocity is QCMD,SS = g(sin θ− nz,CMD)/VT,
where VT is the tangential velocity. Since thrust is not
regulated (assuming post burn-out), maintaining a constant
velocity is not feasible. Other than this maneuver, deriving
the equations for a pitch-rate command involves information
that is not directly measured, thus motivating the need for
an adaptive pitch-rate command.

To apply RCAC. the missile dynamics are linearized about
a single trim point, and these dynamics are augmented by
the PI controller. The resulting matricies A, B, and C from
(10) and (11) are used to create the filter Gf [11] in (17).
D1 and D2 are not used since external disturbances are
not considered. Note that the linearization is used only for
constructing an FIR filter and goes into the design of filter
numerator N; all simulations are performed using the full
nonlinear dynamics. For RCAC, the performance signal z(k)
in (12) is used in cost minimization (22), where z(k) is the
difference between the normal acceleration command nz,cmd,
which is represented by w(k) as in (12), and the normal
acceleration measurement nz,IMU, while nz,cmd is used in the
controller regressor, Φ. Finally, for notational convenience,
the time step k, represents the actual sample time of the
controller, kTs.

VI. EXAMPLE OF RCAC WITH STANDARD RLS

We present an example that illustrates the need for mod-
ifying the RLS update law. Consider the nonlinear missile
model presented in Section II. The missile is initialized at

M0 = 3, θ0 = 25 deg, Z0 = 3 km, Q0 = X0 = α0 = 0, and
the target is initialized at Xt(0) = 4 km, Zt(0) = 2.8 km,
Mt(0) = 0.3, and θt(0) = 180 deg. RCAC has the initial
values of nc = 4, nf = 1, N1 = −0.6, Rz = 1, Ru = 3,
and P(0) = 1e10I2nc . In order to intercept the target, the
missile is commanded to pull an aggressive maneuver and
consequently high angles of attack. This maneuver ensures
that the missile’s nonlinearities are exposed. Fig. 2 compares
the 3LA to the pitch-rate commanded RCAC architecture. As
shown in the figure, the adaptive controller is initially able to
track the acceleration command but, as the flight progresses,
tracking becomes worse. This inability to track is depicted
by the controller gains and covariance in Fig.2. After 0.6
sec, the controller gains converge and the eigenvalues in the
covariance matrix P approach zero.

Fig. 2: Missile ‘g’ command tracking of the gain-scheduled three-loop
autopilot vs. RCAC without a forgetting factor. [Top] compares the gain-
scheduled ‘g’ command/response versus the RCAC ‘g’ command/response,
where the tracking error increases significantly toward the end of flight,
[Bottom] shows that the RCAC gains remain almost constant after about
0.6 sec due to the eigenvalues of the covariance matrix tending toward zero.

VII. COMPARISON OF 3LA, RCAC/CFF, RCAC/VFF

We revisit the example in Section VI and compare
RCAC/CFF and RCAC/VFF with the three-loop autopilot
(3LA). In this example, we vary the constant forgetting
factor from 0.975 to 1.0 and compare the calculated miss
distance (MD), which, after the target has been acquired, is
the distance between the missile and the target at the instant
the seeker loses sight of the target. The variable forgetting
factor parameters are set to Σ0 = 1000, λmin = 0.98, and
c = 10δ. Fig. 3 shows the miss distance compared to a range
of constant forgetting factors. Included in the plot is both
the miss distance with the 3LA and the miss distance with
RCAC/VFF. As the CFF is increased past 0.995, the miss
distance becomes increasingly large (above the 2 meter plot
limit). Note that the RCAC/VFF as well as some RCAC/CFF
miss distances are below that of the 3LA.

To compare the CFF with VFF, note that with λ = 0.979,
the CFF miss distance is the lowest of all the FF. The bottom
of Fig. 3 depicts the adaptive gains through the missile flight.
Notice how the gains are more aggressive and oscillatory
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during the latter half of the flight time for the CFF compared
to VFF. This type of behavior is undesirable since it may
cause the adaptive controller to become unstable leading to
erroneous pitch-rate commands. The top right of Fig. 3 shows
how the variable forgetting factor λ varies throughout the
flight. This aids in producing adaptation that is smoother
then the constant forgetting factor. From this we conclude
that the VFF is the more desirable algorithm in comparison
to the CFF for this application.

Fig. 3: Comparison of 3LA, RCAC/CFF, and RCAC/VFF. [Top Left]
shows the calculated miss distance for a CFF that is varied from 0.975
to 1.0. The additional horizontal lines represent the miss distance of 3LA
and RCAC/VFF with Σ0 = 1000, λmin = 0.98, and c = 10δ. [Bottom]
shows the gains for RCAC/VFF and RCAC/CFF with CFF set to 0.9795,
which has the best miss distance performance. [Top Right] shows how the
VFF λ(k) varies throughout the flight.

VIII. COMPARISON OF RCAC/VFF AND RCAC/KF

We revisit the example in Section VI to compare
RCAC/VFF with RCAC/KF. The VFF tunings are the same
as in Section VII, and the KF tuning is QKF(k) = 0.06. Fig.
4 compares these algorithms. The calculated miss distance
(MD) is similar, but unlike the ‘g’ response, the controller
gains are significantly different as shown in the second row of
the figures. Notice that the magnitude of the VFF controller
gains are smaller than the magnitude of the KF gains and
also vary less during flight.The bottom of Fig. 4 compares
the eigenvalues of the covariance matrix. At around 0.4 sec,
covariance values for both algorithms suddenly drop to zero.
After this time, the trends look similar but the KF has a
larger number of gains that are increasing.

IX. ROBUSTNESS COMPARISON OF 3LA,
RCAC/VFF, AND RCAC/KF

In this section, we present a final comparison between
3LA, RCAC/VFF, and RCAC/KF by considering four ex-
amples to test the robustness of the adaptive algorithms. The
RCAC parameter Gf is modified to optimize performance
through a range of flight Mach numbers. To do this, N1 is
a function of Mach number where N1(M) = −0.02M2 +
0.25M−0.87. This modification is a gain-schedule in missile
Mach number for increased performance. Unlike the gain-
scheduled 3LA, we do not schedule based on angle of attack.

Fig. 4: Comparison of RCAC/VFF and RCAC/KF. Results shown use
the parameters presented in the previous section with the addition of the
KF variable QFK(k) = 0.06. [Top] shows the similarity of the command
and response of the two algorithms. The calculated miss distances are also
similar, unlike the controller gains shown [Middle]. The magnitudes of
the gains in RCAC/KF are much larger and vary more through the flight.
[Bottom] shows how both eigenvalues of the covariance matrix drop to zero
at time 0.4 sec and steadily increase as the flight progresses to optimize
gains.

Example 9.1: In this example, the initial missile Mach
number is increased to M0 = 4, and the initial rotation
angle is decreased to θ0 = 15 deg with the remaining initial
conditions left as before. The top of Fig. 5 shows the normal
acceleration error of each of the three controllers along with
the miss distances. As shown, RCAC/VFF has the least miss
distance but also has the largest amount of overshoot error
around 0.5 sec when the maximum ‘g’ command is given.
The overshoot is attributed to this method having the best
miss distance value. The remaining two methods have similar
responses with the gain-scheduled 3LA having a better miss
distance value compared to RCAC/KF.

Example 9.2: In this example, the initial missile Mach
number is M0 = 3, θ0 = 15 deg, and the aerodynamic
coefficient Czα in the body Z direction due to the angle-of-
attack is scaled by 3, that is Czαn = 3Czα with the remaining
initial conditions left as before. The middile of Fig. 5 shows
the normal acceleration error of each of the three controllers
as well as their calculated miss distances. In this example,
RCAC/KF has the lowest miss distance and provides the best
tracking despite this aerodynamic modification. RCAC/VFF
is able to adapt to the modified aerodynamic coefficient
but yields the worst miss distance. 3LA struggles with the
aerodynamic coefficient modification and response similar to
that of a lightly damped system.

Example 9.3: In this example, the initial missile Mach
number is M0 = 2.5, θ0 = 25 deg, and the aerodynamic
moment coefficient due to the deflection of the control
surface CMδ

is scaled by 3, that is, CMδn
= 3CMδ

with the remaining initial conditions left as before. The
bottom of Fig. 5 shows the normal acceleration error of
each controller as well as their calculated miss distances.
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In this example, RCAC/KF has the lowest miss distance
followed by RCAC/VFF. Both of these controllers quickly
adapted to the modification in the aerodynamic coefficient
and are able to track the normal acceleration command. 3LA
struggled with this aerodynamic modification and continually
oscillated throughout the entire flight.

Fig. 5: Comparison of the normal acceleration error between 3LA,
RCAC/VFF, and RCAC/KF on three representative cases. [Top] shows
the case where the initial missile Mach number is increased to 4 and θ0
decreased to 15 deg. [Middle] shows the case where the initial missile Mach
number of 3, θ0 = 15 deg, and the aerodynamic coefficent Czαn = 3Czα .
[Bottom] shows the case where the initial missile Mach number is 2.5,
θ0 = 25 deg, and the aerodynamic coefficent CMδn

= 3CMδ
.

Example 9.4: In this example, we revisit the scenario
presented in Section VI with an unmodeled decrease in the
actuator bandwidth from 150 Hz to 40 Hz throughout the
flight. In doing this, the optimized design of 3LA will suffer
due to the increase in the missiles’ time constant. Fig. 6
shows the normal acceleration error of each of the three con-
trollers as well as the actuator position and rate, respectively.
3LA struggles with the decrease in actuator performance
whereas both the RCAC/VFF and the RCAC/KF are able to
dampen out the response and adapt to the lower bandwidth
actuator. X. CONCLUSIONS

We extended [3, 5] in the RCAC formulation by including
a variable forgetting factor and Kalman Filter. This extension
allowed for continual parameter estimation in the adaptive
controller update, a feature that is essential to controlling
a system with nonlinear dynamics. Additionally, an inner-
loop/outer-loop control architecture is used to adaptively
adjust the pitch-rate command based on the normal accel-
eration command. The adaptive pitch-rate command loop
is appropriate due to the inability to infer such a com-
mand when given an arbitrary normal acceleration command.
Results show that the CFF, although effective, leads to
aggressive adaptation that may lead to instabilities. We also
showed that both RCAC/VFF and RCAC/KF allow for gain
adapting through the entire flight and were able to track
the normal acceleration command as well as the 3LA. The
adaptive controller excelled when an aerodynamic coefficient
modification was introduced to the system as well as having
a lower bandwidth actuator.

Fig. 6: Comparison of 3LA, RCAC/VFF, and RCAC/KF with an unmod-
eled decrease in actuator bandwidth. Nominally the actuator has a bandwidth
of 150 Hz, but the results above assume an actuator with a bandwidth of
40 Hz. [Top] The normal acceleration error is shown, while the actuator
deflection angle [Middile] and rate [Bottom] are shown.
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