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Abstract— The purpose of this work is to compare model
structures and identification algorithms for estimating Markov
parameters in the presence of uncorrelated and correlated
input, process, and output noise. We consider several least-
squares variants with ARX and µ-Markov model structures,
which are compared with white noise identification signals.

I. INTRODUCTION

Linear system identification techniques have been exten-

sively developed, and numerous techniques exist for iden-

tifying systems in state space and ARMAX form [1–3].

The present paper is motivated by control design techniques

that require estimates of the Markov parameters [4–8]. In

addition, Markov parameters are related to fundamental

properties of linear systems, such as invariant zeros [9].

These parameters can be estimated by a wide variety of

methods, such as ARMAX fits, subspace methods, and, by

using the inverse FFT, frequency domain techniques.

The purpose of the present paper is to provide a detailed

comparison of the accuracy, consistency, and biasedness of

least-squares techniques for Markov parameters. Our goal is

to present numerical evidence to compare the accuracy of

these methods when used with various model structures and

noise configurations. It is our hope that these comparisons

will be useful to practitioners in the field, while providing

guidance for future theoretical developments.

We consider include several variants of least-squares iden-

tification applied to ARMAX models as well as a subspace

method. For the least-squares algorithms we consider an

ARX and µ-Markov structure. The latter structure, which

is derived from the ARX structure, explicitly displays µ
Markov parameters [7, 10]. Although the identification tech-

niques are applicable to MIMO systems, we confine our

attention to SISO plants. Finally, since our goal is to estimate

Markov parameters and not all system parameters, we do not

require that the true system be contained in the model class

used for identification.

In these numerical studies, we explore the effects of

the noise configuration, signal-to-noise ratio (SNR), data

length, and assumed plant order. We do not consider model
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Fig. 1. Plant model and identification architecture, where noise can enter
in three separate locations.

prediction accuracy since we are concerned only with the

problem of estimating Markov parameters.

To assess the accuracy of these algorithms, we consider a

setup where the input, measurement of the input, and output

are corrupted by white noise signals. This setting allows us

to examine whether the estimates of Markov parameters are

consistent, that is, convergent to the true parameter values in

the limit of infinite data. The algorithms we consider include

batch least squares, total least squares, structured total least

squares, multistage least squares, quadratically constrained

least squares, and N4SID.

II. IDENTIFICATION CONSIDERATIONS

Among the factors that can affect the accuracy of system

identification, we limit our attention to noise properties,

model structure, model order, and the amount of data. We

consider zero-mean Gaussian white noise input signals with

correlated and uncorrelated zero-mean Gaussian white noise

processes superimposed on the input, measurement of the

input, and output with specified SNRs. The SNR is taken

to be the ratio of the RMS value of the true signal to the

RMS value of the noise superimposed on that signal. We

also consider ARX, µ-Markov, and state space models. Since

the algorithms require an estimate of the order of the plant

generating the data, we under- and over-estimate the order

of the plant. Lastly, we vary the amount of data to determine

whether the parameter estimates appear consistent.

III. PROBLEM SETUP

We consider three noise signals affecting the true input u0

and true output y0, namely, input noise v, process noise η,

and output noise w, as seen in Figure 1. The problem can

be modeled with the ARMAX structure

A(q)y0(k) = B(q)u0(k) + C(q)η(k), (1)
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where q is the forward shift operator, u(k) = u0(k) + v(k),
and y(k) = y0(k)+w(k). Except where noted, B(q) = C(q).

A. Uncorrelated v, η, and w Noise Signals

When noise signals are uncorrelated, they are generated

independently and then scaled to a specified SNR. The

realizations of v and η are scaled relative to u0, while w
is scaled relative to y0.

B. Correlated v, η, and w Noise Signals

When noise signals are correlated, the same random se-

quence is used for both signals, which are then scaled to the

specified SNR. We consider correlated v and w as well as

correlated η and w. We do not consider correlated v and η
because in this case v = η, and thus u0 + v = u0 + η. If

B(q) = C(q), then this scenario is equivalent to having no

input or process noise.

IV. MODEL STRUCTURES FOR IDENTIFICATION

The ARX model is given by

y(k) =

nmod
∑

j=0

bju(k − j) −

nmod
∑

j=1

ajy(k − j), (2)

where the Markov parameters are obtained by impulsing (2).

The µ-Markov model is given by

y(k)=

µ−1
∑

j=0

Hju(k−j) +

nmod+µ−1
∑

j=µ

b′ju(k−j) −

nmod+µ−1
∑

j=µ

a′jy(k−j), (3)

where µ ≥ 1 and H0, . . . , Hµ−1 are the first µ Markov

parameters.

Both models can be written as an over-determined equa-

tion set of the form
Ax = b+ e, (4)

where e is a vector of residuals, x is a vector of model

parameters, A is a regression matrix of measured inputs and

outputs, and b is the predicted variable y(k).

V. IDENTIFICATION METHODS

All of the proceeding algorithms will be used in conjunc-

tion with both ARX and µ-Markov model structures, except

for N4SID, which is inherently a state-space technique.

A. Batch Least Squares (BLS)

Batch least squares determines the model coefficients x
that minimize the cost ‖Ax − b‖2. It can be shown that

BLS with an ARX model structure is identical to the OKID

algorithm for estimating Markov parameters [1].

B. Total Least Squares (TLS)

From (4), if e = 0, then there exists at least one solution

x of Ax = b, that is,
[

A b
]

has a nontrivial null space

containing
[

x −1
]T

. However, when e 6= 0, then there

does not exist x satisfying (4). Therefore, total least squares

determines Â and b̂ which minimize
∥

∥

[

Â b̂
]

−
[

A b
]∥

∥

F

such that there exists x̂ satisfying Âx̂ = b̂. From the Eckart-

Young-Mirsky theorem [11], the minimizing
[

Â b̂
]

is

obtained by zeroing the smallest singular value of
[

A b
]

.

Note that since TLS perturbs the entries of A and b, it

considers errors in both the observed input and output.

C. Structured Total Least Squares (STLS)

Similar to TLS, structured total least squares accounts for

errors in both A and b, while constraining
[

Â b̂
]

to the

same Toeplitz pattern as
[

A b
]

.

D. Multistage Least Squares (MLS)

The first step of multistage least squares consists of a high-

order BLS to obtain the estimate x̂. Next, the residual r =
b − Ax̂ is used as a known input in a second least-squares

computation. Specifically, we fit the low-order TIMO model

A(q)y(k) =
[

B(q) C(q)
]

[

u(k)
r(k)

]

. (5)

E. Quadratically Constrained Least Squares (QCLS)

Quadratically constrained least squares [12, 13] assumes

knowledge of the noise statistics, and estimates the model

parameters by solving a generalized-eigenvalue problem.

QCLS is an extension of the Koopmans-Levin algorithm.

F. N4SID

The Matlab N4SID function is a subspace algorithm which

estimates a state space model of the system [14].

VI. PERFORMANCE METRIC

We consider a metric based on the truncated Markov-

parameter Toeplitz matrix Tµ [15, p. 202] given by

Tµ
△

=







H0 · · · 0
...

. . . 0
Hµ−1 · · · H0






, (6)

where H0, . . . , Hµ−1 are the first µ Markov parameters. The

performance metric is the largest singular value of the dif-

ference between the estimated and actual truncated Markov

block-Toeplitz matrices, that is, εTµ

△

= σmax

(

Tµ − T̂µ

)

.

VII. NUMERICAL EXPERIMENTS

We consider the discrete-time transfer function model

G(z)=
(z − 0.75)(z − 0.85)(z2 − 1.6z + 0.6425)

(z−0.8)(z2+ 0.01)(z2+ 0.04)(z2+ 0.9025)
, (7)

which has high-frequency modes, lightly damped modes, and

approximate pole/zero cancellation. With z replaced by the

forward shift operator q, the numerator and denominator

of G(z) correspond to B(q) and A(q), respectively. All

simulations have zero initial conditions.

A. Effect of µ on the Metric εTµ

Increasing the number of identified Markov parameters µ
creates a larger truncated Markov block-Toeplitz matrix. To

investigate the effect of µ on the metric εTµ
, we run each

algorithm 100 times at each µ with different uncorrelated

v and w realizations. The input realization u0 remains the

same for all simulations. For each µ, we compute the average

the error ε̄Tµ
= 1/100

∑100

j=1
εTµj

, where j represents the

simulations index. Figure 2 shows that the mean error ε̄Tµ

increases as µ increases for BLS, TLS, STLS, and N4SID.

We thus consider µ = 10 for subsequent comparison.
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Fig. 2. Average error ε̄Tµ
for a range of µ for BLS, TLS, STLS, and

N4SID with uncorrelated v and w, SNR = 10, nmod = 7, and 5000 samples.

10
2

10
3

10
4

10
−2

10
−1

10
0

Number of Samples

ε̄ T
µ

(a) v only

10
2

10
3

10
4

10
−2

10
−1

10
0

Number of Samples

ε̄ T
µ

LS ARX

LS µ−Markov

(b) w only
Fig. 3. Comparison of ARX and µ-Markov on BLS with SNR = 10,
µ = 10, and nmod = 7.

B. Comparison of ARX and µ-Markov Structures

Figure 3 indicates that with v only, BLS with ARX and µ-

Markov models have comparable errors, while with w only,

the µ-Markov structure provides a smaller error.

Figure 4a indicates that with v only, TLS with a µ-Markov

model is not as accurate as with an ARX model. Figure 4b

indicates that with w only, TLS with a µ-Markov model is

more accurate than with an ARX model.

Figure 5 indicates that STLS with µ-Markov and ARX

models are similar up to 1000 samples, but, as the number

of samples increases, STLS with a µ-Markov model is more

accurate than with an ARX model.

C. Comparison of BLS and MLS

Here we consider colored process noise with
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Fig. 4. Comparison of ARX and µ-Markov on TLS with SNR = 10,
µ = 10, and nmod = 7.
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Fig. 5. Comparison of ARX and µ-Markov on STLS with SNR = 10,
µ = 10, and nmod = 7.
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Fig. 6. BLS and MLS with uncorrelated v and w, SNR = 10, µ = 10,
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Fig. 7. Consistency of BLS ARX with SNR = 10, µ = 10, nmod = 7.

C(q)= q5−0.82q4 +0.31q3−0.40q2 +0.40q−0.07. (8)

Figure 6a suggests that MLS provides no improvement

over BLS when used with the µ-Markov structure. However,

Figure 6b shows that MLS can improve the accuracy of BLS

when used with the ARX structure.

D. Consistency of BLS µ-Markov, BLS ARX, TLS, STLS,

QCLS, and N4SID

We investigate the consistency properties of all algorithms

by plotting the error εTµ
as the number of samples in-

creases. A constant downward slope of the error on a log-

log plot suggests that the error approaches zero in the limit

as the number of samples approaches infinity, and hence

the Markov parameter estimates are consistent. If the error

approaches a constant value on the graph, then we infer

(based on this finite data) that the estimator is not consistent.

Figure 7 indicates that for all noise configurations, the BLS

Markov parameter estimates from a 7th order ARX model

are not consistent.

Figure 8 indicates that with w only, BLS with an ARX

model can provide consistent Markov parameter estimates

when nmod is large. This and other examples lead to the

conjecture that with w only, η only, or w and η, BLS ARX

provides consistent estimates if µ ≤ nmod + 1.

Figure 9a suggests that for all combinations of η and

w, BLS with a µ-Markov model yields consistent Markov

parameter estimates. However, Figure 9b indicates that when

v is also present, the estimates are not consistent.

Next, for QCLS we require knowledge of the autocorrela-

tion of the noise R , E
[

ψT (k)ψ(k)
]

affecting u0 and y0 to

within a positive scalar multiple. Here E is the expectation,

ψ(k)=
[

ζ(k) · · · ζ(k−n) − v(k) · · · − v(k−n)
]T
,
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Fig. 9. Consistency of BLS µ-Markov with SNR = 10, µ = 10, nmod = 7.

for the ARX model, ζ(k)=w(k)+A(q)−1C(q)η(k),

ψ(k) = [ ζ(k) ζ(k − µ) · · · ζ(k − µ− n+ 1)

−v(k) · · · −v(k − µ− n+ 1) ]T ,

for the µ-Markov model, ζ affect y0, and −v affects u0.

Furthermore, since ζ and v are stationary, R is independent

of k. We partition R as

R =

[

Rζζ −Rζv

−Rζv Rvv

]

. (9)

The construction of R for all noise configurations is shown

in Table I. The table also summarizes the consistency of

BLS with µ-Markov and ARX models. Table I also shows

that QCLS produces consistent estimates with R̂ = αR. The

alternate choice R̂ = NLS does not use noise properties, and

produces the BLS result. When BLS is consistent, QCLS is

consistent with R̂ = αR or R̂ = NLS.

Figure 10 suggests that for all noise configurations, QCLS

yields consistent Markov parameter estimates when R is

known to within a constant positive multiple.

Figure 11 suggests that for all noise configurations, neither

the STLS or TLS Markov parameter estimates are consistent.

Figure 12 suggests that N4SID is consistent with η and/or

w but not consistent with v present.
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Fig. 10. QCLS consistency with R̂ = αR, SNR = 10, µ = 10, nmod = 7.
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Fig. 11. Consistency of STLS and TLS with a µ-Markov model with SNR
= 10, µ = 10, nmod = 7.
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Noise R BLS ARX Consistent BLS µ-Markov Consistent QCLS ARX Consistent QCLS µ-Markov Consistent

v

[

0 0

0 Rvv

]

Never Never R̂ = αR R̂ = αR

η

[

RGηGη 0

0 0

]

µ ≤ nmod + 1 Always R̂ = αR R̂ = αR or R̂ = NLS

w

[

Rww 0

0 0

]

µ ≤ nmod + 1 Always R̂ = αR R̂ = αR or R̂ = NLS

v,η

[

RGηGη −RvGη

−RvGη Rvv

]

Never Never R̂ = αR R̂ = αR

v,w

[

Rww −Rwv

−Rwv Rvv

]

Never Never R̂ = αR R̂ = αR

η,w

[

Rζζ 0

0 0

]

µ ≤ nmod + 1 Always R̂ = αR R̂ = αR or R̂ = NLS

v,η,w

[

Rζζ −Rζv

−Rζv Rvv

]

Never Never R̂ = αR R̂ = αR

TABLE I

WITH v ABSENT, BLS ARX PROVIDES CONSISTENT ESTIMATES OF THE MARKOV PARAMETERS IF µ ≤ nMOD + 1 AND KNOWLEDGE OF R IS NOT

REQUIRED. WHEN R IS KNOWN UP TO A POSITIVE SCALAR MULTIPLE, QCLS PROVIDES CONSISTENT ESTIMATES OF THE MARKOV PARAMETERS.
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Fig. 13. Effect of correlation between v and w on BLS, TLS, STLS, and
N4SID with a µ-Markov model. We use SNR = 10, µ = 10, and nmod = 7.

E. Accuracy versus Correlation

Figure 13 indicates that correlation between v and w has

little effect on BLS, TLS, STLS, and N4SID.

Figure 14 shows that correlation between η and w de-

creases the accuracy of TLS, STLS, and N4SID, while BLS

remains unaffected.

F. Analysis of Bias

In addition to consistency of these algorithms, we analyze

bias for finite data sets. To test bias, each method is run with

50 different noise realizations. The closeness of the mean of

the 50 estimates to the actual Markov parameter is used as

a measure of bias, that is, εHi

△

= Hi −
∑50

j=1
Ĥij

/50, where

j = 1, . . . , 50 is each test with a different noise realization

and i = 0, . . . , µ− 1 is the Markov parameter index.

With w only, Figure 15 suggests that BLS with a µ-

Markov model is unbiased, along with QCLS. However, both

TLS and STLS appear to be biased.

With v only, Figure 16, suggests that BLS, TLS and STLS

are biased, although QCLS is not.
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Fig. 14. The effects of correlation between η and w on BLS, TLS, STLS,
and N4SID. We use SNR = 10, µ = 10, and nmod = 7.
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Fig. 15. Bias analysis of BLS, TLS, STLS, and QCLS with a µ-Markov
model, w only, SNR = 10, µ = 10, nmod = 7, and 10, 000 samples.
The horizontal line is the actual Markov parameter, and each dot is the
result of simulation with a different noise realization. For each algorithm,
50 simulations are run. ’x’ denotes the average value of the simulations.

3739



BLS TLS STLS QCLS

−0.02

−0.01

0

0.01

0.02
H

0

BLS TLS STLS QCLS

−0.02

−0.01

0

0.01

0.02

H
1

BLS TLS STLS QCLS

−0.02

−0.01

0

0.01

0.02

H
2

BLS TLS STLS QCLS

0.98

0.99

1

1.01

1.02

H
3

BLS TLS STLS QCLS

−2.42

−2.41

−2.4

−2.39

−2.38

H
4

BLS TLS STLS QCLS

0.94

0.95

0.96

0.97

0.98

H
5

Fig. 16. Bias analysis of BLS, TLS, STLS, and QCLS with a µ-Markov
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The horizontal line is the actual Markov parameter, and each dot is the
result of simulation with a different noise realization. For each algorithm,
50 simulations are run. ’x’ denotes the average value of the simulations.
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Fig. 17. Effect of SNR on BLS, TLS, STLS, and N4SID with various
noise configurations, µ = 10, and nmod = 7, and 5000 samples.

G. Accuracy versus SNR

The effect of SNR is examined in Figure 17. BLS and

N4SID appear to produce the best estimates across all SNRs.

The STLS estimates appear to be biased, even for high SNRs.

H. Accuracy versus Estimated Order

The effect of under- and over-estimating the order of a

7th order plant (7) is shown in Figure 18. BLS is the least

affected by underestimating the plant order. STLS is the

most accurate when overestimating the plant order. BLS and

N4SID appear to be unaffected by overestimating the order.

VIII. CONCLUSION

The purpose of this study is to investigate the properties of

several least-squares identification algorithms with different

model structures to assess the accuracy of Markov parameter

estimates. The numerical results indicate that µ-Markov is a

better model structure than ARX.

If the autocorrelation of the noise is known to within a

scalar multiple, QCLS provides the best estimates for all

noise cases and consistency under all noise configurations.
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Fig. 18. Effect of order of BLS, TLS, STLS, and N4SID with uncorrelated
v and w, SNR = 10, µ = 10, and 5000 samples.

With only η and/or w, BLS with a µ-Markov structure is

consistent and unbiased. With varying SNRs, noise config-

urations, and order estimates, BLS with a µ-Markov model

is the most accurate or close to the most accurate algorithm.

BLS with a µ-Markov structure is not affected by correlated

noise signals and is not greatly affected by order estimate.

STLS with a µ-Markov model can produce good estimates

of the Markov parameters, but it is significantly effected by

SNR, noise configuration, and the amount of data.

TLS with a µ-Markov model generally yields estimates

which are biased, not consistent, and negatively affected by

overestimating the plant order and correlated noise signals.

The subspace identification method N4SID is comparable

to BLS. The estimates are close amidst varying conditions.

MLS with an ARX structure provides a slight advantage

over BLS with an ARX structure, but MLS with a µ-Markov

structure is very similar to BLS with a µ-Markov structure.
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