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Abstract— Adaptive control of a two-dimensional model of
a flexible spacecraft with noncolocated sensors and actuators
is achieved by output feedback using knowledge of only the
system’s impulse response. The model is composed of two
planar rigid bodies linked by a torsional spring that emulates a
multibody spacecraft with base body actuation and appendage
pointing. Retrospective cost adaptive control is applied to
a command-following problem. The controller uses a finite
impulse response filter built from the Markov parameters of
the nonminimum-phase (NMP) linearized model. Accordingly,
this filter is constructed to contain an estimate of the location
of the NMP zero; the filter’s order is chosen to correspond to
the number of time steps after which the plant’s step response
becomes positive.

I. INTRODUCTION

Attitude control of multibody systems is a long-studied
problem that remains challenging due to uncertainty, non-
linearity, and dimensionality. Uncertainty may arise due to
imprecisely modeled mass and modal properties [1, 2]; non-
linearity arises due to large-angle and high-rate kinematics;
and high dimensionality is due to the continuum mechanics
of flexible appendages [3] or propellant slosh [4].

To address this problem, we examine the performance of
an adaptive attitude control law for a planar model of a
multibody spacecraft. A related study [5] examined a rigid
spacecraft with a single discrete flexible degree of freedom.
The spacecraft considered in [5] consists of a rigid base body
connected by a compliance to a proof mass that can move
along a single direction relative to the base body. The motion
of the proof mass is assumed to be unmodeled and unknown,
thereby providing a spacecraft model with flexible-mode
uncertainty. This model was used to evaluate the performance
of an adaptive attitude control law based on retrospective cost
adaptive control (RCAC) [6], [7], [8].

Simplified flexible models such as the two body system in
[5] provide exact nonlinear models of a flexible spacecraft
under arbitrary motion. These models can remove the need
for a continuum model of flexible dynamics and thus provide
a setting for assessing the baseline performance of attitude
control laws applied to flexible spacecraft.

This paper follows the philosophy of [5] by formulating
an idealized flexible spacecraft model that is amenable to
exact modeling. We consider a planar spacecraft model
consisting of two rigid bodies, in this case a base body
and an articulated appendage. These bodies are connected
by a compliance that allows in-plane relative rotation but no
translation. The performance objective is to achieve attitude
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pointing of the appendage with actuation applied to the base
body; this model may represent a telescope mounted on a
spacecraft bus.

This model presents a challenging problem since the
actuation and performance variable are noncolocated. The
implications of this control-system architecture are evident
due to the fact that control torques applied to the base body
to induce rotation in a given direction result in initial rotation
of the appendage in the opposite direction. This phenomenon
indicates NMP behavior.

Adaptive control of NMP plants remains a challeng-
ing problem [9]. As shown in [8], RCAC is applicable
to NMP systems as long as the plant is either open-
loop asymptotically stable or the NMP zeros are known.
In [10], RCAC is applied to a linearized planar linkage
with actuator/performance-variable noncolocation. However,
unlike the linkage in [10], in this paper the base body’s
translation is unconstrained. Since the system has a rigid
body mode it is both unstable and NMP.

II. PLANAR TWO-BODY LINKAGE

Fig. 1. Planar two-body linkage with base body B0 and appendage B1.
The angles θ0 and θ1 represent the attitude of B0 and B1 relative to a
vector fixed in an inertial frame.

For example, the mechanism in Figure 1 is controlled
by a torque actuator on the base body B0 attached by a
torsional spring to the appendage B1. Assume that the center
of mass c of the linkage is unforced. Additionally, define
three reference points: the center of mass c0 of B0, the center
of mass c1 of B1, and the location p of the flexible joint
connecting B0 and B1.

Define an inertial frame FI. Furthermore, for i = 0, 1,
define a frame Fi fixed to Bi; the physical rotation matrix
that rotates FI to Fi is given by

→
Ri/I. Similarly, the angular

velocity of Fi relative to FI is given by
⇀
ω i/I. The vector

from c to ci is given by
⇀
r ci/c, and the vector from ci to
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p is given by
⇀
r p/ci . Finally, the mass of Bi is mi and

its physical inertia matrix relative to its center of mass ci

is given by
→
J i/c. Resolving the rotation matrices, inertias,

angular velocities, and position vectors in Fi yields

Ri
4
=
→
Ri/I

∣∣∣∣
i

=

 cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 , (1)

⇀
ω i/I

∣∣∣
i

= ωie3, (2)

→
J i/ci

∣∣∣∣
i

= diag(αi, βi, Ji), (3)

⇀
r p/c0

∣∣∣
0

= r0e2,
⇀
r p/c1

∣∣∣
1

= −r1e2, (4)

where, for i = 0, 1, θ̇i = ωi, ri > 0 is the distance from ci
to p, and, for j = 1, 2, 3, ej is the jth column of the 3× 3
identity matrix.

The control objective is to use the actuator on B0 to align
F1 with a desired frame Fd. Given the planar nature of the
problem, we can represent this using the angle θ1 in Figure
1 and its desired value θd. Thus, the error angle is given by

y
4
= θ1 − θd, (5)

where −π < θd ≤ π.

A. Lagrangian Dynamics

1) Kinetic Energy: The kinetic energy of B0 relative to c
with respect to FI is given by

T0 =
1

2
J0ω

2
0 +

m0

2
‖

I•
⇀
r c0/c ‖

2. (6)

Using the definition of the center of mass yields

⇀
r c0/c

4
= − 1

m0 +m1

(
m0

⇀
r c1/C0

+m0
⇀
r c0/c0

)
= − m1

m0 +m1

(
⇀
r c1/p +

⇀
r p/c0

)
. (7)

Using the transport theorem to differentiate (7) with respect
to FI and resolving in FI yields

I•
⇀
r c0/c

∣∣∣∣∣
I

=
m1

m0 +m1
(r1ω1R1 + r0ω0R0) e1. (8)

Substituting (8) into (6) yields

T0 =
1

2
J0ω

2
0 +

m0

2

(
m1

m0 +m1

)2

·
(
r20ω

2
0 + r21ω

2
1 + 2r0r1ω0ω1 cos θ̃

)
, (9)

where θ̃
4
= θ0−θ1. Similarly, the kinetic energy of B1 relative

to c with respect to FI is given by

T1 =
1

2
J1ω

2
1 +

m1

2

(
m0

m0 +m1

)2

·
(
r20ω

2
0 + r21ω

2
1 + 2r0r1ω0ω1 cos θ̃

)
. (10)

Adding (6) to (10) yields the total kinetic energy

T =
1

2
J ′0ω

2
0 +

1

2
J ′1ω

2
1 + γr0r1ω0ω1 cos θ̃, (11)

where

J ′0
4
= J0 + γr20, J ′1

4
= J1 + γr21, γ

4
=

m0m1

m0 +m1
. (12)

2) Potential Energy: Assume that the torsional spring
exerts zero torque when θ̃ = 0. Then the torsional spring
potential is given by

U =
k′

2
θ̃2, (13)

where k′ > 0 is the spring stiffness.

3) Lagrangian and Equations of Motion: The Lagrangian
for the linkage is given by

L = T − U

=
1

2
J ′0ω

2
0 +

1

2
J ′1ω

2
1 + γr0r1ω0ω1 cos θ̃ − k′

2
θ̃2. (14)

Since θ̇0 = ω0 and θ̇1 = ω1 the equations of motion are

d

dt

(
∂L

∂ω0

)
− ∂L

∂θ0
= u, (15)

d

dt

(
∂L

∂ω1

)
− ∂L

∂θ1
= 0, (16)

where u ∈ R is the control torque applied to B0. Computing
the partial derivatives (15) and (16) yields

J ′0ω̇0 + b2ω̇1 + b1ω
2
1 + k′θ̃ = u, (17)

J ′1ω̇1 + b2ω̇0 − b1ω2
0 − k′θ̃ = 0, (18)

where

b1
4
= γr0r1 sin θ̃, b2

4
= γr0r1 cos θ̃. (19)

Combining (17) and (18) yields

M

[
ω̇0

ω̇1

]
=
[
k′E 02×2

]
x+ b1

[
−ω2

1

ω2
0

]
+

[
1
0

]
u,

(20)

where x =
[
θ0 θ1 ω0 ω1

]T
,

M
4
=

[
J ′0 b2
b2 J ′1

]
, E

4
=

[
−1 1
1 −1

]
. (21)

Thus, the nonlinear equations of motion for the linkage are

ẋ =

[
02×2 I2

k′M−1E 02×2

]
x

+

 02×1

M−1b1

[
−ω2

1

ω2
0

] +

 02×1

M−1
[

1
0

] u, (22)

where the inverse of the mass matrix is given by

M−1 =
1

J ′0J
′
1 − b22

[
J ′1 −b2
−b2 J ′0

]
. (23)
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Fig. 2. Step response S for the nonlinear planar two-link mechanism for
several values of the spring stiffness k′. For i = 0, 1, the model parameters
are ri = 1, Ji = 1, and mi = 1; T0 indicates each curve’s zero-crossing
time.

B. Dynamical Analysis

Subjecting the nonlinear system (22) to a unit step torque
applied to B0 and measuring θ1 yields the response in
Figure 2. For all three stiffnesses, θ1 begins negative, crosses
zero, and then becomes and remains positive. This behavior
indicates the presence of a NMP zero in the linearized
dynamics as confirmed by linear analysis below.

1) Linearization: Computing the Jacobian of (22) at the
equilibrium x̄ = 04×1 yields

δẋ =

[
02×2 I2

k′M̄−1E 02×2

]
δx+

1

d

 02×1
J ′1

−γr0r1

u, (24)

y =
[

0 1 0 0
]
δx, (25)

where δx = x− x̄,

M̄−1
4
=

1

d

[
J ′1 −γr0r1
−γl0l1 J ′0

]
, d

4
= J ′0J

′
1 − (γr0r1)2.

(26)

Therefore, the transfer function for (24) and (25) is

G(s) = −γr0r1
d

(
s2 − 1

γr0r1
k′
)

s2
[
s2 + k′

d (J ′0 + J ′1 + 2γr0r1)
] . (27)

Note that G(s) contains the NMP zero

ZNMP =
1

γr0r1

√
k′γr0r1. (28)

C. Discretization

Discretizing the system matrix yields

A = eAch ≈ I4 + hAc =

[
I2×2 hI2

hk′M̄−1E I2

]
, (29)

where h is the sample time and Ac is the system matrix (24).
The input and output matrices are given by

B =

∫ h

0

eAcτdτ

[
02×1
B′

]
≈
[

h2

2 B
′

hB′

]
, (30)

C =
[

0 1 0 0
]
, (31)

respectively, where B′ = d−1
[
J ′1 −γr0r1

]T
.

We discretize (27) using the forward difference

Gzu(q) = ch2
q2 − 2q + 1− h2a

(q− 1)2 [q2 − 2q + 1 + bh2]
, (32)

where q is the forward-shift operator and

a =
1

γr0r1
k′, b =

k′

d
(J ′0 + J ′1 + 2γr0r1) , c = −γr0r1

d
.

(33)

Then taking the positive root of (32) yields the discrete-time
NMP zero

ZNMP = 1 + h

√
k′

γr0r1
. (34)

III. RETROSPECTIVE COST ADAPTIVE CONTROL

RCAC is a discrete-time direct-adaptive controller; a de-
tailed development is given in [7]. Define the performance
variable

w(k) = y(k)− r(k), (35)

where r(k) is the reference. The ncth order controller is
given by

u(k) = Φ(k)Θ(k) (36)

where

Φ(k)
4
=



u(k − 1)
...

u(k − nc)
w(k − 1)

...
w(k − nc)



T

, (37)

and the controller parameter Θ(k) is updated according to

Θ(k) = Θ(k − 1) + L(k) [w′(k)−X(k)Θ(k − 1)] , (38)
P(k) = [I − L(k)X(k)]P(k − 1), (39)

where

L(k) = P(k − 1)X(k)TΓ(k)−1,

Γ(k) = R(k)−1 +X(k)P(k − 1)X(k)T,

X(k)
4
=

[
Φf(k)
Φ(k)

]
, w′(k)

4
=

[
uf(k)− w(k)

0

]
.

and R(k) regulates adaptation speed. The filtered regressor
Φf is obtained by applying Gf to Φ(k) in (37). Constructing
Gf is discussed in the following section.
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IV. FILTER SELECTION

A. Laurent Expansion

The transfer function Gzu can be approximated using a
truncated Laurent series outside a disk whose radius is the
spectral radius of Gzu. The coefficients of this series are the
Markov parameters [11]. We can use the Laurent series and
the Markov parameters to estimate the location of the NMP
zeros of Gzu,

Gzu(q) ≈ Gf(q)

=
H0q

nf +H1q
nf−1 + · · ·+Hnf

qnf

=
(q− ẑ1) · · · (q− ẑnNMP) · · · (q− ẑnf

)

qnf
, (40)

where Gf is a filter built from the Laurent expansion of
Gzu truncated after nf terms, and for i = 1, . . . nf , ẑi is an
approximate NMP zero, and nNMP is the number of NMP
zeros in Gzu.

The number of NMP zeros in Gf is a design parameter;
Figure 3 shows that when the order of Gf is greater than
nNMP the additional zeros of Gf are distributed along the
unit circle. If the plant is unstable, then Gf develops real
and imaginary zeros as nf increases. The triangular markers
show that for nf = 9 the zeros of Gf are all imaginary. As
nf increases, Gf develops a positive root as demonstrated
when nf = 14 and nf = 17; for sufficiently large nf , one of
the real zeros of Gf approaches zNMP (34).

−1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

Fig. 3. Zeros of Gf (40) for several values of nf and k′ = 2. The
location of Gzu’s NMP zero zNMP (34) is represented by the small red
circle to the right of the unit circle. As nf increases, one of the zeros ẑi of
(40) approaches the location of Gzu’s NMP zero zNMP. For i = 0, 1, the
model parameters are ri = 1, Ji = 1,mi = 1, and h = 0.1.

B. Step and Impulse response

The arrows in Figure 2 indicate the times where the step
response changes sign for three different values of the spring
stiffness k′. For the sampling time h = 0.1 sec, these times
correspond to k0 = 14, 16, 19 steps for k′ = 2, 1.5, 1,
respectively. Next, we examine whether the real zero in Gf

is NMP given the filter order nf .

Figure 4 shows that ẑ becomes NMP as nf increases;
specifically, ẑ becomes NMP after k0 = 14, 16, 19. Thus,
the minimum value of nf needed to capture the NMP zero
is related to the zero-crossings of the step response. For
example, the solid line in Figure 2 indicates that the step
response for k′ = 1 is positive after T0 ≈ 1.9 sec which
corresponds to

nf ≥ k0 = hT0 = 19. (41)

We use (41) to construct Gf . In order to remove the need
for the system’s step response, we integrate the system’s
impulse response. The system’s Markov parameters represent
the impulse response; thus, summing the Markov parameters
yields the step response of the system,

S(k) =

k∑
i=1

Hi. (42)

Therefore, knowledge of the Markov parameters or exper-
imentally obtaining the impulse response is sufficient to
estimate capture the NMP properties of Gzu. By examining
the behavior of the sum of the Markov parameters we can
determine the minimum filter order needed to capture NMP
zeros; specifically the filter order must satisfy

nf ≥ k0. (43)

The zero-crossing step k0 is defined such that, for all k ≥ k0,
the step response |S(k)| > 0. We use this empirical property
to select Gf and apply it to the linkage problem using RCAC.

10 15 20 25 30 35 40 45 50

−1

0

1

Fig. 4. Minimum-phase status of the estimated zero ẑ as a function of
nf for several stiffness values k′. The arrows with k0 > T0

h
indicate the

first timestep at which the step response is positive. The plot shows that,
if nf ≥ k0, then ẑ is NMP. For i = 0, 1, the model parameters are ri =
1, Ji = 1,mi = 1, c = 0, and h = 0.1 sec.

V. NUMERICAL EXAMPLES

The following examples show a 180 degree step command
where both rigid bodies start at rest and with zero angle error;
this maneuver is intended to model a large-angle spacecraft
slew. The model parameters are given by r0 = r1 = 1, J0 =
1, J1 = 1,m0 = m1 = 1, and h = 0.1.

A. Configuring RCAC

RCAC is configured using the Markov parameters to
construct Gf . For the following examples we set Θ(0) = 0,
R(k) = 0.1, and P (0) = 1010.
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1) Choosing nf : We examine the effect of increasing nf
so that the estimate of the NMP zero is closer to the true
system value. We also compare the performance for various
controller orders. Figure 5 shows that as nf decreases the
settling time increases. Additionally, if nf < k0, then θ(k)
diverges. Thus, Gf(q) must be NMP if the plant is NMP.
Furthermore, increasing nf reduces the settling time Ts and
the steady-state error ess. Increasing nc does not necessarily
yield improved performance. However, close examination
of the settling time and the steady-state error in Figure 5
suggests that performance improves in the case where the
controller and filter orders match, that is, nf = nc. Given
nc = nf , Figure 6 shows that the settling time and steady-
state error decrease as nf increases.

Fig. 5. Settling time Ts (top), steady-state error ess (middle), and
overshoot emax (bottom) as a function of the filter order nf for a 180-
deg step response; three different values for the controller order nc are
examined as shown by the differently shaped markers. Setting nc = nf

yields the best performance in each plot. The controller parameters are
Ru = 0.1 and Rθ = 10−10. For i = 0, 1, the model parameters are
ri = 1, Ji = 1,mi = 1, and h = 0.1.

B. Robustness Study

The examples in Figure 6 assume exact knowledge of the
Markov parameters. Next we study the effect of uncertain
parameters on performance.

1) Parameter changes and the step response: We examine
how the system behavior changes as various parameters are
scaled. For i = 0, 1, define a baseline two-body linkage
whose parameters are given by ri = r̄, Ji = J̄ ,mi = m̄,
and k′ = k̄′; these parameters are then scaled one at a time.
For example the stiffness is scaled as k′ = αk̄, where α is a
positive constant; the mass, distance, and inertia are varied
similarly. First, we examine the effect on the zero-crossing
time T0 in Figure 7. Note that the largest changes are due
to variations in the spring stiffness k′ and the distance ri.

Fig. 6. Comparison of settling time Ts (top), steady-state error ess (middle),
and overshoot emax (bottom) as a function of the filter order nf for the
180 degree R2R maneuver. The controller order nc = nf .
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Ji = αJ̄

mi = αm̄

ri = αr̄

k′ = αk̄

Fig. 7. Effect of parameter scaling on the step-response zero-crossing T0.
The baseline parameters are r̄ = 1, J̄ = 1, m̄ = 1, k̄′ = 1.

The values of T0 in Figure 7 can be used to select the
minimum filter order for robustness to parameter scaling. For
example, as k′ increases, T0 decreases. This suggests that a
filter constructed for a smaller spring constant might provide
sufficient information to account for the NMP behavior.
Similar reasoning suggests that robustness to smaller than
expected values of k′ requires that nf be large. The case
of robustness to scaling of ri is similar; as ri decreases T0
decreases, suggesting that performance of a filter chosen for
larger ri is acceptable.

2) Response to scaled stiffness k′ and distance ri:
To test the robustness of the controller to uncertain plant
information, we construct the filter Gf from the Markov
parameters for the baseline system using r̄, J̄ , m̄, k̄. Inde-
pendently scaling the stiffness or the center of mass location
such that k′ = αk̄′ or, for i = 0 or i = 1, ri = αr̄ provides
a method for testing robustness to modeling error. Figures
8 and 9 show the steady-state error ess and the maximum
control input max|u| for the θd = 180 deg R2R maneuver
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in the case where either the stiffness k′ or the center of mass
locations r0 or r1 are uncertain.

In Figure 8, the stiffness is smaller than the nominal value
and, since the step response crosses zero later than for k′ = 1,
the system is more difficult to control. In the case where
the distance r0 is less than the nominal distance RCAC can
complete the maneuver; the step response crosses zero for
values of r0 less than r = 1. In Figure 9, although the
stiffness is larger than k̄, the system is easier to control.
Conversely, as the distance r0 increases, RCAC is less able
to stabilize the system.
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0.8
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1

1.1
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Fig. 8. Effect of parameter scaling on the R2R maneuver. The controller
parameters are nf = nc = 20, R(k) = 0.1, P (0) = 1010. The baseline
parameters are r̄ = 1, J̄ = 1, m̄ = 1, k̄′ = 1.
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Fig. 9. Effect of parameter scaling on the R2R maneuver. The controller
parameters are nf = nc = 20, R(k) = 0.1, P (0) = 1010. The baseline
parameters are r̄ = 1, J̄ = 1, m̄ = 1, k̄′ = 1.

VI. CONCLUSIONS

We considered command following for a two-body linkage
with noncolocated sensors and actuators. Retrospective cost
adaptive control enabled the application of a controller using
minimal modeling information, namely the Markov parame-
ters of the linearized system. Using the guidelines developed,

we constructed a controller that can robustly deal with the
nonminmum-phase behavior and parameter uncertainty.

Although the Markov parameters can be obtained through
linearization, they can also be estimated from the impulse
response of the physical system, especially if a model is not
readily available. The step response, which can be obtained
by integrating the impulse response, provides the information
needed to capture the NMP behavior of the system.

Numerical simulations show that using the zero crossing
of the step response to determine the number of necessary
Markov parameters results in an implementation of RCAC
that is robust to scaling the spring stiffness and distance
between the center of mass of either body to the flexible
joint.

The techniques presented remain to be tested on the
nonlinear model and a three-dimensional dual rigid body
that models the dynamics of a multi-body spacecraft. Other
practical considerations include saturation limits, which can
be accommodated through a control penalty in the cost func-
tion, joint constraints that prevent the bodies from colliding
with each other, and joint torsional damping which should
make the system easier to control. A direct extension of this
work would apply the guidelines in Section IV to other NMP
systems.
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