Abstract—We address the problem of adaptive command following and disturbance rejection for a nonlinear planar multilink mechanism interconnected by torsional springs and dashpots. We consider a nonlinear multilink mechanism where a control torque is applied to the hub of the multilink mechanism, and the objective is to control the angular position of the tip, which is separated from the hub by \( N \) links. In this paper, we derive the nonlinear equations of motion for the \( N \)-link mechanism. We linearize these equations of motion and demonstrate that such systems have nonminimum-phase zeros when the control torque and angular position sensor are not colocated. To control this mechanism, we use a retrospective cost adaptive controller, which is effective for nonminimum-phase systems provided that you have an estimate of the nonminimum-phase zeros. We consider both command following and disturbance rejection problems, where the spectrum of the commands and disturbance are unknown.

I. INTRODUCTION

Nonminimum-phase zeros present a fundamental impediment to the achievable performance of a closed-loop system, limiting the bandwidth and, in the case of positive zeros, causing initial undershoot or direction reversals under step inputs [1, p. 289], [2], [3]. Nonminimum-phase zeros are also challenging for adaptive control methods, which typically assume that the plant is minimum phase [4]. For discrete-time systems with nonminimum-phase zeros, the adaptive control method in [5], [6] requires that the nonminimum-phase zeros be known.

In view of these challenges, it is of interest to determine physical properties that give rise to nonminimum-phase zeros. It is known that the transfer function of a flexible structure with colocated force actuation and velocity sensing is positive real and thus minimum phase [7]. This property suggests that noncolocation is the underlying cause of nonminimum-phase zeros. It was shown in [8], however, that, for a string of translating masses interconnected by springs and dashpots, the noncolocated transfer functions between every pair of masses are minimum phase. Therefore, noncolocation per se is not the source of nonminimum phase zeros.

A vehicle with rear-wheel steering, or, equivalently, a car driving in reverse, exhibits initial undershoot in the sense that the driver initially moves in the direction that is opposite to the ultimate direction of motion. This example, as well as the examples in [9], [10], suggest that nonminimum phase zeros may arise from a combination of noncolocation and rotational motion.

In place of the translating masses considered in [8], we consider a planar multilink mechanism with rotating masses interconnected by torsional stiffnesses and dashpots. This mechanism can be viewed as a lumped approximation of a flexible rotating arm, whose dynamics and control are widely studied for applications such as space structures and hard drives [11], [12].

The multilink mechanism is nonlinear, and thus the derivation of its equations of motion is more complicated than the case of translating masses considered in [8], whose dynamics are linear. Analysis of the zeros of the rotating masses must therefore be based on a linearized model. A related analysis is given in [9].

For the linearized model of the rotating masses we show that the damping and stiffness matrices have the same form as in the case of translating masses. However, the key difference between the translational and rotational cases is the inertia matrix, which is diagonal for the translating masses but nondiagonal for the rotating masses. With this distinction in mind, the first objective of this paper is to revisit the analysis of [8] and show how the off-diagonal entries of the inertia matrix for the rotating masses give rise to nonminimum-phase zeros.

Next, we consider adaptive control of the planar multilink mechanism using the approach of [6]. Since this method requires knowledge of the nonminimum-phase zeros, we assume that this information is available, either by analytical modeling or system identification [13]. We then apply the retrospective adaptive control algorithm of [6] on both the linearized and nonlinear system and assess the resulting performance for problems of command following and disturbance rejection.

II. NONLINEAR EQUATIONS OF MOTION

In this section, we derive the nonlinear equations of motion for an \( N \)-link planar arm system by using Lagrange’s equations. First, we define the parameters of the system. Let \( p_1 \) be the point where the first link is connected to the horizontal plane, and, for \( n = 2, \ldots, N \), let \( p_n \) be the point where the \( n \)-th link is connected to the \((n-1)\)-th link. Next, for \( n = 1, \ldots, N \), let \( q_n \) be the center of mass of the \( n \)-th link. Furthermore, for \( n = 1, \ldots, N \), let \( m_n \) be the mass of the \( n \)-th link, let \( l_n \) be the length of the \( n \)-th link, let \( c_n \) be the damping at the joint \( p_n \), let \( k_n \) be the stiffness of the
joint $p_n$, and let $I_n \triangleq \frac{1}{2} m_n l_n^2$ be the moment of inertia of the $n$th link about $q_n$.

Next, we define the inertial frame $F_A$ with orthogonal unit vectors $(\hat{i}_A, \hat{j}_A, \hat{k}_A)$, where $\hat{i}_A$ and $\hat{j}_A$ lie in the plane of motion of the $N$-link planar arm, and $\hat{k}_A$ is orthogonal to the plane of motion. For simplicity, we assume that the origin of $F_A$ is located at $p_1$. In addition, for $n = 1, \ldots, N$, let $F_{B_n}$ be a frame attached to the $n$th link. More specifically, $F_{B_n}$ is a body-fixed frame which rotates as the $n$th link rotates. For $n = 1, \ldots, N$, let $F_{B_n}$ have orthogonal unit vectors $(\hat{i}_{B_n}, \hat{j}_{B_n}, \hat{k}_{B_n})$, where $\hat{i}_{B_n}$ is in the direction from $p_1$ to $q_1$, $\hat{j}_{B_n}$ is orthogonal to $\hat{i}_{B_n}$ and in the plane of motion, and $\hat{k}_{B_n}$ is orthogonal to the plane of motion. Note that, for all $n = 1, \ldots, N$, $\hat{k}_{B_n} = \hat{k}_A$. Finally, for $n = 1, \ldots, N$, let $\theta_n$ be the angle from $\hat{i}_A$ to $\hat{i}_{B_n}$. The $N$-link planar arm is shown in Figure 1. To construct the Lagrangian for the $N$-link planar arm system. All motion is in the horizontal plane.

For $n = 1, \ldots, N$, the rotational velocity of $F_{B_n}$ with respect to $F_A$ resolved in $F_A$ is given by $\omega_n \triangleq \frac{\omega_{B_n/A}}{A} = \begin{bmatrix} 0 & 0 & \dot{\theta}_n \end{bmatrix}^T$. Furthermore, for $n = 1, \ldots, N$, the orientation matrix of $F_{B_n}$ with respect to $F_A$ is given by

$$\Omega_{B_n/A} = \begin{bmatrix} \cos(\theta_n) & \sin(\theta_n) & 0 \\ -\sin(\theta_n) & \cos(\theta_n) & 0 \\ 0 & 0 & 1 \end{bmatrix}. \quad (1)$$

Next, for $n = 1, \ldots, N$, let $\vec{r}_{q_n/p_1}$ be the position vector from $p_1$ to $q_n$. For $n = 1, \ldots, N$, the velocity of $q_n$ relative to $p_1$ with respect to $F_A$ is given by

$$\vec{V}_{q_n/p_1} \triangleq \frac{\dot{\vec{r}}_{q_n/p_1}}{A} = \vec{r}_{q_n/p_1} + \sum_{i=1}^{n-1} \omega_{B_i/A} \times \vec{r}_{p_{i+1}/p_i}, \quad (2)$$

where $\dot{\vec{r}}$ denotes the derivative of $\vec{r}$ taken in the frame $F_A$. Next, we apply the transport theorem to each term in (2), which yields

$$\vec{V}_{q_n/p_1} = B_n \vec{r}_{q_n/p_1} + \omega_{B_n/A} \times \vec{r}_{q_n/p_1} + \sum_{i=1}^{n-1} B_i \omega_{B_i/A} \times \vec{r}_{p_{i+1}/p_i}.$$  

Note that, for $n = 1, \ldots, N$, $\vec{r}_{q_n/p_1}$ is fixed relative to $F_{B_n}$, and thus $\vec{r}_{q_n/p_1} = 0$. Furthermore, note that for $i = 1, \ldots, N - 1$, $\vec{r}_{p_{i+1}/p_i}$ is fixed relative to $F_i$, and thus $\vec{r}_{p_{i+1}/p_i} = 0$. Therefore,

$$\vec{V}_{q_n/p_1} = \omega_{B_n/A} \times \vec{r}_{q_n/p_1} + \sum_{i=1}^{n-1} \omega_{B_i/A} \times \vec{r}_{p_{i+1}/p_i}. \quad (3)$$

For $n = 1, \ldots, N$, resolving $\vec{V}_{q_n/p_1}$ in $F_A$ yields

$$\vec{V}_{q_n/p_1} = \omega_{B_n/A} \times \vec{r}_{q_n/p_1} + \sum_{i=1}^{n-1} \omega_{B_i/A} \times \vec{r}_{p_{i+1}/p_i}.$$  

and, for $n = 1, \ldots, N - 1,$

$$\vec{r}_{p_{n+1}/p_n} = \Omega_{B_n/A} \begin{bmatrix} l_n & 0 & 0 \end{bmatrix}^T. \quad (6)$$

Furthermore, for $n = 1, \ldots, N$, define $V_n \triangleq \|\vec{V}_{q_n/p_1/A}\|$. For demonstration, it follows from (3)-(6) that

$$V_n = \frac{1}{2} \sum_{i=1}^{n} \left( l_i^2 \dot{\theta}_i^2 + 2 \sum_{i \neq j} l_i l_j \dot{\theta}_i \dot{\theta}_j \cos(\theta_i - \theta_j) \right)^{1/2}.$$  

and thus $V_1 = \frac{1}{2} l_1 \dot{\theta}_1$. Following this same procedure for $n \geq 2$, yields, for $n = 1, \ldots, N,$

$$V_n = \frac{1}{2} \sum_{i=1}^{n} \left( l_i^2 \dot{\theta}_i^2 + 2 \sum_{i \neq j} l_i l_j \dot{\theta}_i \dot{\theta}_j \cos(\theta_i - \theta_j) \right)^{1/2}.$$  

For $n = 1, \ldots, N$, the kinetic energy of the $n$th link is

$$T_n \triangleq \frac{1}{2} m_n V_n^2 = \frac{1}{2} l_n \dot{\theta}_n^2.$$  

and the total kinetic energy is defined by $T \triangleq \sum_{n=1}^{N} T_n$. Next, for $n = 1, \ldots, N$, the potential energy of the $n$th link is
\[ U_n = \begin{cases} \frac{1}{2}k_1\theta_1^2, & n = 1, \\ \frac{1}{2}k_n(\theta_{n-1} - \theta_n)^2, & n > 1, \end{cases} \quad (9) \]

and the total potential energy is defined by \( U = \sum_{n=1}^{N} U_n \).

Thus, the Lagrangian for the \( N \)-link system is \( L = T - U \).

Next, for \( n = 1, \ldots, N \), let \( F_{c_n} \) be the dissipative torque resulting from the damping at joint \( p_n \), that is,

\[ F_{c_n} = \begin{cases} \frac{1}{2}c_1\dot{\theta}_1^2, & n = 1, \\ \frac{1}{2}c_n(\theta_{n-1} - \theta_n)^2, & n > 1, \end{cases} \quad (10) \]

Furthermore, for \( n = 1, \ldots, N \), let \( u_n \) be an external torque applied at \( p_n \). Therefore, for \( n = 1, \ldots, N \) the nonlinear equations of motion are given by

\[ \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_n} - \frac{\partial L}{\partial \theta_n} + \frac{\partial F_{c_n}}{\partial \theta_n} = u_n. \quad (11) \]

Now, we specialize to the case where \( N = 2 \). In this case, the Lagrangian is

\[ L = \frac{1}{2}m_1(\frac{1}{2}\dot{\theta}_1^2) - \frac{1}{2}k_1\theta_1^2 - \frac{1}{2}k_2(\theta_1 - \theta_2)^2 + \frac{1}{2}m_2(\frac{1}{2}\dot{\theta}_2^2 + \dot{\theta}_1^2 + l_1\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2)), \quad (12) \]

and it follows from (11) and (12) that the equations of motion are given by

\[ u_1 = \left( \frac{1}{2}m_1L^2 + m_2L^2 \right)\ddot{\theta}_1 + \frac{1}{2}m_2l_1l_2\sin(\theta_1 - \theta_2)\ddot{\theta}_2 + \frac{1}{2}m_2l_1l_2\cos(\theta_1 - \theta_2)\ddot{\theta}_2 + (k_1 + k_2)\dot{\theta}_1 - k_2\dot{\theta}_2 + (c_1 + c_2)\dot{\theta}_2 - c_2\dot{\theta}_2, \quad (13) \]

\[ u_2 = \left( \frac{1}{2}m_2L^2 \right)\ddot{\theta}_2 - \frac{1}{2}m_2l_1l_2\sin(\theta_1 - \theta_2)\ddot{\theta}_1 + \frac{1}{2}m_2l_1l_2\cos(\theta_1 - \theta_2)\ddot{\theta}_1 - k_2\dot{\theta}_1 + k_2\dot{\theta}_2 - c_2\dot{\theta}_1 + c_2\dot{\theta}_2. \quad (14) \]

III. LINEARIZED EQUATIONS OF MOTION

In this section, we derive linearized equations of motion for the \( N \)-link system. First, we linearize the equations of motion for the two-link case. Then, we linearize the equations of motion for the three-link case. Finally, we generalize the linear equations of motion to the \( N \)-link case.

First, define

\[ \Theta = ^{T} [ \theta_1 \ldots \theta_N ], \quad \Upsilon = ^{T} [ u_1 \ldots u_N ]. \]

We linearize about the \((\Theta, \dot{\Theta}) \equiv 0 \) equilibrium. Note that if, for all \( n = 1, \ldots, N \), \( k_n > 0 \), then \((\Theta, \dot{\Theta}) \equiv 0 \) is the only equilibrium of the \( N \)-link system. Let \( \delta \Theta \) be the linear approximation of \( \Theta \) around the equilibrium \((\Theta, \dot{\Theta}) \equiv 0 \). To obtain the linearization, we use the small angle approximations \( \sin(\theta_1 - \theta_2) \approx \theta_1 - \theta_2, \cos(\theta_1 - \theta_2) \approx 1 \).

Linearizing the two-link system, with nonlinear equations of motion (13) and (14), about \((\Theta, \dot{\Theta}) \equiv 0 \) yields

\[ M\delta \dot{\Theta} + C_d\delta \dot{\Theta} + K\delta \Theta = \Upsilon, \quad (15) \]

where

\[ M = \begin{bmatrix} (m_1 + m_2)l_1^2 & ml_2l_1 \\ ml_2l_1 & ml_2^2 \end{bmatrix}, \quad C_d = \begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 \end{bmatrix}, \quad K = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix}. \]

Similarly, linearizing the three-link system about \((\Theta, \dot{\Theta}) \equiv 0 \) yields (15), where

\[ M = \begin{bmatrix} (m_1 + m_2 + m_3)l_1^2 & \frac{ml_2l_1}{3} & \frac{ml_3l_1l_3}{3} \\ \frac{ml_2l_1}{3} & (m_2 + m_3)l_2^2 & \frac{ml_3l_2l_3}{3} \\ \frac{ml_3l_1l_3}{3} & \frac{ml_3l_2l_3}{3} & \frac{ml_3^2l_3^2}{3} \end{bmatrix}, \]

\[ C_d = \begin{bmatrix} c_1 + c_2 & -c_2 & 0 \\ -c_2 & c_2 + c_3 & -c_3 \\ 0 & -c_3 & c_4 \end{bmatrix}, \]

\[ K = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 \\ -k_2 & k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix}. \]

Finally, extending this technique, we obtain the linearization for the \( N \)-link system, which is given by (15), where

\[ M = \begin{bmatrix} \gamma_{1,1} & \cdots & \gamma_{1,N} \\ \vdots & \ddots & \vdots \\ \gamma_{N,1} & \cdots & \gamma_{N,N} \end{bmatrix}, \]

\[ C_d = \begin{bmatrix} c_1 + c_2 & -c_2 & 0 & \cdots & 0 \\ -c_2 & c_2 + c_3 & -c_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -c_3 & c_4 & \cdots & 0 \end{bmatrix}, \]

\[ K = \begin{bmatrix} k_1 + k_2 & -k_2 & 0 & \cdots & 0 \\ -k_2 & k_2 + k_3 & -k_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -k_3 & k_3 + k_4 & \cdots & 0 \end{bmatrix}, \]

where, for \( g = 1, \ldots, N \),

\[ \gamma_{g,g} = \left( \frac{m_g}{3} + \sum_{i=g+1}^{N} m_i \right) \frac{l_g^2}{g}, \quad (16) \]

and, for \( g = 1, \ldots, N \) and \( h = g + 1, \ldots, N \),

\[ \gamma_{g,h} = \left( \frac{m_h}{2} + \sum_{i=h+1}^{N} m_i \right) l_g l_h, \quad (17) \]

and, for \( g, h = 1, \ldots, N \), \( \gamma_{g,h} = \gamma_{h,g} \).

IV. NONMINIMUM-PHASE ZEROS OF THE \( N \)-LINK ARM

In this section, we prove that, for the two-link system, the linear transfer function from \( u_1 \) to \( \delta \theta_2 \) has one nonminimum phase zero. In fact, this transfer function has one positive zero. For the \( N \)-link system, we numerically demonstrate that the linear transfer function from \( u_1 \) to \( \delta \theta_N \) (i.e., from the hub to the tip of the multilink mechanism) has \( N - 1 \) nonminimum-phase zeros.

For the \( N \)-link system, the linearized equations of motion (15) can be written as

\[ \begin{bmatrix} \delta \dot{\Theta} \\ \delta \ddot{\Theta} \end{bmatrix} = A \begin{bmatrix} \delta \Theta \\ \delta \dot{\Theta} \end{bmatrix} + BY, \quad (18) \]

where

\[ A = \begin{bmatrix} 0_{N \times N} & I_N \\ -M^{-1}K & -M^{-1}C_d \end{bmatrix}, \quad B = \begin{bmatrix} 0_{N \times N} \\ M^{-1} \end{bmatrix}. \]
Next, for \( n = 2, \ldots, N \), the transfer function from \( u_1 \) to \( \delta \theta_n \) is given by
\[
G_n(s) \triangleq \frac{\delta \theta_n(s)}{u_1(s)} = C_n(sI - A)^{-1}B_1,
\]
where
\[
C_n \triangleq \begin{bmatrix} 0_{1 \times n-1} & 1 \end{bmatrix}, \quad B_1 \triangleq B \begin{bmatrix} 1 \\ 0_{1 \times N-1} \end{bmatrix}.
\]

For the two-link case (i.e., \( N = 2 \)), the transfer function from \( u_1 \) to \( \delta \theta_2 \) can be expressed as
\[
G_2(s) = \frac{\delta \theta_2(s)}{u_1(s)} = \frac{a_2s^2 + a_1s + a_0}{b_4s^4 + b_3s^3 + b_2s^2 + b_1s + b_0},
\]
where the coefficients \( a_0, \ldots, a_2, b_0, \ldots, b_4 \) depend on the physical parameters of the system. More specifically, the numerator coefficients of \( G_2(s) \) are given by \( a_2 = -18l_1l_2m_2, a_1 = 36c_2, a_0 = 36k_2 \). Since the zeros of \( G_2(s) \) are the roots of the quadratic polynomial \( a_2s^2 + a_1s + a_0 \), we can solve for these roots expressed in the physical parameters of the system. More specifically, the quadratic polynomial \( a_2s^2 + a_1s + a_0 \) has the roots \( z_{c,1} = \frac{c_2 + \sqrt{c_2^2 + 4a_0a_1}}{2a_2} \)
and \( z_{c,2} = \frac{c_2 - \sqrt{c_2^2 + 4a_0a_1}}{2a_2} \). Since the physical parameters \( l_1, l_2, m_2, c_2, \) and \( k_2 \) are positive, it follows that \( z_{c,1} \) is positive and \( z_{c,2} \) is negative. Thus, we conclude that \( G_2(s) \) has one nonminimum-phase zero.

For the \( N \)-link case, where \( N > 2 \), we conduct a numerical study to investigate the properties of the zeros of the transfer function from \( u_1 \) to \( \delta \theta_N \). In particular, we let \( N = 3, \ldots, 10 \), and for each value of \( N \), we randomly generate 10,000 multilink systems. For each of the multilink systems, the masses \( m_1, \ldots, m_N \), the stiffnesses \( k_1, \ldots, k_N \), the damping coefficients \( c_1, \ldots, c_N \), and the lengths \( l_1, \ldots, l_N \) are sampled from a uniformly generated random variable on the interval \((0, 100)\). Next, we compute the linearized transfer function \( G_N(s) \) from \( u_1 \) to \( \delta \theta_N \). For \( N = 3, \ldots, 10 \), all 10,000 randomly generated multilink systems have \( N - 1 \) nonminimum-phase zeros in the transfer function \( G_N(s) \). In fact, all of the randomly generated multilink systems have \( N - 1 \) positive zeros in the transfer function \( G_N(s) \). Future work will include a proof of the conjecture that, for an \( N \)-link system, the linearized transfer function \( G_N(s) \) from the control torque at the hub to the angular position of the \( N \)th link has \( N - 1 \) positive zeros.

Next, we discretize \( G_2(s) \) using a zero-order hold on the inputs. For this example, we consider the system parameters given by \( m_1 = 2 \text{ kg}, m_2 = 1 \text{ kg}, l_1 = 3 \text{ m}, l_2 = 2 \text{ m}, k_1 = 7 \text{ N/m rad}, k_2 = 5 \text{ N/m rad}, c_1 = 10 \text{ kg/m rad}, \) and \( c_2 = 1 \text{ kg/m rad}. \) Discretizing \( G_2(s) \) using a zero-order hold on the inputs results in a discrete-time transfer function, which also has one nonminimum-phase zero. The location of this nonminimum-phase zero depends on the sampling time used for the discretization. The discrete-time nonminimum-phase zero of \( G_2(z) \) with the system parameters above and sampled at a rate of 20Hz is located at approximately 1.08. Furthermore, note that the discrete-time system has one zero, which results from sample data effects. In this case, the sampled-data zero is located at \(-0.94\).

V. REVIEW OF THE ADAPTIVE CONTROLLER

In this section, we review the cumulative retrospective cost adaptive controller presented in [6]. First, consider the multi-input, multi-output discrete-time system
\[
x(k+1) = Ax(k) + Bu(k) + D_1w(k), \quad y(k) = Cx(k) + Du(k) + D_2w(k), \quad z(k) = E_1x(k) + E_2u(k) + E_3w(k),
\]
where \( x(k) \in \mathbb{R}^n, y(k) \in \mathbb{R}^y, z(k) \in \mathbb{R}^l, u(k) \in \mathbb{R}^u, w(k) \in \mathbb{R}^w, \) and \( k \geq 0 \). Our goal is to develop an adaptive controller that generates a control signal \( u \) that minimizes the performance \( z \) in the presence of the exogenous signal \( w \). We assume that measurements of \( y \) and \( z \) are available for feedback; however, we assume that a direct measurement of \( w \) is not available. Note that \( w \) can represent either a command signal to be followed, an external disturbance to be rejected, or both.

We represent (20) and (22) as the time-series model from \( u \) and \( w \) to \( z \) given by
\[
z(k) = \sum_{i=1}^{n} -\alpha_i z(k-i) + \sum_{i=d}^{n} \beta_i u(k-i) + \sum_{i=0}^{n} \gamma_i w(k-i),
\]
where \( \alpha_1, \ldots, \alpha_n \in \mathbb{R}, \beta_d, \ldots, \beta_n \in \mathbb{R}^{l_x \times l_u}, \gamma_0, \ldots, \gamma_n \in \mathbb{R}^{l_y \times l_u}, \) and the relative degree \( d \) is the smallest non-negative integer \( i \) such that the \( i \)th Markov parameter, either \( H_0 \triangleq E_2 \) if \( i = 0 \) or \( H_i \triangleq E_1A^{i-1}B \) if \( i > 0 \), is nonzero. Note that \( \beta_d = H_d \).

Now, we present an adaptive control algorithm for the general control problem represented by (20)-(22). We use a strictly proper time-series controller of order \( n_c \), such that the control \( u(k) \) is given by
\[
u(k) = \sum_{i=1}^{n_c} M_i(k)u(k-i) + \sum_{i=1}^{n_c} N_i(k)y(k-i),
\]
where, for all \( i = 1, \ldots, n_c \), \( M_i : \mathbb{N} \to \mathbb{R}^{l_u \times l_u} \) and \( N_i : \mathbb{N} \to \mathbb{R}^{l_x \times l_u} \) are determined by the adaptive control law presented below. The control (23) can be expressed as
\[
u(k) = \theta_c(k)\phi(k),
\]
where
\[
\theta_c(k) \triangleq \begin{bmatrix} N_1(k) & \cdots & N_{n_c}(k) & M_1(k) & \cdots & M_{n_c}(k) \end{bmatrix}, \quad \phi(k) \triangleq \begin{bmatrix} y^T(k-1) & \cdots & y^T(k-n_c) & u^T(k-1) & \cdots & u^T(k-n_c) \end{bmatrix}^T \in \mathbb{R}^{n_c(l_u+l_y)}.
\]
Next, we define the retrospective performance
\[
\hat{z}(\theta_c, k) \triangleq z(k) + \sum_{i=d}^{n_c} \bar{\beta}_i \left[ \theta_c - \theta_c(k-i) \right] \phi(k-i),
\]
where \( \nu \geq d, \hat{\theta}_c \in \mathbb{R}^{l_u \times (n_c(l_u+l_y))} \) is an optimization variable used to derive the adaptive law, and \( \bar{\beta}_d, \ldots, \bar{\beta}_n \in \mathbb{R}^{l_y \times l_u} \). The parameters \( \nu \) and \( \bar{\beta}_d, \ldots, \bar{\beta}_n \) must capture the
information included in the first nonzero Markov parameter and the nonminimum-phase zeros from $u$ to $z$ [6]. In this paper, we let $\beta_0, \ldots, \beta_d$ be the coefficients of the portion of the numerator polynomial matrix $\beta(z) = z^n - d \beta_d + \cdots + \beta_1 z + \beta_0$ that includes the nonminimum-phase transmission zeros. More specifically, let $\beta(z)$ have the polynomial matrix factorization $\beta(z) = \beta_U(z) \beta_S(z)$, where $\beta_U(z)$ is an $l_u \times l_u$ polynomial matrix of degree $n_U \geq 0$ whose leading matrix coefficient is $\beta_d$, $\beta_S(z)$ is a monic $l_u \times l_u$ polynomial matrix of degree $n - n_U - d$, and each Smith zero of $\beta(z)$ counting multiplicity that lies on or outside the unit circle is a Smith zero of $\beta_U(z)$. Next, we can write $\beta_U(z) = \beta_{U,0} z^{n_U} + \beta_{U,1} z^{n_U-1} + \cdots + \beta_{U,n_U-1} z + \beta_{U,n_U}$, where $\beta_{U,0} \triangleq \beta_d$. In this case, we let $\nu = n_U + d$ and for $i = d, \ldots, n_U + d$, $\beta_i = \beta_{U,i-d}$. For other choices of the parameters $\nu$ and $\beta_d, \ldots, \beta_n$, see [6].

Defining $\Theta_c \triangleq \text{vec} \theta_c \in \mathbb{R}^{n_u l_u + l_u}$ and $\Theta_c(k) \triangleq \text{vec} \theta_c(k) \in \mathbb{R}^{n_u l_u + l_u}$, it follows that
\[ \hat{z}(\Theta_c, k) = z(k) - \sum_{i=d} \Phi_i^T(k) \Theta_c(k-i) + \Psi^T(k) \hat{\Theta}_c, \] (25)
where, for $i = d, \ldots, \nu$, $\Phi_i(k) \triangleq \phi(k-i) \otimes \beta_i \in \mathbb{R}^{(n_u l_u + l_u) \times (n_u l_u + l_u)}$, where $\otimes$ represents the Kronecker product, and $\Psi(k) \triangleq \sum_{i=d} \Phi_i(k)$. Now, define the cumulative retrospective cost function
\[ J(\hat{\Theta}_c, k) \triangleq \sum_{i=0}^k \lambda^{k-i} \hat{z}(\hat{\Theta}_c, i) R \hat{z}(\hat{\Theta}_c, i) = \sum_{i=0}^k \lambda (\hat{\Theta}_c - \Theta_c(0))^T Q (\hat{\Theta}_c - \Theta_c(0))^{(26)}}

where $\lambda \in (0, 1)$, and $R \in \mathbb{R}^{l_U \times l_U}$ and $Q \in \mathbb{R}^{(n_u l_u + l_u) \times (n_u l_u + l_u)}$ are positive definite.

The cumulative retrospective cost function (26) is minimized by a recursive least-squares (RLS) algorithm with a forgetting factor [14]–[16]. Therefore, $J(\hat{\Theta}_c, k)$ is minimized by the adaptive law
\[ \Theta_c(k + 1) = \Theta_c(k) - P(k) \Psi(k) \Omega(k)^{-1} z_R(k), \] (27)
\[ P(k + 1) = \alpha P(k) - \frac{1}{\lambda} P(k) \Psi(k) \Omega(k)^{-1} \Psi^T(k) P(k), \] (28)
where $\Omega(k) \triangleq \lambda R^{-1} + \Psi^T(k) P(k) \Psi(k)$, $P(0) = Q^{-1}$, $\Theta_c(0) \in \mathbb{R}^{n_u l_u + l_u}$, and the retrospective performance measure $z_R(k) \triangleq \hat{z}(\Theta_c(k), k)$. Note that the retrospective performance measure is computable (25) using measured signals $z$, $y$, $u$, $\theta_c$, and the matrix coefficients $\beta_d, \ldots, \beta_n$. The cumulative retrospective cost adaptive control law is thus given by (27), (28), and
\[ u(k) = \theta_c(k) \phi(k) = \text{vec}^{-1}(\Theta_c(k)) \phi(k). \] (29)

VI. NUMERICAL EXAMPLES

In this section, we use the retrospective cost adaptive controller (27)-(29) to control the linearized and nonlinear two-link system. In particular, we consider both the command following and disturbance rejection problems for the linearized and nonlinear two-link system. We assume that $u_1$ is the only available control input. We consider the two-link system with parameters given in Section IV. The adaptive controller (27)-(29) is implemented in feedback at $20\text{Hz}$ with $\lambda = 0.99$, $R = 1$, $n_c = 8$, $P(0) = 10^{10} I_{16}$, and $\theta_c(0) = 0$. Additionally, for each example, the system is allowed to run open-loop for 7.5 seconds and then the adaptive controller is turned on.

First, numerical simulations are performed using the linearized and nonlinear two-link system to assess the adaptive controller’s performance on a command following problem. The control objective is to track a $0.8 \text{Hz}$ sinusoid with a magnitude of 0.3 rad. We assume that the relative degree $d$ and the first nonzero Markov parameter are known, that is, we let $\nu = d + 1$ and $\beta_d = H_d$. In this example, $d = 1$ and $H_d = -0.00032$. Additionally, we assume that the location of the nonminimum-phase zero is known, but no other information about the system is assumed to be known. Figure 2 shows that the adaptive controller drives performance variable $z$ to zero.

Next, we implement the adaptive controller in feedback with nonlinear plant, using the estimate of the nonminimum-phase zero to track a sinusoid with unknown frequency and amplitude. The adaptive control is turned on after 7.5 seconds and drives the performance to zero.

We simulated the nonlinear two-link system with physical parameters given in Section IV and the adaptive controller in feedback for various command amplitudes, and we found that the adaptive controller is able to drive $z$ toward zero for all command amplitudes less than 0.4 rad (or 23 degrees).

Next, we consider the disturbance rejection problem, where the control objective is to drive $\theta_2$ to zero, while a $1.6 \text{Hz}$ sinusoidal disturbance is applied at both $p_1$ and $p_2$. The magnitudes of the disturbances at $p_1$ and $p_2$ are 0.2 rad and 0.4 rad, respectively. We assume that the relative degree $d$, the first nonzero Markov parameter, and the location of the nonminimum-phase zero are known, but no other information about the system is assumed to be known. Figure 4 shows that the adaptive controller is able to reject the disturbance.
from $\theta_2$, and thus drives $z$ to zero.

![Graph showing performance and control](image1)

**Fig. 3.** Command following for the nonlinear two-link system: The adaptive control (27)-(29) uses knowledge of the linearized nonminimum-phase zero to track a sinusoid with unknown frequency and amplitude. The adaptive control is turned on after 7.5 seconds and drives the performance to zero. The performance with the nonlinear system is comparable to the linear case shown in Figure 2.

![Graph showing disturbance rejection](image2)

**Fig. 4.** Disturbance rejection for the linearized two-link system: The adaptive control (27)-(29) uses knowledge of the nonminimum-phase zero to reject an unknown sinusoidal disturbance acting on both joints of the two-link mechanism. The adaptive control is turned on after 7.5 seconds and drives the performance to zero.

Next, we implement the adaptive controller in feedback with a nonlinear plant, using the estimate of the nonminimum-phase zero obtained from the linearized two-link system. Figure 5 shows that the adaptive controller drives $z$ toward zero, and the performance is comparable to the linear case shown in Figure 4.

![Graph showing disturbance rejection](image3)

**Fig. 5.** Disturbance rejection for the nonlinear two-link system: The adaptive control (27)-(29) uses knowledge of the nonminimum-phase zero to reject an unknown sinusoidal disturbance acting on both joints of the two-link mechanism. The adaptive control is turned on after 7.5 seconds and drives the performance to zero. The performance with the nonlinear system is comparable to the linear case shown in Figure 4.

**Adaptive controller** [6] to control the multilink mechanism. We demonstrated both command following and disturbance rejection where commands and disturbances had unknown spectra.

**REFERENCES**