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Abstract
In this paper we apply subspace methods to the

identification of a class of multi-input multi-output
discrete-time nonlinear time-varying systems. Specifi-
cally, we study the identification of systems that are non-
linear in measured data and linear in unmeasured states.
We present numerical simulations to demonstrate the ef-
ficacy of the method.

1 Introduction
System identification is the process of estimating

system dynamics using measured data. These identi-
fied models can then be used for control and estimator
design, model validation, system analysis, and output
prediction. Linear system identification has been well
studied [1, 3, 8–11, 13–15], and nonlinear system identifi-
cation has received increasing attention [5, 7, 16–18, 20].

Subspace methods have been applied to linear sys-
tems with great success [1, 10, 15, 19]. Three of the most
developed and widely used algorithms, CVA, N4SID,
and MOESP have been implemented in Matlab pack-
ages [2, 6, 12]. These methods are computationally sim-
ple and naturally applied to MIMO systems. Recently,
consistency of one subspace approach under modest con-
ditions has been shown [4].

Nonlinear and time-varying subspace identification
methods have been devised in [17, 18, 20]. In this pa-
per we study systems that are nonlinear in measured
data and linear in unmeasured states, see Figure 1. Our
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Figure 1: Block diagram of a system linear in unmeasured
states: N is a nonlinear function of current and
past data, L is a linear dynamic system.

method consists of three steps. First, we approximate
the nonlinearities in the system as finite sums of known
basis functions with unknown coefficients. Then we es-
timate the state sequence. Finally we use the state
sequence to estimate the unknown system coefficients.
Our method allows for the incorporation of prior knowl-
edge through the selection of the basis functions.

This paper is organized as follows. In Section 2 we
define the problem and the notation to be used through-
out the paper. In Section 3 we derive the main results
of the paper in the zero noise case. In Section 4 we es-
timate the system order and the state sequence in the
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presence of noise. In Section 5 we use the state esti-
mate to calculate the system coefficients. In Section 6
we summarize the identification procedure. Finally, in
Section 7 we demonstrate the method with numerical
examples.

2 Nonlinear Subspace Identification
Here we study systems of the form

x(k + 1) = Ax(k) + w(k)
+F (k, u(k), . . . , u(k − b), y(k), . . . , y(k − b)), (2.1)

y(k) = Cx(k) + Ew(k) + v(k)
+G(k, u(k), . . . , u(k − b), y(k − 1), . . . , y(k − b)) (2.2)

This structure models multi-input, multi-output sys-
tems that depend linearly on the unmeasured states,
but nonlinearly on the measured quantities k ∈ Z+, u,
and y. For convenience we rewrite (2.1), (2.2) as

x(k + 1) =Ax(k) + w(k)
+ F (k, u(k − b : k), y(k − b : k)), (2.3)

y(k) =Cx(k) + Ew(k) + v(k)
+ G(k, u(k − b : k), y(k − b : k − 1)), (2.4)

where we use the convention
a(i : j)

4
=

[
a(i) · · · a(j)

]
, i ≤ j, (2.5)

and b is the number of delays to consider in the model,
x ∈ Rn, A ∈ Rn×n, F : R × Rm×b+1 × Rp×b+1 → Rn,
u(k) ∈ Rm, y(k) ∈ Rp, C ∈ Rp×n, G : R × Rm×b+1 ×
Rp×b → Rp. In addition w(k) ∈ Rn and v(k) ∈ Rp rep-
resent state and output noise, respectively. The pres-
ence of E in (2.4) is used to model correlated state and
measurement noise.

The model (2.3), (2.4) includes classical model
structures as special cases. For example, to capture
a Hammerstein system, in which the nonlinearities are
functions of the input, we write (2.3) and (2.4) as

x(k + 1) = Ax(k) + F (u(k)) + w(k) (2.6)
y(k) = Cx(k) + G(u(k)) + Ew(k) + v(k). (2.7)

For a nonlinear-feedback system, in which the input is
a nonlinear function of the output , we write (2.3) and
(2.4) as

x(k + 1) = Ax(k) + Bu(k) + F (y(k)) + w(k) (2.8)
y(k) = Cx(k) + Du(k) + Ew(k) + v(k). (2.9)

We assume F and G can be exactly represented as
linear combinations of a finite set of known basis func-
tions fi : R×Rm×b+1×Rp×b+1 → R, gi : R×Rm×b+1×
Rp×b → R, and hi : R × Rm×b+1 × Rp×b → R with
unknown matrix coefficients B1 ∈ Rn×r, D1 ∈ Rp×s,
B2 ∈ Rn×t, and D2 ∈ Rp×t. Using this notation we can
write
F (k, u(k−b : k), y(k−b : k)) = B1f(k)+B2h(k), (2.10)

G(k, u(k − b : k), y(k − b : k − 1)) = D1g(k) + D2h(k),
(2.11)

where f(k) ∈ Rr, g(k) ∈ Rs, and h(k) ∈ Rt are given by
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f(k)
4
=




f1(k, u(k − b : k), y(k − b : k))
...

fr(k, u(k − b : k), y(k − b : k))


 , (2.12)

g(k)
4
=




g1(k, u(k − b : k), y(k − b : k − 1))
...

gs(k, u(k − b : k), y(k − b : k − 1))


 , (2.13)

h(k)
4
=




h1(k, u(k − b : k), y(k − b : k − 1))
...

ht(k, u(k − b : k), y(k − b : k − 1))


 . (2.14)

Note that g and h are functions of delayed outputs only,
while f is a function of both delayed and current out-
puts. If the functions F and G cannot be exactly repre-
sented as a finite sum of basis functions, the expansions
(2.10) and (2.11) can be regarded as approximations.
The basis functions in f , g, and h are sorted according
to whether they appear in the expansion of F , G, or
both. Specifically, f(k) is a list of the basis functions
that appear only in the expansion of F ; g(k) is a list
of the basis functions that appear only in the expansion
of G; and h(k) is a list of the basis functions that ap-
pear in the expansions of both F and G. Without this
convention, Zq(k) defined below would not have full row
rank.

With the notation (2.10), (2.11) we can rewrite
(2.3) and (2.4) as

x(k + 1) = Ax(k) + B1f(k) + B2h(k) + w(k), (2.15)
y(k) = Cx(k) + D1g(k) + D2h(k) + Ew(k) + v(k).

(2.16)
Using (2.15) and (2.16), we construct the block-

matrix equation

Yq(k) = Γqx(k : k+`−2q)+ΛqZq(k)+ΥqNq(k), (2.17)

where q is a user-defined window length denoting the
number of block rows in (2.17), and ` is a second user-
defined window length which denotes the number of
columns −2q + 1 in (2.17). ` is often used to denote
the number of measurements of u and y available. For
notational convenience, we define σ

4
= r + s + t. Next,

we define the block-Hankel matrix Yq(k) ∈ Rpq×`−2q+1

as

Yq(k)
4
=




y(k : k + ` − 2q)
...

y(k + q − 1 : k + ` − q − 1)


 ,

the extended observability matrix Γ ∈ Rpq×n as

Γq
4
=




C
CA
...

CAq−1


 ,
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the block-Toeplitz matrix Λq ∈ Rpq×qσ as

Λq
4
=




0 D1 D2

CB1 0 CB2

CAB1 0 CAB2

...
...

...
CAq−2B1 0 CAq−2B2

0 0 0 · · · 0
0 D1 D2 · · · 0

CB1 0 CB2 · · · 0
...

...
...

...
CAq−3B1 0 CAq−3B2 · · · D2


 ,

the block-Hankel matrix Zq(k) ∈ Rqσ×`−2q+1 as

Zq(k)
4
=




z(k : k + ` − 2q)
...

z(k + q − 1 : k + ` − q − 1)


 ,

the column vector z(k) ∈ Rσ as

z(k)
4
=


f(k)

g(k)
h(k)


 ,

the block-Toeplitz matrix Υq ∈ Rpq×q(n+p) as

Υq
4
=




E I 0 0 0 0 · · · 0
C 0 E I 0 0 · · · 0

CA 0 C 0 E I · · · 0
...

...
...

...
...

...
...

CAq−2 0 CAq−3 0 CAq−4 0 · · · I


 ,

and the block-Hankel matrix Nq(k) ∈ Rq(n+p)×`−2q+1

as

Nq(k)
4
=




w(k : k + ` − 2q)
v(k : k + ` − 2q)

...
w(k + q − 1 : k + ` − q − 1)
v(k + q − 1 : k + ` − q − 1)


 .

Finally, we define the data matrix ∆q(k) ∈
Rq(p+σ)×`−2q+1 as

∆q(k)
4
=

[
Yq(k)
Zq(k)

]
. (2.24)

3 State Reconstruction
In this section, we give conditions under which the

state sequence can be exactly reconstructed from noise
free data. For V ∈ Rn×m let R(V ) denote the range
(column space) of V . Then R(V T) is the row space

of V . Let V L 4
=

(
V TV

)−1
V T and V R 4

= V T
(
V V T

)−1

denote left and right inverses of V , respectively. We also
define the projection ΠV

4
= V RV = V T

(
V V T

)−1
V and

Π⊥
V

4
= I − ΠV . Note that V ΠV = V and V Π⊥

V = 0.
Theorem 1 Assume the following conditions are

satisfied:
i) rank Γq = n
ii) w(k) and v(k) are zero for all k ∈ Z+.

iii) rank
[

Zq(k)
Zq(k + q)

]
= 2qσ for all k ∈ Z+.

iv) rank(x(k : k+`−2q)Π⊥
Zq(k)) = rank x(k : k+`−2q)

for all k ∈ Z+.
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v) rank x(k : k + ` − 2q) = n for all k ∈ Z+.
Then q ≥ n/p, (3.1)

` ≥ 2q(σ + 1) + n − 1, (3.2)

n = rank
[

∆q(k)
∆q(k + q)

]
− 2qσ for all k ∈ Z+, (3.3)

R(x(k+q : k+`−q)T) = R(∆q(k)T)∩R(∆q(k+q)T)
for all k ∈ Z+. (3.4)

Proof (3.1) follows directly from i). To prove (3.4)
we first show that (3.4) holds with “=” replaced with
“⊆”. Then we show that the left and right hand sides
of (3.4) have the same dimension. Let k ∈ Z+.

First note that ii) implies that (2.17) has the form
Yq(k) = Γqx(k : k + ` − 2q) + ΛqZq(k) (3.5)

and
Yq(k + q) = Γqx(k + q : k + `− q) + ΛqZq(k + q). (3.6)

By i) we can solve (3.5) and (3.6) for the state matrices

x(k : k + ` − 2q) =
[
ΓL

q −ΓL
q Λq

]
∆q(k), (3.7)

x(k + q : k + ` − q) =
[
ΓL

q −ΓL
q Λq

]
∆q(k + q). (3.8)

Using (2.15) and (3.7) the state matrix x(k+q : k+`−q)
can also be written as
x(k + q :k + ` − q)= Aqx(k : k + ` − 2q) + ΨqZq(k)

= Aq
[
ΓL

q −ΓL
q Λq

]
∆q(k) + ΨqZq(k)

=
[
AqΓL

q Ψq − AqΓL
q Λq

]
∆q(k),

(3.9)where Ψq ∈ Rn×qσ is given by

Ψq
4
=

[
Aq−1

[
B1 0 B2

]
Aq−2

[
B1 0 B2

]
· · · [

B1 0 B2

] ]
. (3.10)

(3.8) and (3.9) imply
R(x(k + q : k + `− q)T) ⊆ R(∆q(k)T)∩R(∆q(k + q)T).

(3.11)
Next we show that the left and right hand sides

of (3.4) have the same dimension. By iii), Π⊥
Zq(k) ex-

ists. We multiply (3.5) on the right by Π⊥
Zq(k) and use

Zq(k)Π⊥
Zq(k) = 0 to obtain

Yq(k)Π⊥
Zq(k) = Γqx(k : k + ` − 2q)Π⊥

Zq(k). (3.12)

Using i), iv), and v) yields
rank(Yq(k)Π⊥

Zq(k)) = rank(Γqx(k : k + ` − 2q)Π⊥
Zq(k))

= rank(x(k : k + ` − 2q)Π⊥
Zq(k))

= rank(x(k : k + ` − 2q))
= n. (3.13)

Using iii) we can calculate

rank(∆q(k)) = rank
[
Yq(k)
Zq(k)

]
= rank

[
Yq(k)Π⊥

Zq(k)

Zq(k)

]
= rank(Zq(k)) + rank(Yq(k)Π⊥

Zq(k)) = qσ + n. (3.14)

Since (3.14) hold at time k + q

rank(∆q(k + q)) = qσ + n. (3.15)
Similarly, rank(∆2q(k)) = 2qσ + n, (3.16)

Writing Z2q(k) =
[

Zq(k)
Zq(k + q)

]
and Y2q(k) =

[
Yq(k)

Yq(k + q)

]
we see
352
rank
[

∆q(k)
∆q(k + q)

]
= rank(∆2q(k)) = 2qσ + n, (3.17)

proving (3.3). Since ∆2q(k) ∈ R2q(p+σ)×`−2q+1 it follows
that (3.2). We can now calculate the dimension of the
right hand side of (3.4),

dim(R(∆q(k)T) ∩R(∆q(k + q)T)) = rank(∆q(k))

+ rank(∆q(k + q)) − rank
[

∆q(k)
∆q(k + q)

]
= n. (3.18)

(3.4) follows from v). 2

Now we calculate the intersection of the row spaces
of ∆q(k) and ∆q(k + q) and thus a representation of the
state matrix x(k + q : k + ` − q).

Proposition 2 Assume i) - v) of Theorem 1.
Let M , L11, L22, L11 − L12L

−1
22 L21, and L22 −

L21L
−1
11 L12 be nonsingular, where M ∈ R`−2q+1×`−2q+1,

L11 ∈ Rq(p+σ)×q(p+σ), L12 ∈ Rq(p+σ)×q(p+σ), L21 ∈
Rq(p+σ)×q(p+σ), and L22 ∈ Rq(p+σ)×q(p+σ). Consider
the singular value decomposition

L

[
∆q(k)

∆q(k + q)

]
M =

[
U11 U12

U21 U22

] [
S11 0
0 0

]
V T, (3.19)

where L =
[
L11 L12

L21 L22

]
∈ R2q(p+σ)×2q(p+σ),

S11 ∈ R2qσ+n×2qσ+n, U11 ∈ Rq(p+σ)×2qσ+n,
U12 ∈ Rq(p+σ)×2pq−n, U21 ∈ Rq(p+σ)×2qσ+n, U22 ∈
Rq(p+σ)×2pq−n, and V ∈ R`−2q+1×`−2q+1. Also let
Ur ∈ R2pq−n×n, Sr ∈ Rn×n, and Vr ∈ R2qσ+n×n be
defined through the singular value decomposition(

UT
12L11 + UT

22L21

) ((
L11 − L12L

−1
22 L21

)−1
U11

−L−1
11 L21

(
L22 − L21L

−1
11 L12

)−1
U21

)
S11

=
[
Ur Us

] [
Sr 0
0 0

] [
V T

r

V T
s

]
= UrSrV

T
r . (3.20)

Then there exists nonsingular T ∈ Rn×n such that
Tx(k + q : k + ` − q) = UT

r

(
UT

12L11 + UT
22L21

)
∆q(k)

=
[
SrV

T
r 0

]
V TM−1

= −UT
r

(
UT

12L12 + UT
22L22

)
∆q(k + q). (3.21)

Proof Rewriting the singular value decomposition
(3.19) as[
UT

11 UT
21

UT
12 UT

22

] [
L11 L12

L21 L22

] [
∆q(k)

∆q(k + q)

]
M =

[
S11 0
0 0

]
V T,

(3.22)[
UT

11 (L11∆q(k) + L12∆q(k + q))
UT

12 (L11∆q(k) + L12∆q(k + q))
+UT

21 (L21∆q(k) + L22∆q(k + q))
+UT

22 (L21∆q(k) + L22∆q(k + q))

]
=

[
S11 0
0 0

]
V TM−1,

(3.23)we see that(
UT

12L11 + UT
22L21

)
∆q(k)

= − (
UT

12L12 + UT
22L22

)
∆q(k + q). (3.24)

(3.24) has 2pq − n rows, where 2pq − n ≥ n by Theo-
rem 1. In Theorem 1 we proved that only n of these
rows are linearly independent. We now select n linear
combinations of these rows to find a minimal set of vec-
tors to span the intersection of the row spaces of ∆q(k)
and ∆q(k+q) and thus find a representation of the state
matrix x(k + q : k + ` − q). Rewriting (3.19) we have
0



[
∆q(k)

∆q(k + q)

]
= L−1

[
U11 U12

U21 U22

] [
S11 0
0 0

]
V TM−1

=

[ (
L11 − L12L

−1
22 L21

)−1

−L−1
22 L21

(
L11 − L12L

−1
22 L21

)−1

−L−1
11 L21

(
L22 − L21L

−1
11 L12

)−1(
L22 − L21L

−1
11 L12

)−1

] [
U11S11 0
U21S11 0

]
V TM−1

=




(
L11 − L12L

−1
22 L21

)−1
U11S11

−L−1
11 L21

(
L22 − L21L

−1
11 L12

)−1
U21S11

0

−L−1
22 L21

(
L11 − L12L

−1
22 L21

)−1
U11S11

+
(
L22 − L21L

−1
11 L12

)−1
U21S11

0




× V TM−1. (3.26)Then(
UT

12L11 + UT
22L21

)
∆q(k) =

(
UT

12L11 + UT
22L21

)
×

[ (
L11 − L12L

−1
22 L21

)−1
U11S11

−L−1
11 L21

(
L22 − L21L

−1
11 L12

)−1
U21S11

0

]

×V TM−1

=




(
UT

12L11 + UT
22L21

) ((
L11 − L12L

−1
22 L21

)−1
U11

−L−1
11 L21

(
L22 − L21L

−1
11 L12

)−1
U21

)
S11

0




×V TM−1

=
[
UrSrV

T
r 0

]
V TM−1 = Ur

[
SrV

T
r 0

]
V TM−1. (3.27)

Thus
UT

r

(
UT

12L11 + UT
22L21

)
∆q(k) =

[
SrV

T
r 0

]
V TM−1

= −UT
r

(
UT

12L12 + UT
22L22

)
∆q(k + q) (3.28)

is a basis for the row space of
(
UT

12L11 + UT
22L21

)
∆q(k)

= − (
UT

12L12 + UT
22L22

)
∆q(k + q), and a realization of

the state matrix x(k + q : k + ` − q). 2

4 Noise Effects
Since w(k) and v(k) are present in real systems, our

goal is to apply the above results without ii). Referring
to (3.3) and (3.21), we define the following approxima-
tions

n̂
4
= rank

(
L

[
∆q(k)

∆q(k + q)

]
M

)
− 2qσ, (4.1)

x̂(k + q : k + ` − q)
4
= UT

r

(
UT

12L11 + UT
22L21

)
∆q(k)

= −UT
r

(
UT

12L12 + UT
22L22

)
∆q(k + q), (4.2)

for n and x(k + q : k + `− q), where we have arbitrarily
set T = I in (3.21) to obtain (4.2). T can be used to
select the basis for the realization of the state sequence.

The problem of rank determination is central to es-
timating the order of the unknown system (4.1). The
presence of w(k) and v(k) will generally add rank

to L

[
∆q(k)

∆q(k + q)

]
M . For computational purposes, we

use the following technique to estimate the rank of

L

[
∆q(k)

∆q(k + q)

]
M . Define the singular value decompo-

sition
L

[
∆q(k)

∆q(k + q)

]
M

4
= USV T. (4.3)

Let s(k) be defined as

s(k)
4
=




S(k,k)
S(k+1,k+1) ,

2qσ≤k<min(2q(p + σ), ` − 2q + 1)
and S(k + 1, k + 1) 6= 0

0 else.
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Then numrank
(

L

[
∆q(k)

∆q(k + q)

]
M

)
4
= k?, (4.5)

where k? is given by s(k?) = max s(k). (4.6)

In (4.1) we know that L

[
∆q(k)

∆q(k + q)

]
M has rank ≥ 2qσ,

so we define s(k) only for k ≥ 2qσ.
5 Coefficient Estimation

Now that we have an estimate x̂(k+q : k+ `−q) ∈
Rn×`−2q+1 of the state sequence x(k + q : k + ` − q)
we proceed to estimate A, B1, B2, C, D1, and D2 as
well as the covariance matrices of the noise sequences
Q

4
= E [wwT] and R

4
= E [vvT], and the correlation matrix

E. Consider the cost function

J(Â, B̂1, B̂2, Ĉ, D̂1, D̂2)
4
=

∥∥∥∥
[
x̂(k + q + 1 : k + ` − q)
y(k + q : k + ` − q − 1)

]

−
[
Â B̂1 0 B̂2

Ĉ 0 D̂1 D̂2

] [
x̂(k + q : k + ` − q − 1)
z(k + q : k + ` − q − 1)

]∥∥∥∥
F

= J1(Â, B̂1, B̂2) + J2(Ĉ, D̂1, D̂2)
where J1(Â, B̂1, B̂2)

4
= ‖x̂(k + q + 1 : k + ` − q)

− [
Â B̂1 B̂2

]
R1(k + q : k + ` − q − 1)

∥∥
F

,

J2(Ĉ, D̂1, D̂2)
4
= ‖y(k + q : k + ` − q − 1)

− [
Ĉ D̂1 D̂2

]
R2(k + q : k + ` − q − 1)

∥∥
F

,

and ‖·‖F is the Frobenius matrix norm and

R1(k)
4
=


x̂(k)

f(k)
h(k)


 , R2(k)

4
=


x̂(k)

g(k)
h(k)


 .

Proposition 3 The matrices[
Â B̂1 B̂2

] 4
= x̂(k + q + 1 : k + ` − q)

× R1(k + q : k + ` − q − 1)R, (5.2)[
Ĉ D̂1 D̂2

] 4
= y(k + q : k + ` − q − 1)
× R2(k + q : k + ` − q − 1)R, (5.3)

minimize the cost functions J1 and J2.
Proposition 4 E and the noise covariance matri-

ces can be estimated as
Q̂

4
= Σ11, (5.4)

Ê
4
= Σ21Σ−1

11 , (5.5)

R̂
4
= Σ22 − Σ21Σ−1

11 ΣT
21, (5.6)

where
Σ11

4
= x̂(k + q + 1 : k + ` − q)
× Π⊥

R1(k+q:k+`−q−1)x̂(k + q + 1 : k + ` − q)T, (5.7)

Σ21
4
= y(k + q : k + ` − q − 1)
× (

I − ΠR1(k+q:k+`−q−1) − ΠR2(k+q:k+`−q−1)

+ΠR1(k+q:k+`−q−1)ΠR2(k+q:k+`−q−1)

)
× x̂(k + q + 1 : k + ` − q)T, (5.8)

Σ22
4
= y(k + q : k + ` − q − 1)
× Π⊥

R2(k+q:k+`−q−1)y(k + q : k + ` − q − 1)T. (5.9)

6 The Algorithm
Here we list the steps in the nonlinear subspace

identification algorithm.
1. Collect input-output data. Choose the window

lengths q and `. ` must be less than or equal to
the number of data pairs available.
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Figure 2: Time Traces of the Van der Pol Oscillator with 4
basis functions, vertical line indicates end of ID
data set and beginning of validation data set,
solid line indicates signal from true continuous
time system, dashed line indicates signal from
estimated discrete time system

2. Select the time frame b and basis functions fi, gi,
and hi to model the system.

3. Construct ∆q(k) and ∆q(k + q) as in (2.24).
4. Select weighting matrices L and M .
5. Calculate the primary singular value decomposi-

tion of L

[
∆q(k)

∆q(k + q)

]
M in (3.19) and obtain n̂ in

(4.1) as well as U11, U12, U21, U22, and S11.
6. Calculate the second singular value decomposition

in (3.20) and obtain Ur.
7. Estimate the state matrix in (4.2).
8. Estimate the system matrices Â, B̂1, B̂2, Ĉ, D̂1,

and D̂2 in (5.2) and (5.3). Estimate Ê and the
noise covariance matrices Q̂ and R̂ in (5.4), (5.5),
and (5.6).

7 Examples
Here we apply the nonlinear subspace identification

algorithm to several nonlinear systems. We define the
validation error as

e
4
=

‖y(1 : `) − ŷ(1 : `)‖F

‖y(1 : `)‖F

. (7.1)

7.1 Van der Pol Oscillator
Here we consider the system

ẋ1 = x2 (7.2)
ẋ2 = −ω2x1 + εω

(
1 − µ2x2

1

)
x2 + u (7.3)

with ω = ε = µ = 1. We excite this continuous time sys-
tem with a zero-order-held sequence of ` = 1000 inputs
with time interval τ = 0.05s, and measure ` outputs x1

and x2 with sampling rate 1/τ = 20Hz. We choose all
polynomials up to third order in x1, x2, and u as our
basis functions. We then estimate a discrete time sys-
tem (2.15), (2.16). To validate, we continue the input
sequence and measure outputs of both the true continu-
ous time system and the estimated discrete time system
and compare the results. See Figure 2 and Figure 3.
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Figure 3: x1 vs. x2 Validation Signals for the Van der
Pol Oscillator with 20 basis functions, solid line
indicates signal from true continuous time sys-
tem, dashed line indicates signal from estimated
discrete time system

7.2 Planar Articulated Spacecraft
We model the planar motion of two flexible bodies

linked by a hinge. For simplicity, we model only the first
flexure mode of each link. The equations of motion are

θ̈1 =
sin θ

(
θ̇2
1 cos θ − λ2θ̇

2
2

)
−λ1λ2 + cos2 θ

+
√

2δ1ζ̈1 + T, (7.4)

θ̈2 = −
sin θ

(
θ̇2
2 cos θ − λ1θ̇

2
1

)
−λ1λ2 + cos2 θ

+
√

2δ2ζ̈2 − T, (7.5)

0 = ζ̈1 + 2c1ω1ζ̇1 + ω2
1ζ1 +

√
2δ1θ̈1, (7.6)

0 = ζ̈2 + 2c2ω2ζ̇2 + ω2
2ζ2 +

√
2δ2θ̈2, (7.7)

where λ1 = J1/η, λ2 = J2/η, η = d1d2m, J1 = I1+md2
1,

J2 = I2 +md2
2, m = m1m2

m1+m2
is the reduced mass, d1 and

d2 are the distances from the hinge point to the center
of mass of each body, m1 and m2 are the masses of the
two bodies, θ = θ1 − θ2 is the angle between the two
bodies, θ1 and θ2 are the angular positions of the two
bodies with respect to an inertial frame, ζ1 and ζ2 are
the fundamental flexible modes of each body, ω1 and ω2

are the modal frequencies, δ1 and δ2 are the coupling
coefficients, and T is the control torque applied between
the two bodies. Since λ1λ2 > 1 these equations do not
have a singularity. We measure ` = 2000 data points
with sampling rate 1/τ = 20Hz. We take measurements
of θ1, θ2, θ̇1, and θ̇2, and set

z(k)=h(k)=




u(k − 1)
θ̇2
1(k−1) sin(θ1(k−1)−θ2(k−1))

θ̇2
2(k−1) sin(θ1(k−1)−θ2(k−1))

θ̇2
1(k−1) sin 2(θ1(k−1)−θ2(k−1))

θ̇2
2(k−1) sin 2(θ1(k−1)−θ2(k−1))


 , (7.8)

a function of delayed data, with the nonlinearities peri-
odic in θ. We obtain a fourth order discrete time model
and plot the identification and validation data in Fig-
ure 4.
2
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Figure 4: Time Trace of Measured Variables and Esti-
mates, vertical line indicates end of ID data set
and beginning of validation data set, solid line
indicates signal from true continuous time sys-
tem, dashed line indicates signal from estimated
discrete time system

8 Conclusion
We presented a subspace-based identification

method for identifying nonlinear time-varying systems
that are nonlinear in measured data and linear in un-
measured states. We applied the algorithm to two nu-
merical examples. Future work will focus on experi-
mental applications, extending the class of identifiable
systems, and methods for basis function selection.
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