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1 Introduction 

Mass action kinetics are used throughout the chemi- 
cal and chemical engineering literature to describe the 
dynamics of systems of chemical reaction laws. They 
are also a special form of compartmental systems that 
involve mass balance relations [l]. Aside from their ob- 
vious importance in chemical engineering applications, 
mass action kinetics have numerous analytical proper- 
ties that are of inherent interest from a dynamical sys- 
tems perspective. 

In Section 2 we provide a general construction of the 
kinetic equation from reaction laws based upon the for- 
mulation given in [2]. In Section 3 we consider the 
nonnegativity of the solutions to the kinetic equation. 
Next, in Section 4, we consider the reducibility of the 
mass action kinetics. In Section 5 we consider the sta- 
bility of the equilibria of the kinetic equation. To do 
this, we apply Lyapunov methods to the kinetic equa- 
tion and obtain results that guarantee semistability, 
that is, convergence to an equilibrium that depends 
upon initial concentrations. This notion is developed 
in [4], which extends the linear semistability theory of 
[5] to nonlinear systems. In Section 6 we revisit the re- 
markable "zero deficiency" result of [3], which provides 
rate-independent conditions guaranteeing stability. 

A vector x E RP = RPxl is a p x  1 column vector, while 
the set ofpxq real matrices is denoted by R P x Q .  For x E 
RP we write x 22 0 to indicate that every component 
of x is nonnegative and x >> 0 to indicate that every 
component of x is positive. In this case we say that x 
is nonnegative or positive, respectively. Likewise, A E 
R P x q  is nonnegative or positive if every entry of A is 
nonnegative or positive, respectively, which is written 
as A > I  0 or A >> 0, respectively. Let p+ and R; 
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denote the nonnegative and positive or thzts  of R", 
respectively, that is, if 2 E R", then x E R+ and x E 
72; are equivalent, respectively, to x 22 0 and x >> 0. 

For vectors x ,y  E RP or matrices A, B E R P x q  we use 
x o y and A o B to denote component-by-component 
and entry-by-entry multiplication, respectively. The 
p x p identity matrix is written as I p .  The transposes 
of x E RP and A E RPxq are denoted by xT and AT, 
respectively. For a matrix A E RPxq let rowi(A) and 
colj(A) denote the t h  row and jth column of A,  respec- 
tively. For x E RQ and nonnegative A = [A,j] E RPXq, 
xA denotes the element of RP whose ith component 
for i = 1,. . . , p  is the product xt i l  . ' . We define 
00 = 1. 

2 Kinetic Equation 
Consider s species 5 1 , .  . . , x s ,  where s 2 1, whose in- 
teractions are governed by r reactions, where T > 1, 
comprising the reaction network 

S S 

C A . . " .  '3 3 3 C B i j x j ,  
j=1 j=l 

i = 1 ,..., T ,  (2.1) 

where, for i = 1,. . . , T ,  ki > 0 is the reaction rate of the 
ith reaction, E;=, Aijxj is the reactant of the ith reac- 
tion, and E;,, Bijxj is the product of the ith reaction. 
Note that each reaction in the reaction network (2.1) is 
represented as being irreversible. However, reversible 
reactions can be modeled by including the reverse re- 
action as a separate reaction. Each stoichiometric co- 
eficient Ai, and Bij is assumed to be a nonnegative 
number which is usually, but not necessarily, an integer. 
The reaction network (2.1) can be written compactly in 
matrix-vector form as 

Ax 5 Bx, (2.2) 

where x E Rs and IC E RT denote the column vectors 
[XI - * . x ~ ] ~  and [kl - . .k ,IT,  respectively, and A and B 
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* denote the r x s nonnegative matrices A = [Ai,] and 
B = [B,.]. 

Next, with a slight abuse of notation, we let xj = x j ( t ) ,  
j = 1, .  . . , s, denote the concentration of the species xj 
at time t .  Then the dynamics of the reaction network 
(2.2) are assumed to be given by mass action kinetics, 
whose dynamics are modeled by the kinetic equation 

(2.3) i ( t )  = ( B  - A)T[k  o xA( t ) ] ,  t 2 0. 
A Defining K = diag(k1,. . . , k T ) ,  (2.3) can be written as 

5(t)  = ( B  - A ) T K ~ A ( t ) ,  t 3 0. (2.4) 
In mass action kinetics the reaction order E;=, A,, of 
the ith reaction is the sum of the stoichiometric coeffi- 
cients of the species appearing in the reactant of the ith 
reaction. It can be seen that the kinetic equation (2.3) 
is linear if and only if each row of A contains exactly 
one 1 with the remaining entries equal to zero, that is, 
if and only if each reaction is unimolecular. In this case 
(2.3) becomes 

i ( t )  = M x ( t ) ,  t 2 0 ,  (2.5) 

(2.6) 

where M E Rsxs is defined by 

M 5 ( B  - A)TKA. 
The reaction network (2.2) is not limited to  closed sys- 
tems for which conservation of mass holds. In fact, 
(2.2) can also be used to  represent open systems in 
which mass removal and mass addition are allowed. 
For example, the reactions X I  9 0 and 0 9 x1 are 
both allowed, where the reactants are 2 1  and 0, re- 
spectively, and the products are 0 and 2 1  , respectively. 
The kinetic equations for these reactions, which rep- 
resent the removal and addition of mass, respectively, 
are &(t) = - k l x l ( t )  and i l ( t )  = kl with solutions 
x l ( t )  = x ~ ( O ) e - ~ l ~  and x l ( t )  = k l t  + x l ( 0 ) ,  respec- 
tively. The reactions x1 9 2x1 and 2x1 9 3x1, which 
also represent the addition of mass, have the kinetics 
51(t) = k l x l ( t )  and &(t) = klx:(t)  with solutions 
x l ( t )  = xl(0)ekl' and xl(t)  = x1(0) / (1  - klzl(O)t) ,  
respectively. 

Example 1. Consider the reaction network 

so that s = 2, T = 2, and A and B are given by 

A = [  y ] ,  B = [ !  i ] .  (2.9) 

The kinetic equations are thus given by 

X i  = -klxl + k 2 ~ 2 ,  
i 2  = k lx l  - k 2 ~ 2 ,  

or in linear system form by (2.5) where 

Example 2. Consider the reaction network 

2 1  + 2 2  9 2x1, 

2x1 5 2 1  + 2 2 ,  

so that s = 2, T = 2, 

A = [ :  i ] ,  B = [ :  : ] .  
The kinetic equations are thus given by 

X i  = k l ~ l ~ 2  - k 2 ~ : ,  
i 2  = - k l x l ~ z + k 2 ~ : .  

(2.10) 
(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
(2.17) 

Example 3. The Lotka-Volterra reaction is given by 

2 1  9 2x1, (2.18) 

5 1  +x2 1 2x2, (2.19) 

2 2  9 0, (2.20) 

where X I  and x2 denote prey and predator concentra- 
tions, respectively, so that s = 2 and T = 3. Further- 
more, A and B are given by 

2 0  
A = [ :  !], B = [ :  i ] .  (2.21) 

Consequently, the kinetic equations have the form 

i 1  = k lx l  - k 2 ~ 1 ~ 2 ,  (2.22) 
X 2  = - k 3 ~ 2 + k 2 ~ 1 ~ 2 .  (2.23) 

Example 4. A widely studied reaction network in- 
volves the interaction of a substrate S and an enzyme 
E to produce a product P via an intermediate species 
C. The reactions are given by 

S + E ~ C ~ P + E  (2.24) 

so that s = 4 and T = 3. Letting x1 = S, x2 = C, 2 3  = 
E, and 2 4  = P, the corresponding reaction network can 
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be written as Theorem 3.2. r+ is an invariant set for (2.3). 
. 

21 + 2 3  1 2 2 ,  (2.25) 

2 2  1 x1+23, (2.26) 

2 2  4 x3 +x4. (2.27) 

It thus follows that A and B are given by 

1 0 1 0  0 1 0 0  

(2.28) 

31 = k2~2-k1~123,  (2.29) 
k2 = -(k2 -k k3)X2 -k kiX123, (2.30) 
x3 = (k2 + k3)x2 - klXlz3, (2.31) 
X4 = k3~2.  (2.32) 

Consequently, the kinetic equations have the form 

3 Nonnegativity 

Definition 3.1. Let f = (11,. . . , f,) : V z  R" where 
V is an open subset of R" that contains 72,. Then f is 
essentially nonnegative if, for all i = 1,. . . ,n, f,(z) 2 0 
for all x = (XI,. . . , x,) E R, such that zi = 0. 1? 

It is easy to see that if f is the linear function f(x) = 
Mx, where M E RnX", then f is essentially nonnega- 
tive if and only if all of the off-diagonal entries of M are 
nonnegative. In this case we say that M is essentially 
nonnegative. 

For the following definitions and results we consider the 
system 

where f : 2> -+ R" is locally Lipschitz and V is an 
open subset of R". A subset U E V is an invariant 
set for (3.1) if z(0) E U implies that z(t)  E U for all 

the maximal interval of existence for the solution x(-) 
of (3.1). 

Theorem 3.1. Suppose that ?+ c V. Then 7z"+ is 
an invariant set for (3.1) if and only if f is essentially 
nonnegative. 
Proposition 3.1. Define f : RS + Rs by f(z) = 
( B  - A)T(k o sA). Then f is essentially nonnegative. 

4 t )  = f ( z ( t ) ) ,  4 0 )  = 20, (3.1) 

E [01TZ(,))7 where < T Z ( o )  5 O0 and [ o , T Z ( o ) )  is 

Consider the case in which (2.3) is linear so that the 
kinetic equation is given by (2.5), where M = BTKA- 
ATKA. Since BTKA and ATKA are nonnegative and 
since ATKA is diagonal, it can be seen directly that M 
is essentially nonnegative. 

4 Reducibility 

In this section we provide a technique for reducing the 
number of kinetic equations needed to model the dy- 
namics of the reaction network (2.2). This technique 
is based upon the fact that, while x ( t )  is confined to 
the nonnegative orthant for nonnegative initial condi- 
tions, the structure of the kinetic equation (2.3) im- 
poses an additional constraint on the allowable tra- 
jectories. To state this result we define the stoichio- 
metric subspace S by S = Im((B - which is 
a subspace of R". The dimension of this subspace is 
given by q = rank((B - A)T) = rank(B - A), which is 
the rank of the reaction network. The following re- 
sult shows that the solution of the kinetic equation 
(2.3) is confined to an affine subspace which is par- 
allel to the stoichiometric subspace. For convenience 
we let P E Rsxs  denote the unique orthogonal projec- 
tor whose range is S, and define Pl = I, - P. In 
terms of the generalized inverse (e)", P is given by 
P = (B - A)T[(B - A)T]+ = (B - A)+(B - A). 

Proposition 4.1. Suppose that x ( 0 )  is nonnegative. 
Then the solution z(.) of (2.3) satisfies 

A 

A 

A 

z(t> E ( ~ ( 0 )  + S) nR: (4.1) 

for all t E [O,T,(,)). 

Corollary 4.1. Suppose that s(0) is nonnegative. 
Then (z(0) + S )  n z> is an invariant set for (2.3). 

Proposition 4.1 shows that the solution z(.) of the 
kinetic equation (2.3) is confined to the stoichiomet- 
ric compatibility class ( x ( 0 )  + S )  n E:, which is a q- 
dimensional manifold. (The set (z(0) + S )  n 72: is a 
positive stoichiometric compatibility class.) This fact 
suggests that the dynamics of the system can be rep- 
resented by a reduced set of q variables. The following 
result assumes that the species 21,. . . , z, have been 
renumbered so that the first q columns of B - A are 
linearly independent. 

Proposition 4.2. Assume that q < s. Furthermore, 
partition A = [A1 B2], where 
Al,B1 E Rrxql and assume that rank(B1 - AI) = q. 
In addition, let F E Rqx(8-Q) satisfy A2 - B2 = 
(A1 - B1)F. Finally, partition 2 = [3: ?TIT, where 

31 = [XI . 

Az] and B = [B1 

A A zqIT and P2 = [xq+l . . - x,IT. Then 

2 2  ( t )  = FTfl ( t )  + 7, t 2 0, (4.2) 
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where 7 2 &(0) - FTit1(0) E RS-Q, and ?I(-)  satisfies 

&(t) = (231 - A 1 ) T [ k o ~ ~ l ( t ) o ( F T ~ l ( t ) + y ) A z ] ,  t 2 0. 
(4.3) 

Example 1 continued. Since s = 2 and T = 2 it 
can be seen that q = 1 < s SO that Proposition 4.2 
can be applied with F = -1. It thus follows that 2 2  = 
-zl+y for all t 2 0, where y = 2 1 ( 0 ) + 2 2 ( 0 ) .  Applying 
Proposition 4.2, we obtain the scalar kinetic equation 

51 = -(k1 + k 2 ) 2 1  + k 2 y .  (4.4) 

Example 2 continued. Since s = 2 and T = 2 it 
can be seen that q = 1 < s so that Proposition 4.2 
can be applied with F = -1. It thus follows that 2 2  = 
- 2 1  +y for all t 2 0, where y = 2 1  ( 0 ) + 2 2 ( 0 ) .  Applying 
Proposition 4.2, we obtain the scalar kinetic equation 

5 1  = -(k1 + k 2 ) 4  + klyzl. (4.5) 

Example 3 continued. Since s = 2 and T = 3, it 
can be seen that q = 2 = s and thus reduction is not 
possible. 

Example 4 continued. Since s = 4 and T = 3 it can 
be seen that q = 2 < s so that Proposition 4.2 can 
be applied with F = [ -; 1: 1. It thus follows that 
2 3  = - 2 2  + y1 and 24 = -21 - 2 2  + 7 2  for all t 2 0, 
where71 = 2 2 ( 0 ) + 5 3 ( 0 )  and 7 2  = q ( O ) + z 2 ( O ) + l ~ 4 ( 0 ) .  
Applying Proposition 4.2, we obtain 

2 1  = -klylxl + k 2 x 2  + k 1 2 1 x 2 ,  (4.6) 
X2 = klylxl - (k2  + k 3 ) ~  - k 1 ~ 1 ~ 2 .  (4.7) 

5 Stabili ty Analysis 

Consider the system 

k ( t )  = f ( + ) ) ,  4 0 )  = 2 0 ,  (5.1) 

where f : 2, + Rn is locally Lipschitz and 2) C_ R" 
is open. We assume that, for all xo E V, (5.1) has 
a unique solution on [O,a) for all a > 0. If z e  E V 
satisfies !(.e) = 0, then 2, is an equilibrium of (5.1). 

Definition 5.1. Let U C D be invariant with respect 
to (5.1) and let ze E U be an equilibrium of (5.1). Then 
xe is Lyapunov stable with respect to U if, for every 
relatively open subset U, of U containing x, there ex- 
ists a relatively open subset 2.46 of U containing x e  such 
that, if z(0) E 245, then the solution x(.) of (5.1) satis- 
fies z(t) E U, for all t E [O,oo). Furthermore, (5.1) is 

semistable with respect to U if U is closed, limt-tm z ( t )  
exists for all z(0) E U, and every equilibrium in U is 
Lyapunov stable with respect to U. In addition, xe 
is asymptotically stable with respect to U if x, is Lya- 
punov stable with respect to U and there exists a rel- 
atively open subset U6 of U containing 2, such that, 
if z(0) E Us,  then limt+mz(t) = 2,. Finally, is 
globally asymptotically stable with respect to U if the 
previous statement holds with Us = U .  

Definition 5.2. A vector xe E E; satisfying ( E  - 
A)T(k o x:) = 0 is an equilibrium of (2.3). If, in addi- 
tion, xe E ??$ then xe is a positive equalabrium of (2.3). 

Let E denote the set of equilibria of (2.3), and let.E+ C_ 
E denote the set of positive equilibria. 

Example 1 continued. For this example E = 
{ ( 2 1 , 2 2 )  E E: : 2 2  = ( k l / k 2 ) 2 1 ) .  

Example 2 continued. For this example E = 
{ ( 2 1 , 2 2 )  E : x1 = 0 or 2 2  = ( k 2 / k 1 ) 2 1 ) .  For 
the reduced system (4.5) E = (0 ,  kly/(kl + k 2 ) ) .  

Example 3 continued. For this example E = 
{(o,o), ( k 3 / k 2 , k l / k 2 ) } .  

Example 4 continued. For this example E = 
{ ( 2 1 , ~ 2 , 2 3 , ~ 4 )  E 72, : 2 2  = 0 and 21x3 = 0). For 
the reduced system (4.6), (4.7), if zz(0) + z3(0) > 0 
then E = {(O,O)}, whereas if x 2 ( 0 )  + 2 3 ( 0 )  = 0 then 

4 

E = {( . l ,O) : 2 1  2 0). 

The following result given in [4] provides a sufficient 
condition for semistability. 

Theorem 5.1. Assume that U E 2, is closed and in- 
variant with respect to (5.1) and suppose that every 
trajectory with z(0) E U of (5.1) is bounded. Fur- 
thermore, let V : V + R be a C1 function such that 
V ( s )  2 0 and V ( x )  5 0 for all x E U. Finally, let M de- 
note the largest invariant subset of {. E U : V ( z )  = 0) .  
If every element of M is a Lyapunov stable equilibrium 
with respect to U ,  then every equilibrium xe E U of 
(5.1) is semistable with respect to U .  
The following result uses the Lyapunov function 
V(z) = pTz to analyze the stability of the zero so- 
lution of (2.3). Note that 0 is an equilibrium of (2.3) if 
and only if A has no zero rows, that is, if and only if 0 
is not a reactant of the reaction network (2.2). 

Proposit ion 5.1. Assume 0 is an equilibrium of (2.3) 
and suppose there exists p >> 0 such that B p  5s Ap.  
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Then 0 is Lyapunov stable with respect to z:. If, in 
addition, Bp << A p ,  then 0 is globally asymptotically 
stable with respect to zi. 
Example 1 continued. Let p = [ l / k l  1/k2IT so that 
( A  - B ) p  = 0. It thus follows from Proposition 5.1 
that 0 is Lyapunov stable. Since the kinetic equation 
is linear it follows that M is both Lyapunov stable and 
semist able. 

Example 2 continued. First note that because of the 
structure of the set of equilibria, none of the equilibria 
are asymptotically stable. Next we consider an equilib- 
rium ze of the form (0,  e ) ,  where E > 0. By linearizing 
the system about this equilibrium, it can be seen that 
this equilibrium is not Lyapunov stable. Hence it re- 
mains to determine the stability of an equilibrium of the 
form (6, k26/lcl), where 6 2 0. To do this, let U be the 
closed set U = { ( z l , ~ )  E ”+ : 2 2  - uz1 5 0}, where 
a > k2/k1. Note that U is invariant since d/dt(x2 -ax1) 
is nonpositive on the set { ( 2 1 , 2 2 )  : 2 2  = a x l } .  Note 
that all of the equilibria contained in U are of the 
form (6 ,  k26/kl) .  Next, define the Lyapunov candidate 
V : U + R b y  

A 

Then, for all 6 2 0, we have V(d,k226/kl) = 0 and 
V ( z )  > 0 for all z E U\{(6,k26/kl)}. Since V ( z )  = 
- (k1+ k2)q(k122 - k2.1)~  5 0 for all z E U it follows 
that the equilibrium (6, k2SIIE1) is Lyapunov stable with 
respect to U for all 6 2 0. Finally, to  show semistabil- 
ity, define U ( % )  = 21 + z2? which satisfies U(0)  = 0, 
U ( z )  > 0, 2 E U\{O}, and U ( z )  = 0, 2 E U .  Hence ev- 
ery trajectory in U is bounded. Then V - l ( O )  = f - l ( O ) ,  
which shows that V-l(O) is an invariant set. Thus the 
largest invariant set M contained in V - l ( O )  is the set 
of equilibria ((6, k26/kl)  : 6 2 0 )  all of which are Lya- 
punov stable. Hence, by Theorem 5.1, the kinetic equa- 
tion is semistable with respect to  U. 
Example 3 continued. By linearizing the kinetic 
equation about the origin, it can be seen that the origin 
is not a Lyapunov stable equilibrium. To analyze the 
stability of the equilibrium z e  = (k3/k2, kIJkZ), con- 
sider the function U : R: + R defined by U ( z )  = 
~~(21+z2)-k31nzl-kl ln22,  whichsatisfies U(%) = 0 
for all z E R:. It can be seen from the form of the gra- 
dient and the Hessian of U that z = z e  is an isolated 
local minimizer of U .  Since ze is the only stationary 
point in 7Z: it follows that z = 2. is also the global 
minimizer of U .  Hence V(z) = U ( z )  - U ( z e )  satisfies 
V ( z e )  = 0 and V ( z )  > 0 for all E R:\{Ze}. Hence 

the equilibrium ze = (k3/k2, k l /k2)  is Lyapunov sta- 
ble with respect to 72:. Since the solutions consist of 
closed orbits, this equilibrium is not semistable. 

Example 4 continued. For this example let p = 
[l 2 1 1IT >> 0 so that ( A  - B ) p  = 0. It thus follows 
from Proposition 5.1 that 0 is Lyapunov stable with 
respect to R,. For the reduced kinetic equations (4.6), 
(4.7), assuming that ~ ( 0 )  + ~ ( 0 )  > 0 it follows that 
2 1  = 2 2  = 0 is the only equilibrium. Now consider 
the radially unbounded Lyapunov function V ( z l , x 2 )  = 
$ k 3 2 ~ + $ k 1 y 1 ( 2 1 + ~ 2 ) ~ .  SinceV 5 Ofora l lq ,x2  2 0, 
global asymptotic stability follows from the invariant 
set theorem. 

4 

6 The Zero Deficiency Theorem 

In this section we analyze the stability of positive equi- 
libria of the kinetic equation (2.3) using the zero defi- 
ciency theorem [3]. A comp2ex is either a reactant or a 
product. Let m 2 1 denote the number of distinct com- 
plexes of the reaction network (including the reactant 
or product 0 if present), and denote the complexes by 
c1, . . . , cm. We can identify each complex with a row of 
A or B so that ci E R1xs .  Thus m is the number of 
distinct rows of 

Definition 6.1. Let ci and cj  be complexes of the re- 
action network (2 .2 ) .  Then ci and cj are directly linked 
if either ci + cj or cj -+ ci. hrthermore, ci and cj 
are indirectly linked if there exist complexes til,. . . , ci, 
such that ci is directly linked to til, cil is directly linked 
to  ci2, . . ., ciP is directly linked to cj.  Finally, ci and cj 

are linked if either ci = c j ,  ci and cj are directly linked, 
or ci and cj are indirectly linked. 

The statement that complexes ci and cj are linked is 
an equivalence relation on the set of complexes. This 
relation induces a partitioning of the set of complexes 
into disjoint Linkage classes. Let L denote the number 
of linkage classes and denote these linkage classes by 
Cl,. . . ,Cl. Since the reactant and product in each re- 
action belong to the same linkage class, it follows that 
L 5 r. 
As noted in Section 4, the rank of the reaction net- 
work q = rank(B - A )  satisfies q < min{r,s}. The 
following result provides a bound for q that is some- 
times better. Some additional notation will be needed. 
For i = 1, .  . . , L ,  let mi denote the number of complexes 
in Cj so that ‘&mi = m. Furthermore, for conve- 
nience we order the complexes c l , .  . . , cm so that C1 = 
{ c l , .  . . , ~ m ~ } ,  C2 = { ~ m ~ + l , .  . .,ha}, etc. Next, we re- 
order the reactions so that the first q rows of [ A  B] 

[ I. 

221 0 



include the complexes in C1, rows r1 + 1, . . . , r1 + r2 of 
[A B] include the complexes in CS, etc. For i = 1,. . . , e ,  
we define the rank qi of the linkage class Ci to be the 
number of linearly independent rows in the submatrix 
of B - A comprised of the rows of [ A  B] corresponding 
to the complexes in C i .  Note that q 5 qi. Finally, 
for i = 1,. . . ,C,  it can be seen that mi 5 ri + 1, and 
thus m 5 r + 1. 

Lemma 6.1. Let i E (1,. . . ,C]. Then qi 5 mi - 1. 
Furthermore, qi = mi - 1 if and only if the complexes 
in Ci are the vertices of an (mi - 1)-dimensional simplex 
in Rat. 
If qi = mi - 1 then the linkage class Ci has full rank. We 
recall that an affine set is the translate of a subspace. 
Furthermore, the affine hull of a set S is the smallest 
affine set that contains S. It can be seen that Ci has 
full rank if and only if the subspace parallel to the affine 
hull of Ci has dimension mi - 1 

Proposition 6.1. q 5 m - C. 

Definition 6.2. The deficiency 15 of the reaction net- 
work (2.2) is 

6 = m - t -  q.  (6.1) 
A 

It thus follows from Proposition 6.1 that the deficiency 
of a reaction network is a nonnegative integer. If the 
deficiency of a reaction network is zero, then the reac- 
tion network has zero deficiency. 

Example 1 continued. For this reaction network, 
m = 2, C = 1, q = 1, and thus 6 = 0. 

Example 2 continued. For this reaction network, 
m = 2, e = 1, q = 1, and thus 6 = 0. 

Example 3 continued. For this reaction network, 
m = 6,  t! = 3, q = 2, and thus 6 = 1. 

Example 4 continued. For this reaction network, 
m = 3, e = 1, q = 2, and thus 6 = 0. 

Now define the matrix C E Rmx” whose rows are 
q,.  . . , cm. Furthermore, let A, B f RfXm be the ma- 
trices whose rows are unit coordinate vectors in R” 
and which satisfy 

A = AC, B = BC. (6.2) 

Theorem 6.1. Assume that the reaction network (2.3) 
has zero deficiency. Then every positive equilibrium of 
(2.3) is Lyapunov stable for all rate constants k l ,  . . . , k,. 

Definition 6.3. Let ci and cj  be complexes. Then 
there exists a direct path from ci to  cj if ci + cj. Fur- 
thermore, there exists an indirect path from ci to cj if 
there exist complexes til,. . . , ci, such that ci + til, 
cil + ci2, . . ., cip-l t ci,. Finally, there exists a path 
from ci to cj if there exists either a direct path or an in- 
direct path from ci to c j .  The reaction network (2.2) is 
weakly reversible if, for all pairs of complexes c i ,c j ,  the 
existence of a path from ci to  cj implies the existence 
of a path from cj to ci. 

Proposit ion 6.2. Assume that the reaction network 
(2.3) has zero deficiency. Then (2.3) has at least one 
positive equilibrium if and only if it is weakly reversible. 

Proposit ion 6.3. Assume that the reaction network 
(2.3) has zero deficiency and is weakly reversible. Then 
every positive stoichiometric compatibility class con- 
tains exactly one equilibrium. Furthermore, 

E+ = {x E R; : logx - logz, E Sl}. (6.3) 

Theorem 6.2. Assume that the reaction network (2.3) 
has zero deficiency and has at least one positive equi- 
librium. Then every positive equilibrium of (2.3) is 
semistable. 
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