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Abstract— We extend retrospective cost adaptive control
(RCAC) to command following for uncertain Hammerstein
systems. We assume that only one Markov parameter of
the linear plant is known and that the input nonlinearity
is monotonic but otherwise unknown. Auxiliary nonlinearities
are used within RCAC to account for the effect of the input
nonlinearity.

I. INTRODUCTION

In many practical applications, an input nonlinearity pre-

cedes the linear plant dynamics; systems with this structure

are called Hammerstein systems [1–3]. The input nonlinearity

may represent properties of an actuator, such as saturation to

reflect magnitude restrictions on the control input, deadzone

to represent actuator stiction, and a signum nonlinearity to

represent on-off behavior.

Adaptive control of Hammerstein systems with uncer-

tain input nonlinearities and linear dynamics is considered

in [4–6]. Unlike [4–6], however, we make no attempt to

identify and invert the input nonlinearity. Instead, we ap-

ply retrospective-cost adaptive control (RCAC), which can

be used for plants that are possibly MIMO, nonminimum

phase (NMP), and unstable [7–13]. This approach relies

on knowledge of Markov parameters and, for NMP open-

loop-unstable plants, estimates of the NMP zeros. This

information can be obtained from either analytical modeling

or system identification [14].

In the present paper we consider a command-following

problem for SISO Hammerstein plants where limited model-

ing information is available concerning the input nonlinearity

and the linear dynamics. For the linear dynamics, we assume

that one nonzero Markov parameter is known. In addition,

we consider plants that are open-loop asymptotically stable

and thus, as shown in [12, 13], knowledge of the NMP zeros

is not needed. We also assume that the input nonlinearity is

monotonic but not necessarily continuous.

The novel contribution of the present paper is the augmen-

tation of RCAC with two auxiliary nonlinearities that account

for the presence of the uncertain input nonlinearity N . The

auxiliary nonlinearity N1 is a saturation nonlinearity, which

is chosen to tune the transient response of the closed-loop

system and which may depend on estimates of the range of

the input nonlinearity N and the gain of the linear dynamics.

In contrast, the auxiliary nonlinearity N2 is chosen so that
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the composite nonlinear function N ◦ N2 is nondecreasing.

Therefore, if N is nondecreasing, then N2 is not needed. If,

however, N is nonincreasing, then N2 can be chosen such

that N ◦N2 is nondecreasing. Note that N need not be one-

to-one or onto. This approach extends the technique used

in [15] for Hammerstein systems with amplitude and rate

saturation.

In [4–6], the input nonlinearities are assumed to be

piecewise linear. The present paper does not impose this

restriction. Numerical examples involving cubic, deadzone,

saturation, and on-off input nonlinearities are presented.

II. HAMMERSTEIN COMMAND-FOLLOWING

PROBLEM

Consider the SISO discrete-time Hammerstein system

x(k + 1) = Ax(k) +BN (u(k)) +D1w(k), (1)

y(k) = Cx(k), (2)

where x(k) ∈ R
n, u(k), y(k) ∈ R, w(k) ∈ R

d, N : R →
R, and k ≥ 0. We consider the Hammerstein command-

following problem with the performance variable

z(k) = y(k)− r(k), (3)

where z(k), r(k) ∈ R. The goal is to develop an adaptive

output feedback controller that minimizes the command-

following error z with minimal modeling information about

the dynamics, disturbance w, and input nonlinearity N .

We assume that measurements of z(k) are available for

feedback; however, measurements of v(k) = N (u(k)) are

not available. A block diagram for (1)-(3) is shown in Figure

1.

Fig. 1. Adaptive command-following problem for a Hammerstein plant.
We assume that measurements of z(k) are available for feedback; however,
measurements of v(k) = N (u(k)) and w(k) are not available. The
feedforward path is optional.

III. ADAPTIVE CONTROL FOR THE

HAMMERSTEIN COMMAND-FOLLOWING

PROBLEM

For the Hammerstein command-following problem, we

assume that G is uncertain except for an estimate of a single
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nonzero Markov parameter. The input nonlinearity N is also

uncertain.

To account for the presence of the input nonlinearity

N , the RCAC controller in Figure 2 uses two auxiliary

nonlinearities. The auxiliary nonlinearity N1 modifies uc to

obtain the regressor input ur, while the auxiliary nonlinearity

N2 modifies ur to produce the Hammerstein plant input u.

The auxiliary nonlinearities N1 and N2 are chosen based on

limited knowledge of the input nonlinearity N , as described

below.

Fig. 2. Hammerstein command-following problem with the RCAC adaptive
controller and auxiliary nonlinearities N1 and N2.

A. Auxiliary Nonlinearity N1

Define the saturation function satp,q by

N1(uc) = satp,q(uc) =











p, if uc < p,

uc, if p ≤ uc ≤ q,

q, if uc > q,

(4)

where p ∈ R and q ∈ R are the lower and upper saturation

levels, respectively. For minimum-phase plants, the auxiliary

nonlinearity N1 is not needed, and thus the saturation levels

p and q are chosen to be large negative and positive numbers,

respectively. For NMP plants, the saturation levels are used to

tune the transient behavior. In addition, the saturation levels

are chosen to provide the magnitude of the control input in

order to follow the command r. These values depend on the

range of the input nonlinearity N as well as the gain of the

linear system G at frequencies in the spectra of r and w.

B. Auxiliary Nonlinearity N2

If N is nondecreasing, then N2 is not needed. We thus

consider the case in which N is monotonically nonincreasing

on the finite interval I = [p, q]. Since the range of N1

is [p, q], we need to consider only ur ∈ [p, q]. If N is

nonincreasing on I , then we define N2(ur)
△
= p+q−ur ∈ I

for all ur ∈ I . Thus, N2 is a piecewise-linear function that

replaces N by its mirror image, which is nondecreasing in

I . Let RI(f) denote the range of f with arguments in I .

Proposition 3.1: Assume that N2 is constructed by the

above rule. Then the following statements hold:

i) N ◦ N2 is nondecreasing.

ii) RI(N ◦ N2) = RI(N ).

Proof. If N is nondecreasing on I , then N2 is the

identity function and thus i) holds. Now, assume that N is

nonincreasing on I , and let ur,1, ur,2 ∈ I , where ur,1 ≤ ur,2.

Then,

u2
△
= p+ q − ur,2 ≤ u1

△
= p+ q − ur,1.

Therefore, since N is nonincreasing on I and u2 ≤ u1, it fol-

lows that N (N2(ur,1)) = N (u1) ≤ N (u2) = N (N2(ur,2)).
Thus, i) holds.

To prove ii), assume that N is nondecreasing on I . Since

N2(ur) = ur for all ur ∈ I , it follows that N2(I) = I ,

that is, N2 : I → I is onto. Alternatively, assume that N
is nonincreasing on I so that N2(ur) = p + q − ur. Note

that N2(pi) = qi, N2(q) = p, and N2 is continuous and

decreasing on I . Therefore, N2(Ii) = Ii, and thus N2 : I →
I is onto. Hence, RI(N ◦ N2) = RI(N ). 2

As an example, consider the nonincreasing input non-

linearity N (u) = −sat0.5,0.5(u − 0.5). Let N1(uc) =
satp,q(uc), where p = −2, q = 2, and N2(ur) = −ur + 1
for all ur ∈ [−2, 2] according to Proposition 3.1. Figure

3(c) shows that the composite nonlinearity N ◦ N2 is non-

decreasing on [−2, 2]. Note that RI(N ◦ N2) = RI(N ) =
[−0.5, 0.5].

−2 −1 0 1 2

−0.5

0

0.5

(a) u

N
(u

)

−2 −1 0 1 2
−4

−2

0

2

4

(b) ur

N
2
(u

r
)

−2 −1 0 1 2

−0.5

0

0.5

(c) ur

N
◦
N

2

Fig. 3. (a) Input nonlinearity N (u) = −sat0.5,0.5(u − 0.5). (b)
Auxiliary nonlinearity N2(ur) = −ur+1 for ur ∈ [−2, 2]. (c) Composite
nonlinearity N ◦N2. Note that N ◦N2 is nondecreasing and R(N ◦N2) =
R(N ) = [−0.5, 0.5].

Knowledge of only the monotonicity of N and the interval

I are needed to modify the controller output ur so that N◦N2

is nondecreasing. It thus follows that N ◦ N2 preserves the

signs of the Markov parameters of the linearized Hammer-

stein system. For details, see [13].

IV. RETROSPECTIVE-COST ADAPTIVE CONTROL

For i ≥ 1, define the Markov parameter

Hi
△
= E1A

i−1B.

For example, H1 = E1B and H2 = E1AB. Let ℓ be a

positive integer. Then, for all k ≥ ℓ,

x(k) = Aℓx(k − ℓ) +

ℓ
∑

i=1

Ai−1BN (N2(N1(uc(k − i)))),

and thus

z(k) = E1A
ℓx(k − ℓ)− E0r(k) + H̄Ū(k − 1), (5)
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where

H̄
△
=

[

H1 · · · Hℓ

]

∈ R
1×ℓ

and

Ū(k − 1)
△
=







N (N2(N1(uc(k − 1))))
...

N (N2(N1(uc(k − ℓ))))






.

Next, we rearrange the columns of H̄ and the components

of Ū(k− 1) and partition the resulting matrix and vector so

that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (6)

where H′ ∈ R
1×(ℓ−lU ), H ∈ R

1×lU , U ′(k − 1) ∈ R
ℓ−lU ,

and U(k − 1) ∈ R
lU . Then, we can rewrite (5) as

z(k) = S(k) +HU(k − 1), (7)

where

S(k)
△
= E1A

ℓx(k − ℓ)− E0r(k) +H′U ′(k − 1). (8)

Next, for j = 1, . . . , s, we rewrite (7) with a delay of kj
time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (9)

where (8) becomes

Sj(k − kj)
△
= E1A

ℓx(k − kj − ℓ) +H′

jU
′

j(k − kj − 1)

and (6) becomes

H̄Ū(k − kj − 1) = H′

jU
′

j(k − kj − 1) +HjUj(k − kj − 1),

where H′
j ∈ R

1×(ℓ−lUj
), Hj ∈ R

1×lUj , U ′
j(k − kj − 1) ∈

R
ℓ−lUj , and Uj(k−kj −1) ∈ R

lUj . Now, by stacking z(k−
k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=







z(k − k1)
...

z(k − ks)






∈ R

s. (10)

Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (11)

where

S̃(k)
△
=







S1(k − k1)
...

Ss(k − ks)






∈ R

s,

Ũ(k − 1) has the form

Ũ(k − 1)
△
=







N (N2(N1(uc(k − q1))))
...

N (N2(N1(uc(k − ql
Ũ
))))






∈ R

l
Ũ ,

where, for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks+ℓ, and H̃ ∈ R
s×l

Ũ is

constructed according to the structure of Ũ(k−1). The vector

Ũ(k− 1) is formed by stacking U1(k− k1 − 1), . . . , Us(k−

ks − 1) and removing copies of repeated components.

Next, for j = 1, . . . , s, we define the retrospective perfor-

mance

ẑj(k − kj)
△
= Sj(k − kj) +HjÛj(k − kj − 1), (12)

where the past controls Uj(k − kj − 1) in (9) are replaced

by the retrospective controls Ûj(k − kj − 1). In analogy

with (10), the extended retrospective performance for (12) is

defined as

Ẑ(k)
△
=







ẑ1(k − k1)
...

ẑs(k − ks)






∈ R

s

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃U(k − 1), (13)

where the components of
ˆ̃U(k−1) ∈ R

l
Ũ are the components

of Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) ordered in the same

way as the components of Ũ(k − 1). Subtracting (11) from

(13) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃ ˆ̃U(k − 1). (14)

Finally, we define the retrospective cost function

J( ˆ̃U(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (15)

where R(k) ∈ R
s×s is a positive-definite performance

weighting. The goal is to determine refined controls
ˆ̃U(k −

1) that would have provided better performance than the

controls U(k) that were applied to the system. The refined

control values
ˆ̃U(k− 1) are subsequently used to update the

controller.

Next, to ensure that (15) has a global minimizer, we

consider the regularized cost

J̄( ˆ̃U(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k)

+ η(k) ˆ̃UT(k − 1) ˆ̃U(k − 1), (16)

where η(k) ≥ 0. Substituting (14) into (16) yields

J̄( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1)

+ B(k) ˆ̃U(k − 1) + C(k),

where

A(k)
△
= H̃TR(k)H̃+ η(k)Il

Ũ
,

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)],

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1).

If either H̃ has full column rank or η(k) > 0, then A(k) is

positive definite. In this case, J̄( ˆ̃U(k− 1), k) has the unique

global minimizer

ˆ̃U(k − 1) = −
1

2
A−1(k)B(k). (17)

4813



A. Controller Construction

The control u(k) is given by the strictly proper time-series

controller of order nc given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)z(k − i)

+

nc
∑

i=1

Qi(k)r(k − i), (18)

where, for all i = 1, . . . , nc, Mi(k) ∈ R, Ni(k) ∈ R, and

Qi(k) ∈ R. The control (18) can be expressed as

u(k) = θ(k)φ(k − 1),

where

θ(k)
△
= [M1(k) ··· Mnc

(k) N1(k) ··· Nnc
(k) Q1(k) ··· Qnc

(k) ]

∈ R
lu×3nc

and

φ(k − 1)
△
= [ u(k−1) ··· u(k−nc) z(k−1) ··· z(k−nc) r(k−1)

··· r(k−nc) ]T ∈ R
3nc .

Next, let d be a positive integer such that Ũ(k−1) contains

u(k − d) and define the cumulative cost function

JR(θ, k)
△
=

k
∑

i=d+1

λk−i‖φT(i− d− 1)θT(k)− ûT(i− d)‖2

+ λk(θ(k)− θ0)P
−1
0 (θ(k)− θ0)

T, (19)

where ‖ · ‖ is the Euclidean norm, and λ ∈ (0, 1] is the

forgetting factor. Minimizing (19) yields

θT(k) = θT(k − 1) + β(k)P (k − 1)φ(k − d− 1)

· [φT(k − d)P (k − 1)φ(k − d− 1) + λ(k)]−1

· [φT(k − d− 1)θT(k − 1)− ûT(k − d)],

where β(k) is either zero or one. The error covariance is

updated by

P (k) = β(k)λ−1P (k − 1) + [1− β(k)]P (k − 1)

− β(k)λ−1P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d) + λ]−1

· φT(k − d− 1)P (k − 1).

We initialize the error covariance matrix as P (0) = αI3nc
,

where α > 0. Note that when β(k) = 0, θ(k) = θ(k−1) and

P (k) = P (k − 1). Therefore, setting β(k) = 0 switches off

the controller adaptation, and thus freezes the control gains.

When β(k) = 1, the controller is allowed to adapt.

V. NUMERICAL EXAMPLES

In all examples, we assume that at least one nonzero

Markov parameter of G is known. For convenience, each

example is constructed such that the first nonzero Markov

parameter Hd = 1, where d is the relative degree of

G. RCAC generates a control signal uc(k) that attempts

to minimize the performance z(k) in the presence of the

input nonlinearity N . In all cases, we initialize the adaptive

controller to be zero, that is, θ(0) = 0. We let λ = 1 for all

examples.

Example 5.1: We consider the asymptotically stable,

minimum-phase plant

G(z) =
(z − 0.5)(z − 0.9)

(z − 0.7)(z − 0.5− 0.5)(z − 0.5 + 0.5)
, (20)

with the cubic input nonlinearity

N (u) = −u3 − 2, (21)

which is nonincreasing, one-to-one, and onto and has the

offset N (0) = −2. Note that d = 1 and Hd = 1. We consider

the sinusoidal command r(k) = sin(θ1k), where θ1 = π/5
rad/sample. To illustrate the effect of the nonlinearities on

the closed-loop command-following performance, we first

remove the input nonlinearity N (u) and simulate the open-

loop system for the first 100 time steps. Then, at k =
100, we turn the adaptation on and let RCAC adapt to

the linear system for 300 time steps. Next, at k = 400,

we stop the adaptation and introduce the input nonlinearity.

Consequently, from k = 400 to k = 700, we use the frozen

gain matrix θ(400) as the feedback gain without adaptation

in order to demonstrate the performance degradation due to

the input nonlinearity. Finally, at k = 700, we restart the

adaptation and let RCAC adapt to the Hammerstein system.

As shown in Figure 4(a), we choose N1(uc) = satp,q(uc),
where p = −106 and q = 106 in (4). Since N is decreasing

for all u ∈ [−106, 106], we let N2(ur) = −ur. Note that

knowledge of only the monotonicity of N is used to choose

N2. We let nc = 10, P0 = 0.01I3nc
, η0 = 0, and H̃ = H1.

Figure 4(b) shows the resulting time history of the command-

following performance z, while Figure 4(c) shows the time

history of the control u and linear plant input v. Finally,

Figure 4(d) shows the time history of the controller gain

vector θ. �

Example 5.2: We consider the asymptotically stable,

NMP plant

G(z) =
z − 1.5

(z − 0.8)(z − 0.6)
, (22)

with the deadzone input nonlinearity

N (u) =











u+ 0.5, if u < −0.5,

0, if − 0.5 ≤ u ≤ 0.5,

u− 0.5, if u > 0.5,

(23)

which is not one-to-one but onto and satisfies N (0) = 0.

Note that d = 1 and Hd = 1. We consider the two-tone

sinusoidal command r(k) = sin(θ1k) + 0.5 sin(θ2k), where

θ1 = π/4 rad/sample, and θ2 = π/10 rad/sample. As shown

in Figure 5(a), since N (u) is nondecreasing for all u ∈ R,

we choose N1(uc) = satp,q(uc), where p = −a, q = a, and

N2(ur) = ur. We let nc = 10, P0 = 0.1I3nc
, η0 = 0.2,

and H̃ = H1, and we vary the saturation level a for the

NMP plant (22). Figure 5(b.i) shows the time history of the

performance z with a = 10, where the transient behavior is
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Fig. 4. Example 5.1. (a) shows the input nonlinearity N given by (21).
(b) shows the closed-loop response to the sinusoidal command r(k) =
sin(0.2πk) of the asymptotically stable minimum-phase plant G given by
(20). The value of β indicates whether the controller is frozen or adapting.
(c) shows the time history of the control u and the plant input v with and
without the input nonlinearity N present. (d) shows the time history of the
controller gain vector θ with and without N present.

poor. Figure 5(b.ii) shows the time history of the performance

z with a = 2, where the transient performance is improved

and z reaches steady state in about 300 time steps. Finally,

we further reduce the saturation level. Figure 5(b.iii) shows

the time history of the performance z with a = 1; in this

case, RCAC cannot follow the command due to fact that

a = 1 is not large enough to provide the control output uc

needed to drive z to a small value. �
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Fig. 5. Example 5.2. (a) shows the deadzone input nonlinearity N (u)
given by (23). (b) shows the closed-loop response of the asymptotically
stable NMP plant G given by (22) with the two-tone sinusoidal command
r(k) = sin(θ1k) + 0.5 sin(θ2k), where θ1 = π/4 rad/sample, and θ2 =
π/10 rad/sample. Figure 5(b.i) shows the time history of the performance
z with a = 10, where the transient behavior is poor. Figure 5(b.ii) shows
the time history of the performance z with a = 2. Note that the transient
performance is improved and z reaches steady state in about 300 time steps.
Finally, we further reduce the saturation level. Figure 5(b.iii) shows the time
history of the performance z with a = 1; in this case, RCAC cannot follow
the command due to the fact that a = 1 is not large enough to provide the
control output uc needed to drive z to a small value.

Example 5.3: We consider the asymptotically stable,

NMP plant (22) with the saturation input nonlinearity

N (u) =











−0.8, if u < −1,

u, if − 1 ≤ u ≤ 1,

0.8, if u > 1,

(24)

which is nondecreasing and one-to-one but not onto, and

satisfies N (0) = 0. We consider the two-tone sinusoidal

command r(k) = 0.5 sin(θ1k) + 0.5 sin(θ2k), where θ1 =
π/5 rad/sample and θ2 = π/2 rad/sample for the Ham-

merstein system with the input nonlinearity N . As shown

in Figure 6(a), since N (u) is nondecreasing for all u ∈ R,

we choose N1(uc) = satp,q(uc), where p = −2 and q = 2
in (4), and N2(ur) = ur. We let nc = 10, P0 = 0.1I3nc

,

η0 = 2, and H̃ = H1. The Hammerstein system runs open-

loop for 100 time steps, and RCAC is turned on at k = 100.

Figure 6(b) shows the time history of the performance z
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with the input nonlinearity present. Note that z does not

converge to zero due to the distortion introduced by the input

nonlinearity N . �
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Fig. 6. Example 5.3. (a) shows the saturating input nonlinearity N (u)
given by (24). (b) shows the closed-loop response of the stable NMP plant G
given by (22) with the two-tone sinusoidal command r(k) = 0.5 sin(θ1k)+
0.5 sin(θ2k), θ1 = π/5 rad/sample, and θ2 = π/2 rad/sample.

Example 5.4: We consider the unstable double integra-

tor plant

G(z) =
z

(z − 1)2
(25)

with the piecewise-constant input nonlinearity

N (u) =
1

2
[sign(u− 0.2) + sign(u+ 0.2)]. (26)

Note that N (u) can assume only the values −1, 0, and 1.

Note that d = 1 and Hd = 1. We let the command r(k) be

zero, and consider stabilization using RCAC with the input

relay nonlinearity given by (26). As shown in Figure 7(a), the

relay nonlinearity is monotonically nondecreasing for all u ∈
R, and we thus choose N1(uc) = satp,q(uc), where p = −3,

q = 3, and N2(ur) = ur. We let nc = 2, P0 = I3nc
, η0 = 0,

and H̃ = H1. The closed-loop performance approaches ±4
in about 500 time steps. Figure 7 shows the time history of

z with the initial condition x0 =
[

−5.2 −1.1
]T

. �

VI. CONCLUSIONS

Retrospective cost adaptive control (RCAC) was applied

to a command-following problem for Hammerstein systems

with unknown disturbances. RCAC was used with limited

modeling information. In particular, the input nonlinearity is

assumed to be monotonic but is otherwise unknown, and

RCAC uses knowledge of only the first nonzero Markov

parameter of the linear dynamics. To handle the effect of

the input nonlinearity, RCAC was augmented by auxiliary

nonlinearities chosen based on the monotonicity of the input

nonlinearity.
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Fig. 7. Example 5.4. Closed-loop response of the plant G given by (25)
with the initial condition x0 = [−5.2,−1.1]T. The system runs open loop
for 100 time steps, and the adaptive controller is turned on at k = 100 with
the input relay nonlinearity given by (26). The closed-loop performance z
approaches ±4 in about 500 time steps.
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