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1 Introduction

In time-domain identification there is a distinction
between batch and recursive identification methods. In
batch identification, all of the data is assumed to be
available before identification begins, while in recur-
sive identification, parameter estimates are updated as
data become available. The classical SISO least squares
technique can be implemented in either batch or recur-
sive form; these forms are mathematically equivalent,
that is, the final estimates obtained from the recursive
form are exactly equal (ignoring numerical effects) to
the batch estimates. However, the recursive form al-
lows the inclusion of a forgetting factor, which does
not have a counterpart in the batch form.

One advantage of recursive identification is the fact
that there is no constraint on the amount of data that
can be processed since additional data can be included
ad infinitum. Unfortunately, not all identification al-
gorithms can be recast in recursive form. For exam-
ple, the subspace identification algorithms [1, 2, 3, 4]
are batch identification algorithms, and recursive forms
have not been developed. Consequently, the amount of
data that can be processed by a subspace algorithm
is limited by the memory requirements of the singular
value decompositions used by the algorithm.

As in batch time-domain identification, frequency do-
main identification is also limited to small amounts of
data. In practice, however, frequency domain identi-
fication is implemented repetitively, that is, the iden-
tification signal is generated by the spectrum analyzer
multiple times, and the generated frequency spectra are
successively averaged to produce successively higher
quality estimates of the transfer function [5, 6, 7, 8].
In this way, the amount of data utilized by frequency
domain identification methods is effectively quite large.

The objective of this paper is to develop techniques
for implementing subspace identification algorithms
that utilize larger amounts of data than can be handled
by a single batch run of the algorithm. Our approach is
to compress the available data, that is, to reduce a large
data set to a smaller data set prior to implementing the
algorithm. The motivation for this problem is the fact
that the main calculation in subspace algorithms is a
singular value decomposition. If the algorithm is to be
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implemented in, for instance, Matlab®, there is a mem-
ory requirement of approximately 3x8xIpx N = 24ipN
bytes of memory, where [ is the number of outputs, p
is the “window size” and N is the length of the data
record. The factor 3 appears because the SVD matri-
ces U, S and V may need to be stored simultaneously
in the memory. For example, consider a machine with
1GB of RAM. If the plant has 6 outputs and we choose
p = 20, we can process only N = 2777 data points. Of
course, we must also consider the memory occupied by
the operating system.

The idea of compressing identification data prior to
batch processing is not new. In [9, 10, 11], for exam-
ple, it is suggested that when periodic identification
signals are used for identification, the data can be av-
eraged prior to processing. This approach is roughly
equivalent to repetitive frequency domain identification
except that the averaging is performed before the algo-
rithm is implemented rather than after.

In Section 2 we review a subspace identification al-
gorithm. In Section 3 an averaging scheme is dis-
cussed. In Section 4 we analyze the effect of averaging
input-output data when the input signal is periodic.
In particular, we account for the transient and peri-
odic steady responses, and analyze the signal-to-noise
ratio that results from averaging. In Section 5 we dis-
cuss the effect of “slicing up” the data and we develop
guidelines for data slicing. In Section 6, we consider
data compression for non-periodic inputs.

2 Review of a Subspace Algorithm

Several approaches for identifying a discrete-time
state space model of a system using subspace methods
exist. Below, we describe one such approach [1].

Consider the state space model

Tpy1 = Axy + Buy + wy, (1)
yr = Cxy, + Duy, + vg, (2)

where 2, € R”, y € R, up, € R™, A € V", B €
RxmC e R D € RX™ ) and with w, € R™
and v, € R zero mean, stationary, white noise vector



sequences with positive semidefinite covariance matrix

EK%?*wq%ﬁ=L%§}%,@>

Qe R S e f"*l and R € R*!. The identification
problem is: Given N input and output measurements
U1,...,uny and yi,...,yn, respectively, estimate the
system order n and the system matrices A, B, C, D,
@, R and S.

Omitting noise terms, (2) can be written in the form

Ypipo = IpXp, + HpUp, ps- (4)

The output Hankel matrix Y, ,, € R{Pz=PiFXN g
defined by

Ypa Yp1+1 Ypi+N-1
Ypi+1 Ypit2z oo YpiN
A
YPth = . . . . (5)
Ypa Ypa+1 Ypa+N—-1

and the input Hankel matrix Uy, ,, € R™P2—PitxN
is defined analogously. The past input, past output,
future input and future output Hankel matrices are de-
fined by U_ £ U07p_1, Y. é Y07p_1, U+ £ Up72p_1 and
Y, & Y} 2p—1, respectively, where p is a user defined
window length such that 1 <p < N.

The extended observability matrix I, € RP*" is
given by

C

| c4
r,2 . : (6)

O A1

The estimated state sequence X,, € R"*N is defined
as

Xpl £ [ 5‘1101 i‘pl-ﬁ-N—l ] ) (7)
where T, is an estimate of the state of the sys-
tem at time step k. For p; = 0, we have
Xy = [ To 1 IN_1 ] The lower triangular
Toeplitz matrix H, € RIP*™P is given by

CB D - 0
Hp L CAB CB s 0 . (8)
CAP—2B (CAP3B ... D

For G € R**N | define
e 2 GT(Gaa™)'a, (9)
the orthogonal projection onto the row space of GG, and

g 2 Iy —Tlg, (10)

the orthogonal projection onto the orthogonal comple-
ment of the row space of G, where Iy is the N x N iden-
tity matrix. Thus, the orthogonal projection of the row
space of ' € RN onto the row space of G € R**N is
given by

F/G 2 Fllg € R™V. (11)

The oblique projection of the row space of F € R"™<N
along the row space of G € R°*~ onto the row space
of J € RN is given by

JJt JGT

T
GJT GGT :| Je%TXNv(lz)

FmJéFpTGﬂ[

where only the first ¢ columns of the pseudoinverse are
used. Define the matrices W_, Z_, Z_ and W_ by

o e ]

W_ - Al U
W2 P
Up+1,2p-1 ] [Yo,p }

(>

w_

Z_ 2 }/;)+1,2p—1/|:

The correlation between two signals aj and ey, is given
by

— 00

N

1
Elaref] £ lim | =) ae]
[axer] R lN» a;e;

Finally, the covariance ® (g € R of F € R™*Y and
G € RN is defined as

®(p) = E[FGT]. (14)

Since N is finite, ®(p ) is approximated by
P ~ Lpgr (15)
[F.G] = N :

The following assumptions will also be made:

(1) uyg is uncorrelated with the process noise wy and
measurement noise vy.

(2) uy, is persistently exciting; rank (Up 2p—1) = 2mp.
(3) wy and v are not both identically zero.

(4) Since only observable modes can be identified, the
matrix pair (A, C) is observable. Also, assume that the
matrix pair (A,[ B Q/2 ]) is controllable.

N4SID, MOESP and CVA are three approaches to
subspace identification. For each, there is defined
weighting matrices W, € RPXP and Wy € RVXN,
where W7 is full rank and W satisfies: rank(W_) =
rank(W_ - W3) (see Table 1). These weighting matri-
ces determine the state space basis in which the system
model will be identified.

The following algorithm provides estimates of the sys-
tem matrices:

1. Define the oblique projection

O+ = Y+/U+W— (16)



Table 1: Subspace weighting matrices

Method W1 W2
N4STD Tionin Tnxn
MOESP Tioxiy .
—1/2
CVA | @y jue v oy | Mot

and compute the singular value decomposition

WO W, = [U; Uz][% 3 ] [“gf }
= U, SV (17)
. Then O satisfies (see [1])
04 =T, X,. (18)

From assumption 4, we have rank(I',) = n and
rank(X,) = n. Since rank(0,) = rank(TI',X,),
then rank(Oy) = n. Wj is nonsingular. Thus,
rank(W104Ws3) = rank(O4Ws;). And since
rank(W,Ws) = rank(W_, ) then W5 is nonsingular
and rank(Ws) = N. Moreover, rank(O;W3) im-
plies rank(W; 04 Ws) = rank(O;W3) = n. Thus,
the system order can be determined from the num-
ber of the nonzero singular values in (17).

. Note that (17) and (18) imply
WAT, X, W, = (U18V/2T) (1718127 |

where T is an arbitrary transformation matrix
whose value affects the choice of basis for the iden-
tified system model. Next, estimate I',, by

I, = W', S)/°T. (19)

From this, X'p can be estimated by

X, =T10,. (20)
. Define
- e
K(B,D) 4 [B Fp—al”l AFPH”] (21)
[D 0]—CI}H,
and solve the least squares problem
I oz
A,C,K = argmin [Fplz}
Yop
; 2
Atz —K(B,D
- | & |tz - K@D 22)
- F
5. Solve the least squares problem
. oz
B,D = argmin {Fplz_}
Ypp
N 2
Atz — R(B,DU.| (23
- C« p“—= ( ’ ) + ( )
F

6. Use the residues of the minimization (22) as esti-
mates for [ oL pt ]T to compute @, S and R

(& S ]w([r )i 1) e

The above algorithm does not guarantee the stability
of the realization. However, in [1, 12, 13] techniques are
proposed that guarantee the stability of the identified
model. First, define

m’ »n»

e (0], .

where T, is T, without the first [ rows. From (19),
determine C' as the first [ rows of I, and a stable A as
A= f‘;f,f‘g. From these values of A and C’, recompute
[, and T',_; and then proceed to step 5.

3 An Averaging Method

Here we study the LTI discrete-time system described
by (1) and (2). To simplify the analysis, we assume that
the noise sequence wy, is not present. The averaging
method described here requires that the data be sliced
up into batches of data points, each of a user-defined
slice size ¢q. Also, let M be the number of slices for
a total of N = Mgq data points. Note that if uy is
a periodic sequence, with a period of ¢* data-points,
q does not necessarily equal ¢*. Thus the i*® (i =
1,2,3,..., M) output slice Y¥ € R is given by

Yi—-1)q
. Y(i—1)g+1 i ) .
y® 2 R I - (O {0
Yiqg—1
TO 4 y®, (26)
where xgi) = T(j—1)q is the initial condition of the ith

slice and Y@, U® and V@ are defined analogous to
Y@ in (26).
It follows from (1) and (2) that

(i-1)q—1
xé’) =Z(i_1)g = AGDag, 4 Z A(ifl)quleuj,
=0

where xq is the process initial condition. This expres-
sion can be re-written in the compact form

CO R
0 - 05
CL'(()Z) — A(ifl)q(go + AZIA]Z, 1 > 2; (27)

where

A2 [ AG-Da-1p  AG-Da-2p AB B ](28)



and
A8
U®
U, 2 . e Rli—1ma, (29)
U(i;l)
Thus, (26) can be further simplified into
vy = FqA(i—l)qu + HqU(l) + v,
Y® = T, [A(z'—nqxo +Az—UZ} Y HUD 4 VO,

1 > 2. Summing the output over all slices, we have

1 M
Yy = i E v
1 Mo
= Fq l <SCO + lE . A(Zil)qdfo + A1U1>

ZU<

quo + HqUM + Vi
= Ty + Vi, (30)

M

TN

i=1

where

M
1 X .
Zo £ [M (fEO + E A(l_l)q.’ﬂo + AZU1>

=2

(31)

is a weighted average initial condition,

1
MZU(” (32)
i=1

is the averaged input sequence,

M
Var 2 %ZV(“ (33)
=1

is the averaged output noise sequence, and

LS
- T'L
Py

is the averaged system output (uncorrupted with the
averaged noise V).

Though the signals themselves are now different, (34)
has the same input/output relation defined through T',
and H, as in (4). Due to system linearity, this shows
that the averaged sequence Y}, and the averaged input
sequence Ujs can be used for the subspace-based iden-
tification of a system that gives the output sequence
when excited by an input signal wuy.

Now define the signal-to-noise ratio

=T %0+ HUn  (34)

SNR 2 ||q)[TM7TM]|| (35)
||(I)[VM,VM] || ’

where | - || denotes the induced 2-norm. Here we treat
the input sequence as a deterministic signal or as a
realization of a measured random signal. Referring
to the approximation made in (15), it follows that
90 vl ll = 10T Y]], which is independent of M.
For the denominator of (35) we have

1@y, vl = |VMVM||
T
_ (i ) (1)
1=1
= U Ilq M7 (36)

where o, is the variance of the noise sequence. Equa-
tions (35) and (36) suggest that SNR oc v/M whether
the input is periodic or not and regardless of how we
choose the slice size ¢. In the following sections we nu-
merically investigate this statement. It was found that
this result is only true when two conditions are satis-
fied: (1) the input uy is a periodic signal that repeats
every ¢* points and (2) when we choose ¢ = ¢*.

4 Averaging Using Periodic Signals

In this and the following sections we consider the sys-
tem

0.67 0.67 0 0 0.6598
A -0.67 0.67 0 0 B 1.9698
- 0 0 -0.67 -0.67 N 4.3171
0 0 0.67 —0.67 —2.6436
C =[-0.5749 1.0751 —0.5225 0.1830] D = —0.7139

This system has poles at 0.67+0.672 and —0.67+0.67,
which correspond to the frequencies 1.87 x 10° rad/sec
and 2.36 x 105 rad/sec, respectively. System zeros are
at 1.03 + 1.082, —1.6 and —1.86, which correspond to
frequencies 9.03 x 10° rad/sec, 3.18 x 10° rad/sec and
3.2x10° rad/sec, respectively. The sampling frequency
is T, = 1079 sec. This system has the frequency re-
sponse plot shown in Figure 1. We designed the sim-
ulations such that the SNR of the entire N-point data
record is 0.1.

To evaluate the averaging procedure, we use the dis-
crete time Ho-norm of the difference between the true
and the identified systems. Letting A, B, C and D
denote the identified system matrices, the performance
measure is

J=CQCT+ DD, (37)
where
~a| A O
A= [ 0 A ]
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Figure 1: System frequency response plot

B2 [BTBT,C2|c-C|,D=D-DandQ
is the solution to the following discrete-time Lyapunov
equation

Q= AQA" + BB". (38)

As mentioned above, the two conditions for obtaining
SNR o v/M are the periodicity of the input signal
(with period ¢*) and having ¢ = ¢*. Here we use three
types of signals (with ¢* = 931): a repeated realization
of a zero mean, stationary random sequence, a repeated
chirp signal and a repeated multitonal signal.

Figure 2 shows SNR as a function of M. By making
a data fit, it was found that SNR = avM with a =
0.1,0.073 and 0.17 for noise-, chirp- and multitonal-
based identification, respectively. Note that the peri-
odic multitonal signal results in the highest value of
averaged SNR whereas the chirp results in the lowest.
This may lead us to conclude that the multitonal sig-
nal should result in better identification results. How-
ever, Figure 3 shows that this is not necessarily true.
The reason is that the multitonal input sequence is not
as sufficiently exciting as the chirp or random signals
and, therefore, its identification performance is worse
than that of the other two signal types. The reason
for the multitonal input signal resulting in the highest
averaged SNR is because the denominator of (35) is
the same regardless of the input signal type. However,
these signals would result in an output having different
values of [|®y,, v,,ll- The periodic multitonal input
sequence results in the highest value for ||[®y,, v/l
and, consequently, it has the highest SNR values. Fig-
ure 4 shows the frequency response as a function of M.

5 Averaging Using Sinusoidal Signals

Care should be taken when a multitonal input signal
is used when frequency components of this signal coin-
cide with the zeros of the system. When this happens,
these signal components will not contribute to the out-
put. When the averaging method described above is
performed, the averaged input signal will retain these

(] 500 1000 1500 2000 2500

Number of Averages, M

Figure 2: SNR as a function of M

1000 1500 2000
Number of Averages, M

Figure 3: Error as a function of M

components but the averaged output will not. This
“missing information” may have some negative effects.

For instance, Figure 5 shows a multitonal signal that
has two frequency components at 3.18 x 10 rad /sec and
3.2 x 10° rad/sec, which do not show up in the output
because they coincide with two system zeros. The cor-
responding identified frequency response is compared
to the true one in Figure 7, where the result is poor.
When the signal shown in Figure 6 is used instead, the
model obtained from the identification algorithm has
the frequency response plot shown in Figure 8, and the
result is satisfactory.

In reality, of course, information such as the location
of the system zeros will not be available beforehand.
The aim here is to show that multitonal signals may in
some cases produce very poor results.

6 Effect of Slice Size ¢

If the input signal is periodic and its periodicity is
known, then choosing ¢ = ¢* guarantees constructive
averaging of the input signal and, thus, avoids the loss
of spectral content. Otherwise, the averaging process
may result in spectral degradation of the signal.

This, however, does not imply that choosing ¢ = ¢*
results in the least performance error. Using the input
signals mentioned in the previous section, we obtained
the Hs-based error vs. slice size as shown in Figures
9, 10 and 11. Only when the multitonal signal was
used, ¢ = ¢* = 931 resulted in the least error. For the
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Figure 4: System frequency response (solid), M = 1
(dashed), M = 100 (dash-dotted) and M = 800
(dotted) with periodic multitonal signal
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Figure 5: Spectrum of u; with harmonics at system zeros

noise signal, ¢ = 1064 resulted in the least error. For
the chirp signal, ¢ = 399 resulted in the least error.
Note that 931 = 133 x 7, 1064 = 133 x 8 and 399 =
133 x 3. This result may be further appreciated when
we investigate plots of the averaged SNR as a function
of slice size as in Figures 12, 13 and 14. Note again the
harmonic peaks that take place at multiples of 133.

If ¢* is known beforehand, choosing ¢ = ¢* guarantees
satisfactory performance. Still, there may exist slice
sizes that are equal to some rational multiple of ¢* and
that result in even better performance. It is not clear
what determines this slice size. If, on the other hand,
knowledge of ¢* was not available, one may look to
the power spectral density of the input signal and from
it estimate the value of ¢* = Tf;“ where f* is the
frequency at which there is a sharp peak in the spectral
content of wuy.

7 Averaging Using Non-Periodic Signals

If uy, is known to be non-periodic (for instance if its
power spectrum has no sharp peaks), the question then
arises: when we average, will we get better or worse re-
sults than without averaging? To answer this question,
we used non-periodic signals of lengths that enable us
to run the identification code without running out of
memory. Here we chose uy to be a realization of a
zero mean, stationary gaussian random sequence with

Power Spectrum of y,

Frequency (Hz) x10°

Figure 6: Spectrum of u; with no harmonics at system
zeros

10 Frequency (ratiisec)

Figure 7: System frequency response (solid) and identified
model (dashed) using signal in Figure 5

N = 4104 and ¢ = 513 (chosen arbitrarily). The result
was quite poor and is shown in Figure 15.

This result may be due to two effects. First, since uy
is a random sequence, arbitrarily slicing up the data
and averaging may have resulted in the destructive av-
eraging of ug. The second reason may be that not
enough averages were sufficiently taken. To investi-
gate this, another run was carried out but with N =
1,862,000 data points and ¢ = 931 (i.e. M = 2000)
with u being in one trial a realization of a zero mean,
stationary gaussian random sequence and in the second
chirp signal. The result is shown in Figure 16. Even
with more averages, the results are poor.

8 Discussion

In this paper we explored the possibility of applying
data compression techniques to subspace methods. We
have shown that when the input sequence is periodic,
then satisfactory results are obtained when a subspace
algorithm is used to identify the system by slicing and
averaging the input and output signals. A consequence
of this result is that subspace methods can be imple-
mented in a fashion that utilizes large input/output
measurements which are otherwise discarded due to
memory constraints. We have also discussed the im-
pact of the choice of the slice size q. Applying the
averaging method with non-periodic input sequences
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Figure 8: System frequency response (solid) and identified
model (dashed) using signal in Figure 6
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Figure 9: Error vs. ¢ with periodic noise input, ¢* = 931.
Minimum error at ¢ = 1064

was shown not to be beneficial as with the case of pe-
riodic signals. Future work will focus on the methods
for utilizing large data sets with nonperiodic inputs.
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