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Abstract— The accuracy of state estimation can be enhanced
by simultaneously estimating unknown inputs. This paper
presents an extension of retrospective cost input estimation
(RCIE) that directly updates the estimates of all states. We
show that RCIE can be used for systems in which the trans-
mission zeros from the estimated input to the measurement
are nonminimum phase. We demonstrate this ability on nu-
merical examples, and we compare the estimates from RCIE
to estimates from prior methods for input estimation. Finally,
we use this technique to estimate the acceleration of a flight
vehicle using camera data, and we assess the accuracy of the
acceleration estimates by transforming the onboard body-frame
acceleration measurements to the camera frame.

I. INTRODUCTION

The goal of classical state estimation is to use the dy-
namics model in conjunction with state measurements to
estimate unmeasured states and filter the noise corrupting the
measurements. The process noise w is modeled as a zero-
mean white random process whose statistical properties are
known. If an additional known input u drives the system,
then u can be replicated in the estimator dynamics in order
to reduce the state-estimation error. The input u may be either
a deterministic or random signal.

In many practical situations, it may be desirable to es-
timate the exogenous input, or at least a portion of it. In
particular, the exogenous input may consist of a combination
of random process noise w, a known input u, and an
unknown deterministic or random input d. The distinction
between w and d is the desire to estimate d in order to
replicate it in the estimator and thereby reduce the error in
the state estimates.

The literature on input estimation is extensive, and various
techniques have been proposed [1]–[10]. In [11], [12], the
more limited goal is to obtain unbiased state estimates
without obtaining an estimate of the unknown input d. The
present paper addresses the input estimation problem based
on retrospective cost optimization [13]–[17]. Retrospective
cost input estimation was demonstrated in [13] and applied in
[14]–[17] to atmospheric estimation, acceleration estimation,
and fault diagnosis.

The goal of the present paper is to extend the approach
used in [14]–[16] by modifying the adaptive input estimation
subsystem so that it directly updates the estimates of all
states as in the case of the Kalman filter data injection
term K(y − Cx̂). We then compare this retrospective cost
input estimation (RCIE) technique to the input reconstruction
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methods in [1] and [10]. In particular, the filters in [1] and
[10] are confined to systems in which the dynamics from
the estimated unknown input to the measurement are mini-
mum phase. In contrast, the approach of the present paper
applies to the case where these dynamics have nonminimum-
phase transmission zeros. This feature is demonstrated for a
collection of numerical examples. We also apply RCIE to
laboratory data, where the goal is to estimate the accelera-
tion of a flight vehicle using vision data. The accuracy of
RCIE is assessed by comparing the acceleration estimates
to the acceleration measurements provided by the on-board
accelerometers transformed to the camera frame.

II. PROBLEM FORMULATION

Consider the linear time-invariant system

x(k)=Ax(k−1)+Bu(k−1)+Gd(k−1)+D1w(k−1), (1)
y(k)= Cx(k) +D2v(k), (2)

where x(k) ∈ Rlx is the unknown state, u(k) ∈ Rlu
is the known input, d(k) ∈ Rld is the unknown input,
D1w(k) ∈ Rlx is the process noise with known covariance
V1
4
= D1D

T
1 ∈ Rlx×lx , y(k) ∈ Rly is the measured output,

and D2v(k) ∈ Rlv is the measurement noise with known
covariance V2

4
= D2D

T
2 ∈ Rly×ly . The matrices A ∈ Rlx×lx ,

B ∈ Rlx×lu , G ∈ Rlx×ld , and C ∈ Rly×lx are assumed
to be known. The goal is to estimate the unknown input
d(k) and the unknown state x(k). The system (1), (2) is
minimum phase (MP) if the transmission zeros of (A,G,C)
are contained in the open unit disk; otherwise (1), (2) is
nonminimum phase (NMP).

At each time step k, we estimate the unknown input d(k−
1) and the unknown state x(k) using the measured output
y(k) in the following two steps:

1. In the input estimation step, we estimate d(k−1) using
the estimate of x(k − 1).

2. In the state estimation step, we estimate x(k) using the
estimate of d(k − 1).

A. Retrospective Cost Input Estimation (RCIE)
In order to estimate the unknown input d(k−1), we

consider the update equations

x̂(k) = Axda(k − 1) +Bu(k − 1) +Gd̂(k − 2), (3)
ŷ(k) = Cx̂(k), (4)
z(k) = ŷ(k)− y(k), (5)

where x̂(k) ∈ Rlx is the forecast state, d̂(k) ∈ Rld is the
input estimate, xda(k) ∈ Rlx is the state estimate, and z(k) ∈
Rly is the output error. As shown below, d̂(k−1) is estimated
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Fig. 1: Input and state estimation architecture. RCIE uses z to update the
adaptive input estimation subsystem with input z in order to generate the
input estimate d̂ that minimizes z. The Kalman filter uses the estimated input
d̂ in place of d to estimate the unknown state x of the physical system.

at time step k, and thus we use d̂(k − 2) estimated at time
step k−1, in (3) to compute the output error z(k). The goal
is to develop an adaptive input estimator that minimizes z(k)
by estimating d(k − 1).

We obtain the input estimate d̂(k−1) as the output of the
adaptive input-estimation subsystem of order nc given by

d̂(k − 1) =

nc+1∑
i=2

Pi(k)d̂(k − i) +

nc∑
i=k0

Qi(k)ξ(k − i), (6)

where Pi(k) ∈ Rld×ld , Qi(k) ∈ Rld×lξ , k0 ≥ 0, and ξ(k) ∈
Rlξ consists of components of y and z. RCIE minimizes z(k)
by updating Pi(k) and Qi(k). Fig. 1 shows the structure of
(1)–(6). The subsystem in (6) can be reformulated as

d̂(k − 1) = Φ(k)θ(k), (7)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
=



d̂(k − 2)
...

d̂(k − nc − 1)
ξ(k − k0)

...
ξ(k − nc)



T

⊗ Ild ∈ Rld×lθ

and
θ(k)

4
= vec

[
P2(k) · · ·Pnc+1(k) Qk0(k) · · ·Qnc(k)

]
∈ Rlθ ,

where lθ
4
= l2dnc + ldlξ(nc + 1− k0), “⊗” is the Kronecker

product, and “vec” is the column-stacking operator.
1) Retrospective Performance: Define Gf(q)

4
=

D−1f (q)Nf(q), where q is the forward shift operator,
nf ≥ 1 is the order of Gf and
Nf(q)

4
= K1qnf−1 +K2qnf−2 + · · ·+Knf

, (8)

Df(q)
4
= Ilyqnf +A1qnf−1 +A2qnf−2 + · · ·+Anf

. (9)

Furthermore, Ki ∈ Rly×ld for 1 ≤ i ≤ r, Aj ∈ Rly×ly for
1 ≤ j ≤ r, and det (Df(q)) is asymptotically stable. Next,
for k ≥ k0, we define the retrospective performance variable

ẑ(θ̂, k)
4
= z(k) + Φf(k)θ̂ − d̂f(k−1), (10)

Fig. 2: Input estimation as a control problem. The output d̂ of the adaptive
input estimation subsystem Gc is one of the two inputs of the linear system
Gaug with output ŷ. Thus the goal of estimating the unknown input d is
equivalent to controlling Gaug using its input d̂ so that ŷ follows the output
measurement y. Consequently, d̂ follows d.

where
Φf(k)

4
= Gf(q)Φ(k), d̂f(k−1)

4
= Gf(q)d̂(k−1), (11)

and θ̂ ∈ Rlθ is determined by optimization below.
2) Markov Parameters: To construct the filter Gf , we

consider input estimation as a control problem, as shown
in Figure 2. The physical system Gyd, physical system
model GRC and adaptive input-estimation subsystem Gc in
Figure 2 represent (1)–(2), (3)–(4) and (6), respectively. For
simplicity, the known input u and the process noise w is not
shown. The output d̂ of Gc is one of the two inputs of the
linear system Gaug with output ŷ. The other input of Gaug

is the measured output y of Gyd. The output ŷ is given by

ŷ = Gŷyy +Gŷd̂d̂, (12)

where the Gŷy and Gŷd̂ are the components of the transfer
matrix Gaug given by

Gaug =
[
Gŷy Gŷd̂

]
. (13)

Thus the goal of estimating the unknown input d is equivalent
to controlling Gaug using its input d̂ so that ŷ follows the
output measurement y. Consequently, d̂ follows d.

For simplicity, we omit the known input u in (3) and write
the physical system model GRC as

x̂(k) = Axda(k − 1) +Gd̂(k − 2). (14)

We define xd(k)
4
= d̂(k − 1) and rewrite (14) as[

x̂(k)
xd(k)

]
=

[
0 G
0 0

] [
x̂(k − 1)
xd(k − 1)

]
+

[
A
0

]
xda(k − 1)+[

0
I

]
d̂(k − 1). (15)

The closed-loop form of the Kalman filter is given as

xda(k) = (A−Kda(k−1)CA)xda(k−1)+

(G−Kda(k−1)CG)d̂(k−1) +Kda(k−1)y(k), (16)

where Kda is defined by (27). Using (15) and (16), the state
space realization of the linear system Gŷd̂ in (13) is as

x̄(k) = Ā(k − 1)x̄(k − 1) + Ḡ(k − 1)d̂(k − 1), (17)
ŷ = C̄(k)x̄(k), (18)

where

x̄(k)
4
=

 x̂(k)
xd(k)
xda(k)

 , Ā(k)
4
=

0 G A
0 0 0
0 0 A−Kda(k)CA

 , (19)

Ḡ(k)
4
=

 0
I

G−Kda(k)CG

 , C̄(k)
4
=
[
C 0 0

]
. (20)
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The filter Gf at time step k is based on the Markov pa-
rameters of the estimated-input-to-estimated-output transfer
matrix Gŷd̂(q, k) = C̄(k)(qI − Ā(k−1))−1Ḡ(k−1). For
each complex number z whose absolute value is greater than
the spectral radius of Ā, it follows that

Gŷd̂(z, k) =

∞∑
i=0

1

zi
Hi(k), (21)

where, for all, i ≥ 1, the ith Markov parameter of Gŷd̂(z, k)
is defined by

Hi(k)
4
=


0, i=0
C̄(k+i)Ḡ(k), i=1

C̄(k+i)
(∏j=i−1

j=1 Ā(k+j)
)
Ḡ(k), i≥2.

(22)

By truncating (21) at each time step k, Gf is chosen to
be the time-varying Markov-parameter-based finite-impulse-
response (FIR) filter

Gf(q, k) =

nf∑
i=0

1

qi
Hi(k − nf). (23)

The order nf is chosen to be sufficiently large that Gf

approximates the NMP zeros of (Ā, Ḡ, C̄).
3) Cumulative Cost and RCIE Update: For k > k0, we

define the cumulative cost function

J(k, θ̂)
4
=

k∑
i=k0

(
ẑ(θ̂, i)TRz ẑ(θ̂, i) + [Φ(i)θ̂]TRdΦ(i)θ̂

)
+

[θ̂ − θ(0)]TRθ[θ̂ − θ(0)], (24)

where Rz and Rθ are positive definite, and Rd is positive
semi-definite. Let P (0) = R−1θ and θ(0) = θ0. Then, for
all k ≥ k0, the cumulative cost function (24) has the unique
global minimizer θ̂ = θ(k) given by the RLS update
θ(k) = θ(k−1)− P (k−1)Φ̃(k)TΓ(k)−1[Φ̃(k)θ(k−1) + z̃(k)],

where P (k) satisfies
P (k) = P (k−1)− P (k−1)Φ̃(k)TΓ(k)−1Φ̃(k)P (k−1),

Φ̃(k)
4
=

[
Φf(k)
Φ(k)

]
∈ R(ly+ld)×lθ ,

R̃(k)
4
=

[
Rz(k) 0

0 Rd(k)

]
∈ R(ly+ld)×(ly+ld),

z̃(k)
4
=

[
z(k)− d̂f(k−1)

0

]
∈ Rly+ld ,

Γ(k)
4
= R̃(k)−1 + Φ̃(k)P (k−1)Φ̃(k)T.

B. State Estimation
In order to estimate the state x(k), we modify the

forecast step of the Kalman filter by including the input
estimate d̂(k) as
xf(k) = Axda(k − 1) +Gd̂(k − 1) +Bu(k − 1), (25)

Pf(k) = APda(k − 1)AT + V1, (26)

where xf(k) ∈ Rlx is the forecast state, xda(k) ∈ Rlx is the
data assimilation state, Pf(k) ∈ Rlx×lx is the forecast error
covariance, and Pda(k) ∈ Rlx×lx is the data assimilation
error covariance. The data assimilation step is given by

Kda(k) = Pf(k)CTS−1da (k), (27)

Pda(k) = Pf(k)− Pf(k)CTS−1da (k)CPf(k), (28)
xda(k) = xf(k) +Kda(k) [y(k)− Cxf(k)] , (29)
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Fig. 3: Estimation of an unknown white Gaussian input d. (a) Filter [1]
estimate. (b) RCIE estimate. (c) Error in the input estimate. The error for
filter [1] (mean 0.37, standard deviation 0.04) is less than the error for RCIE
(mean 0.83, standard deviation 0.58).

where Kda(k) ∈ Rlx×ly is the state estimator gain and
Sda(k)

4
= C(k)Pf(k)CT(k) + V2(k). Note that, if d̂(k) =

d(k), then the state estimate is optimal in the sense of the
standard Kalman filter.

III. MINIMUM-PHASE NUMERICAL EXAMPLES
We now apply retrospective cost input estimation (RCIE)

to linear discrete-time MP systems, and compare it with filter
[1]. Furthermore to assess the accuracy of the input estimate,
we use the error metric

e(k)
4
=

1

Ntrial

√√√√Ntrial∑
i=1

[
d̂(k)− d(k)

]2
, (30)

where Ntrial is the number of trials, and plot (30) for RCIE
and filter [1].
A. Highly Damped Plant

We consider Example 2 of [6]

A =

[
0.67 0

0 0.53

]
, G =

[
1, 00
0.53

]
, C =

[
0.95 0, 01
0.03 1.39

]
,

D1 = D2 =

[√
0.08 0

0
√

0.08

]
.

The system (A,G,C) has no transmission zeros. We set
x̂(0) = xda(0) = [0 0]

T and choose Ntrial = 100, k0 =
1, nc = 8, nf = 6, Rθ = 500Ilθ , Rd = 0, and Rz = Ily .

First, we let the unknown input d be white Gaussian noise
with zero mean and unit variance as in [6]. Fig. 3 shows
that the error for filter [1] (mean 0.37, standard deviation
0.03) is less than RCIE (mean 0.79, standard deviation 0.57).
Next, we consider a case where the unknown input d(k) =
1.5 [sin(kTs) + sin(2kTs) + 1], that is, d is harmonic with
two frequencies and a DC component. Fig. 4 shows that,
after the initial transient, the error for RCIE (mean 0.45,
standard deviation 0.31) converges close to the error for the
filter [1] (mean 0.45, standard deviation 0.31).
B. Lightly Damped Plant

We now consider the mass-spring-damper system with two
masses m1, m2, and an input force d on m1. The dynamics
are given by

1161



0 50 100
−4

−2

0

2

4

6

Time (s)
(a)

d

 

 
Unknown input
Filter [1]

0 50 100
−2

0

2

4

6

Time (s)
(b)

d

 

 
Unknown input
RCIE

0 50 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)
(c)

e

 

 
Filter [1]
RCIE

Fig. 4: Estimation of an unknown harmonic input d. (a) Filter [1] estimate.
(b) RCIE estimate. (c) Error in the input estimate. After the initial transient,
the error for RCIE (mean 0.45, standard deviation 0.31) converges close to
the error for the filter [1] (mean 0.45, standard deviation 0.31).

ẋ = Acx+Gcd, (31)

where

Ac
4
=

[
02×2 I2×2
Ω1 Ω2

]
, Gc

4
=

[
02×1
Ω3

]
, Ω1

4
=

[
−k1+k2m1

k2
m1

k2
m2

− k2
m2

]
,

Ω2
4
=

[
− c1+c2m1

c2
m1

c2
m2

− c2
m2

]
, Ω3

4
=

[
1
m1

0

]
,

x1 and x2 are the displacements (m), and x3 and x4 are
the velocities (m/s) of masses m1 and m2, respectively. We
choose m1 = m2 = 1 kg, k1 = k2 = 1 N/m, and c1 = c2 =
1 kg/s. We discretize (31) as

A = eAcTs , G = A−1c (Ac − I)Gc, (32)

where Ts = 0.1 s is the sampling time. The discretized
system has poles at 0.87± 0.08 and 0.97± 0.05. Letting

C =

[
1 0 0 0
0 1 0 0

]
,

we measure the mass positions and estimate the mass
velocities and the unknown input force d on m1. The
system (A,G,C) has no transmission zeros. We set x̂(0) =
xda(0) = [0 0 0 0]

T, D1 = 10−2diag(1, 1, 2, 2), and D2 =
10−2diag(1, 1). We choose Ntrial = 100, k0 = 0, nc =
4, nf = 4, Rθ = 10−2Ilθ , Rd = 10−8, and Rz = Ily .

We consider the case where the unknown input force d
is constant. Fig. 5 shows that the error for RCIE is close to
zero, whereas the error for filter [1] has mean 23.6 N and
standard deviation 3.2 N.

IV. NONMINIMUM-PHASE NUMERICAL EXAMPLES

A. Mass-spring system
We reconsider the system (31) but with zero damping,

that is, c1 = c2 = 0. Hence (31) is Lyapunov stable but
not asymptotically stable. The continuous-time system has
no transmission zeros, but the discretized system (A,G,C)
has one transmission zero at −1 due to the sampling.

We consider the case where the unknown input force d
is constant. Fig. 6 shows that the error for RCIE is 0.1 N at
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Fig. 5: Estimation of an unknown constant input for the lightly damped
mass-spring-damper system. (a) Filter [1] estimate. (b) RCIE estimate. (c)
Error in the input estimate. The error for RCIE is close to zero, whereas
the error for filter [1] has mean 23.6N and standard deviation 3.2N.
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Fig. 6: Estimation of an unknown constant input for the undamped mass-
spring system. (a) Filter [1] estimate. (b) RCIE estimate. (c) Error in the
input estimate. The error for RCIE is close to zero, whereas the error for
filter [1] keeps increasing.

t = 100 s, whereas the error for the filter [1] keeps increasing
and is 267.8 N at t = 100 s.

Note that the filter [10] reduces to the filter [1] for the case
where the measurement y does not depend on the unknown
input d, which is the case considered in this paper. The
behavior of the error shown in Fig. 6c with filter [1] for
the NMP system is consistent with the stability condition
(Theorem 6) given in [10].

B. Lateral Aircraft Dynamics Model
We consider the discretized lateral aircraft model [18]

A =


0.8482 0.0255 −0.0900 0.0038
−10.3212 0.8595 0.5152 −0.0210

0.0186 0.0041 0.9723 0.0001
−0.5304 0.0953 −0.0239 0.9999

 ,
G =

[
0.0036 0.2390 −0.0061 0.0124

]T
,

where Ts = 0.1 s, control input is the elevon deflection
(rad) and x =

[
β P R φroll

]T
, that is, sideslip angle
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Fig. 7: Estimation of an unknown elevon deflection for the aircraft lateral
dynamics. (a) Step deflection. (b) Ramp deflection. After the initial transient,
RCIE estimates both the unknown step and ramp elevon deflection.

(rad), roll rate (rad/s), yaw rate (rad/s), and roll angle (rad).
The roll-angle-to-elevon-deflection transfer function has two
NMP zeros at −1.004 and 1.136. Letting C = [0 0 0 1], we
measure roll angle and estimate elevon deflection. We set
x̂(0) = xda(0) = [0 0 0 0]

T, D1 = 10−4 diag(1, 1, 1, 1),
and D2 = 10−3. We choose k0 = 0, nc = 6, nf = 12, Rθ =
10−4Ilθ , Rd = 0, and Rz = 1.

We consider two cases for estimating the unknown elevon
deflection, namely, step deflection with height ±0.1 rad,
and ramp deflection with slope 0.001 rad/s. Fig. 7 shows
that, after the initial transient, RCIE estimates both the
unknown step and ramp elevon deflection of the aircraft.
For comparison, the estimates of d using filters [1] and [10]
diverges in less than 10 steps (not shown).

V. EXPERIMENTAL RESULTS

A. Theoretical framework and experimental setup
The Earth and body-fixed frames are denoted by FE and

FB, respectively. We assume that FE is an inertial frame and
the Earth is flat. The origin OE of FE is any convenient point
fixed on the Earth. The axes ı̂E and ̂E are horizontal, while
the axis k̂E points downward. FB is defined with ı̂B, ̂B and
k̂B fixed relative to the body. FB and FE are related by

FB =
→
RB/E FE, (33)

where
→
RB/E is a physical rotation matrix represented by a

3-2-1 Euler rotation sequence, involving two intermediate
frames FE′ and FE′′ . In particular,

→
RB/E =

→
Rı̂E′′ (Φ)

→
R̂E′ (Θ)

→
Rk̂E(Ψ), (34)

where FE′ =
→
RE′/E FE, FE′′ =

→
RE′′/E′ FE′ , and

→
Rn̂(κ)

is the Rodrigues rotation about the eigenaxis n̂ through the
eigenangle κ according to the right-hand rule.

Let p denote a point that is fixed on the body. The location
of p relative to OE is denoted by

⇀
r p/OE

and is resolved in
FE as [

X Y Z
]T 4

=
⇀
r p/OE

∣∣∣∣
E

. (35)

The velocity of p relative to OE with respect to FE is
⇀
v p/OE/E =

E•
⇀
r p/OE

, (36)

where E• denotes the derivative with respect to the time
taken in Earth frame. The acceleration of p relative to OE

with respect to FE is given by
⇀
a p/OE/E =

E•
⇀
v p/OE/E =

E••
⇀
r p/OE

. (37)

We resolve
⇀
a p/OE/E in FE and FB using the notation Ax

Ay
Az

 4= ⇀
a p/OE/E

∣∣∣∣
E

,

 ax
ay
az

 4= ⇀
a p/OE/E

∣∣∣∣
B

. (38)

Using (34) and (38),
⇀
a p/OE/E in FE is given by

⇀
a p/OE/E

∣∣∣∣
E

= OE/B
⇀
a p/OE/E

∣∣∣∣
B

, (39)

and thus,[
Ax Ay Az

]T
= OE/B

[
ax ay az

]T
, (40)

where
OE/B =

→
RE/B

∣∣∣∣
E

.

Note that (33)–(40) are kinematic relations that are applicable
to an arbitrary point p on a body and are independent of all
modeling information.

For estimating the inertial acceleration of p relative to OE

with respect to FE, (36)–(40) are written in state space form
ẋ = Acx+Gcd, (41)

where
Ac =

[
03×3 I3×3
03×3 03×3

]
, Gc =

[
03×3
I3×3

]
,

x =
[
X Y Z Ẋ Ẏ Ż

]T
, d =

[
Ax Ay Az

]T
,

whereas, for estimating the inertial acceleration of p relative
to OE with respect to FB, (36)–(40) are written as

ẋ = Acx+Gcd, (42)

where Ac =

[
03×3 I3×3
03×3 03×3

]
, Gc =

[
03×3
OE/B

]
,

x =
[
X Y Z Ẋ Ẏ Ż

]T
, d =

[
ax ay az

]T
.

Note that (41) and (42) are exact kinematic equations, and
thus do not include sensor noise. The source of process noise
in (42) is noisy measurements of Φ,Θ, and Ψ, which are used
to compute OE/B.

In the laboratory setup, we estimate the inertial acceler-
ation of a quadrotor in FE and FB using (41) and (42),

respectively, with C =
[
I3×3 03×3

]
. The position

⇀
r p/OE

∣∣∣∣
E

and attitude (Φ,Θ,Ψ) of the vehicle are obtained using
the Vicon system and recorded for post-flight data analysis.
To compare the estimated acceleration with the measured
acceleration, data from the vehicle’s inertial measurement
unit (IMU) is recorded and time-stamped. Using knowledge
of the vehicle attitude, IMU acceleration measurements are
corrected to compensate for gravity offset for comparison
with RCIE acceleration estimates.
B. Estimating inertial acceleration in the Earth frame

We discretize (41) using (32) with Ts=0.01 s, which is the
sample-rate of the recorded data. The system (A,G,C) is
NMP with six poles at 1 and three transmission zeros at −1.
We set D1 = 10−1I6×6, and D2 = 10−1I3×3, and choose
k0=0, nc=12, nf=6, Rθ=10−6Ilθ , Rd=10−4Ild , Rz=Ily .

1163



0 5 10 15 20 25 30

−10

−5

0

5

10
A

x
(m

/
s2
)

Time (s)

 

 
IMU data
RCIE estimate

0 5 10 15 20 25 30

−10

−5

0

5

10

A
y
(m

/
s2
)

Time (s)

 

 
IMU data
RCIE estimate

0 5 10 15 20 25 30

−10

−5

0

5

10

A
z
(m

/
s2
)

Time (s)

 

 
IMU data
RCIE estimate

Fig. 8: Estimation of the inertial acceleration of the quadrotor relative to
OE with respect to FE using position measurements. RCIE estimates are
compared with the IMU acceleration measurements transformed to FE and
corrected to compensate for gravity offset.

Fig. 8 shows the accuracy of the RCIE estimate of the
inertial acceleration of the quadrotor in FE using position
measurements obtained from the Vicon system. For this
setup, the estimates of d using filters [1] and [10] diverge in
less than 250 steps (not shown).
C. Estimating inertial acceleration in the body frame

Noting that Gc is time varying in (42), we discretize
(42) at each time step k using (32) with Ts = 0.01 s,
which is the sample-rate of the recorded data. We choose
D1 = 10−2I6×6, and D2 = 10−1I3×3, k0 = 0, nc =
12, nf = 6, Rθ = 10−10Ilθ , Rd = 10−4Ild , and Rz = Ily .

Fig. 9 shows the accuracy of the RCIE estimate of the
inertial acceleration of the quadrotor in the body frame using
position and attitude measurements obtained from the Vicon
system. For this setup, the estimates of d using filters [1] and
[10] diverge in less than 250 steps (not shown).

VI. CONCLUSION
This paper presented an extension of retrospective cost

input estimation (RCIE) and demonstrated its applicability to
nonminimum-phase systems. Input estimation was performed
for both numerical examples and for laboratory data, where
camera measurements were used to estimate acceleration
with validation based on onboard accelerometers.
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