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Abstract. We compare four spacecraft attitude control laws that re-
quire no prior modeling of the spacecraft mass distribution. All four
control laws are based on rotation matrices, which provide a singularity-
free attitude representation and unwinding-free operation without dis-
continuous switching. We apply these control laws to motion-to-rest
and motion-to-spin maneuvers. Simulation results are given to illustrate
the robustness of the control laws to uncertainty in the spacecraft iner-
tia. For motion-to-rest maneuvers about a principal axis with bounded
torque, we compare the settling time of the inertia-free control laws with
the time-optimal bang-bang control law operating under known inertia.
We also investigate closed-loop performance in the presence of attitude-
dependent torque disturbances, actuator nonlinearities, sensor noise, and
actuator bias.

Keywords: Attitude control, unmodeled inertia, rotation matrix,
SO(3).

1 Introduction

The development of a spacecraft attitude control system is often a labor-intensive
process due to the need for an accurate model of the spacecraft inertia. Determin-
ing and predicting the mass properties of a spacecraft may be difficult due to fuel
usage, deployment, structural articulation, and docking. To alleviate this need,
this paper focuses on spacecraft attitude control laws that require no modeling
of the spacecraft’s mass distribution. An adaptive inertia-free attitude control
law is given in [1] for minimum-time maneuvers. Inertia-free control laws for
motion-to-rest and tracking are given in [2–4].

Attitude control laws can use various parameterizations of the rotation group
SO(3). Euler angles are conceptually the simplest, but cannot represent all angu-
lar velocities due to singularities corresponding to gimbal lock. A related obstacle
arises in the use of Rodrigues parameters and modified Rodrigues parameters,
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which have singularities at 180-deg and 360-deg rotation angles, respectively.
The most common attitude representation is based on quaternions, which can
represent all attitudes and all angular velocities, but provide a double cover
of SO(3), that is, each physical attitude is represented by two elements of the
4-dimensional sphere S3. A continuous controller designed on the set of quater-
nions can thus inadvertently command the spacecraft to needlessly rotate 360
degrees to reach the commanded attitude. This is the unwinding problem [5].
The inertia-free, quaternion-based control laws in [3, 6, 7] exhibit unwinding.

There are several approaches to avoiding unwinding. The traditional approach
is to implement a logic statement that confines the quaternions to a hemisphere
of S3 [8]. This approach introduces a discontinuous control law, which can lead
to chattering in the presence of noise. This issue and associated complications
are addressed in [9].

In the present paper we avoid unwinding by representing attitude in terms
of rotation matrices, which constitute a one-to-one representation of physical
attitude without attitude or angular-velocity singularities [10]. Attitude control
on SO(3) thus provides the ability to implement continuous control laws that do
not exhibit unwinding [11–13]. Inertia-free control laws on SO(3) are developed
in [14, 15]. Lie groups are used for control in [16].

Since SO(3) is a compact manifold, every continuous vector field on it nec-
essarily possesses more than one equilibrium, in fact, at least four. This means
that global convergence on SO(3) under continuous, time-invariant control is im-
possible. Consequently, the objective of [12, 13, 15] is almost global stabilization,
where the spurious equilibria are saddle points. Although the spurious equilib-
ria can slow the rate of convergence, this approach avoids the complications of
discontinuous control laws.

Although the derivation of the inertia-free controller in [15] and the present
paper is based on rotation matrices, the attitude error given by the S-parameter
defined by (7) can be computed from any attitude parameterization, such as
quaternions or modified Rodrigues parameters, and thus these results are not
confined to rotation matrices per se.

The goal of this paper is to compare four continuous, inertia-free attitude
control laws based on rotation matrices. These control laws are called SO(3)/0,
SO(3)/3, SO(3)/6, and SO(3)/9, where the last number represents the number
of integrators in the control law. These control laws take the form of nonlinear
PD/PID control laws tailored to the nonlinear characteristics of spacecraft dy-
namics. Since linearized rigid-body dynamics comprise a double integrator about
each principal axis, we expect (as in the case of linear systems) that asymptotic
tracking of attitude ramp commands (that is, spin commands) about each prin-
cipal axis is possible without integral action. The primary role of integral control
in spacecraft attitude dynamics is thus to reject constant disturbances.

In the simplest case of PD control, the inertia-free SO(3)/0 control law is
given in [14]. In contrast, the SO(3)/9 control given in [15] is also inertia free
but employs three integrators inside the feedback loop as well as six integra-
tors for inertia estimation. The control laws SO(3)/3 and SO(3)/6 are ad hoc
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simplifications of SO(3)/9. The goal of this paper is to numerically investigate
and compare the closed-loop performance of these control laws under various
command-following and disturbance-rejection scenarios as well as under vari-
ous off-nominal conditions involving rate-sensor noise and unmodeled actuator
nonlinearities, such as saturation, on-off, and deadzone.

We consider two basic scenarios, namely, motion-to-rest (M2R) maneuvers
and motion-to-spin (M2S) maneuvers, where “rest” and “spin” refer to motion
relative to an inertial frame. If the M2R and M2S maneuvers begin from zero
angular velocity, then we use the terminology rest-to-rest (R2R) and rest-to-spin
(R2S), respectively. A M2S maneuver aims to bring the spacecraft from an arbi-
trary initial angular velocity and attitude to a specified constant angular velocity
relative to an inertial frame. In other words, the goal is to have the spacecraft
rotate at a constant rate about a body-fixed axis whose inertial direction is fixed.

Although the spacecraft inertia is unknown, and thus the directions of the
principal axes of inertia are unknown, we consider commanded spins about both
principal and non-principal axes (without knowing whether the commanded axis
of rotation is principal or non-principal) in order to demonstrate how these con-
trol laws perform in various scenarios. For example, a commanded spin about
a principal axis has the advantage that, once the spacecraft reaches the com-
manded spin, no additional torque is needed in the absence of disturbances
except possibly to stabilize a spin about the minimum and intermediate axes,
where the latter is naturally unstable and the former is unstable due to energy
dissipation, although we do not model this effect. Furthermore, as shown in [17,
p. 377], a spin about a non-principal axis with constant torque and for which all
components of the angular velocity are nonzero is unstable and thus stabiliza-
tion is required. Finally, a commanded spin about a non-principal axis requires
constant, nonzero torques and thus is more sensitive to torque saturation than a
commanded spin about a principal axis. In summary, a commanded spin about
a non-principal axis places significantly higher demands on the control law in
terms of stabilization and control authority.

Throughout this paper, all control torques are assumed to be provided by
thrusters or gas jets without onboard stored momentum.

2 Spacecraft Model

The spacecraft equations of motion are given by Euler’s and Poisson’s equations

Jω̇ = (Jω)× ω +Bu+ zdist, (1)

Ṙ = Rω×, (2)

where ω ∈ R
3 is the angular velocity of the spacecraft frame relative to the

inertial frame resolved in the spacecraft frame, ω× is the cross-product matrix
of ω, J ∈ R

3×3 is the inertia matrix of the spacecraft, the components of the
vector u ∈ R

3 represent three independent torque inputs, and the nonsingular
matrix B ∈ R

3×3 determines the applied torque about each axis of the spacecraft
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frame due to u. The rotation matrix R = OIn/SC ∈ R
3×3 is the physical rotation

matrix that transforms the inertial frame into the spacecraft frame resolved
in the spacecraft frame, and where OIn/SC is the orientation (direction cosine)
matrix that transforms components of a vector resolved in the spacecraft frame
into the components of the same vector resolved in the inertial frame. The vector
zdist ∈ R

3 represents disturbance torques, such as the gravity gradient torques
modeled by (25) below.

The objective of the attitude control problem is to determine control inputs
such that the spacecraft attitude given by R follows a commanded attitude
trajectory given by the possibly time-varying C1 rotation matrix Rd(t). For
t ≥ 0, Rd(t) is given by

Ṙd(t) = Rd(t)ωd(t)
×, Rd(0) = Rd0, (3)

where ωd is the commanded possibly time-varying angular velocity vector re-
solved in the desired body frame specified by Rd(t). The error between R(t) and

Rd(t) is given by the attitude-error rotation matrix R̃
�
= RT

dR, which satisfies

the differential equation ˙̃R = R̃ω̃×, where the angular-velocity error ω̃ is defined

by ω̃
�
= ω − R̃Tωd. We rewrite (1) in terms of ω̃ as

J ˙̃ω = J(ω̃ + R̃Tωd)× (ω̃ + R̃Tωd) + J(ω̃ × R̃Tωd − R̃Tω̇d) +Bu+ zdist. (4)

A scalar measure of attitude error is given by the eigenaxis error

e(t)
�
= cos−1(12 [tr R̃(t)− 1]).

3 Control Laws

3.1 SO(3)/9

To estimate the spacecraft inertia, we introduce the notation Jω = L(ω)γ, where
γ ∈ R

6 is defined by

γ
�
=

[
J11 J22 J33 J23 J13 J12

]T
(5)

and

L(ω)
�
=

⎡

⎣
ω1 0 0 0 ω3 ω2

0 ω2 0 ω3 0 ω1

0 0 ω3 ω2 ω1 0

⎤

⎦ .

Next, let Ĵ ∈ R
3×3 denote an estimate of J , and define the inertia-estimation

error J̃
�
= J − Ĵ . Letting γ̂, γ̃ ∈ R

6 represent Ĵ , J̃ , respectively, as in (5), it
follows that γ̃ = γ − γ̂. Likewise, let ẑdist ∈ R

3 denote an estimate of zdist, and

define the disturbance-estimation error z̃dist
�
= zdist − ẑdist.
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Assuming that the disturbance is harmonic, zdist can be modeled by

ḋ = Adistd, zdist = Cdistd, (6)

where Adist ∈ R
nd×nd and Cdist ∈ R

3×nd are known matrices. In this model,
d(0) is unknown, which is equivalent to the assumption that the amplitude and
phase of all harmonic components in the disturbance are unknown; however,
the spectrum of d is assumed to be known. To provide asymptotic rejection of
harmonic disturbances, the matrix Adist is chosen to include eigenvalues of all
frequency components that may be present in zdist, where the zero eigenvalue
corresponds to a constant disturbance. Since zdist is harmonic, Adist is chosen
to be skew symmetric. Let d̂ ∈ R

nd denote an estimate of d, and define the

disturbance-state estimation error d̃
�
= d− d̂.

The role of tr(A − AR̃) in the stability analysis below is explained by the
following result.

Lemma 1. [15] Let A ∈ R
3×3 be a diagonal positive-definite matrix, and let R

be a rotation matrix. Then, the following statements hold:

i) For all i, j = 1, 2, 3, Rij ∈ [−1, 1].
ii) tr(A−AR) ≥ 0.
iii) tr(A−AR) = 0 if and only if R = I.

The attitude error S is defined by [11, 13–15]

S
�
=

3∑

i=1

ai(R̃
Tei)× ei, (7)

where a1, a2, a3 are distinct positive numbers and e1, e2, e3 ∈ R
3 are the standard

basis vectors.

Theorem 1. [15] Let Kp be a positive number, let K1 ∈ R
3×3, Q ∈ R

6×6, and
D ∈ R

nd×nd be positive definite, let A = diag(a1, a2, a3) be a diagonal positive-
definite matrix, and define the attitude error S by (7). Then the Lyapunov
candidate

V (ω̃, R̃, γ̃, d̃)
�
= 1

2 (ω̃ +K1S)
TJ(ω̃ +K1S) +Kptr (A−AR̃) + 1

2 γ̃
TQγ̃ + 1

2 d̃
TDd̃

is positive definite, that is, V is nonnegative, and V = 0 if and only if ω̃ = 0,
R̃ = I, γ̃ = 0, and d̃ = 0.

Theorem 2. [15] Let Kp be a positive number, let Kv ∈ R
3×3, K1 ∈ R

3×3,
Q ∈ R

6×6, and D ∈ R
nd×nd be positive definite, assume that AT

distD + DAdist

is negative semidefinite, let A = diag(a1, a2, a3) be a diagonal positive-definite
matrix with distinct diagonal entries, define S and V as in Theorem 1, and let
γ̂ and d̂ satisfy

˙̂γ =Q−1[LT(ω)ω× + LT(K1Ṡ + ω̃ × ω − R̃Tω̇d)](ω̃ +K1S), (8)
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where

Ṡ =

3∑

i=1

ai[(R̃
Tei)× ω̃]× ei, (9)

and

˙̂
d = Adistd̂+D−1CT

dist(ω̃ +K1S), ẑdist = Cdistd̂. (10)

Furthermore, let

u = B−1(v1 + v2 + v3), (11)

where

v1
�
= −(Ĵω)× ω − Ĵ(K1Ṡ + ω̃ × ω − R̃Tω̇d), (12)

v2
�
= −ẑdist, v3

�
= −KpS −Kv(ω̃ +K1S). (13)

Then,

V̇ (ω̃, R̃, γ̃, d̃) =− (ω̃ +K1S)
TKv(ω̃ +K1S)−KpS

TK1S

+ 1
2 d̃

T(AT
distD +DAdist)d̃ (14)

is negative semidefinite. Furthermore, the equilibrium manifold (ω̃, R̃, (γ̃, d̃)) =
(0, I,Q0) of the closed-loop system given by (4) and (8)-(13) is locally asymp-
totically stable, and the remaining equilibrium manifolds given by (0,Ri,Qi),
for i ∈ {1, 2, 3} are unstable. Finally, the set of all initial conditions converg-
ing to these equilibrium manifolds forms a lower dimensional submanifold of
R

3 × SO(3)× R
6 × R

3.
Saturation techniques for SO(3)/9 are discussed in [18].

3.2 SO(3)/6

The control law SO(3)/6 is a simplification of the SO(3)/9 control law (11)–(13)
with v2 and thus (10) omitted. In particular, this control law has the form

u = −B−1[(KpI +KvK1)S +Kvω̃ + ĴK1Ṡ + (Ĵω)× ω + Ĵ(ω̃ × ω)− ĴR̃Tω̇d].
(15)

3.3 SO(3)/3

The control law SO(3)/3 is a simplification of the SO(3)/9 control law (11)–(13)
with the inertia estimate (8) omitted and with Adist = 0. In particular, this
control law has the form

u = −B−1

[
(KpI +KvK1)S +KiCdistD

−1CT
dist

∫ t

0

[ω̃(s) +K1S(s)] ds+Kvω̃

]
,

(16)

where the integral gain Ki is a positive number.
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3.4 SO(3)/0

The SO(3)/0 control law for almost global stabilization [14, 15] is given by

u = −B−1(KpS +Kvω̃), (17)

where the positive number Kp and the positive-definite matrix Kv ∈ R
3×3 are

proportional (attitude) and derivative (angular velocity) gains, respectively.
Note that the control law (17) is inertia-free. The stabilizing effect of this

control law on the attitude of a rigid spacecraft follows from the Lyapunov
function

V (ω, R̃)
�
= 1

2ω
TJω +Kptr(A−AR̃), (18)

where A
�
= diag(a1, a2, a3) and for which V̇ (ω, R̃) = −ωTKvω. The invariant set

theorem is used in [14] to ensure almost global asymptotic stability.
By choosing Kv to be a function of ω, the control law (17) satisfies the fol-

lowing saturation bounds [15, 18].

Proposition 1. Let α and β be positive numbers, let A = diag(a1, a2, a3) have
distinct positive diagonal entries, and let Kp and Kv(ω) be given by

Kp =
α

trA
(19)

and

Kv(ω) = β

⎡

⎢
⎣

1
1+|ω1| 0 0

0 1
1+|ω2| 0

0 0 1
1+|ω3|

⎤

⎥
⎦ . (20)

Then, for all t ≥ 0, the control torque given by (17) satisfies

‖u(t)‖∞ ≤ α+ β

σmin(B)
. (21)

For the remainder of the paper, Kp and Kv are assumed to be given by (19)
and (20). Alternative forms of the gain Kv(ω) are given in [19].

4 Modeling Inertia Variations

If the inertia tensor is resolved in a non-principal body-fixed frame, then the
diagonal entries of the resulting inertia matrix are the moments of inertia and
the off-diagonal entries are the products of inertia. The off-diagonal entries of
the inertia matrix are thus a consequence of an unknown rotation between a
principal body-fixed frame and an arbitrarily chosen body-fixed frame.

Figure 1 shows the triangular region of feasible principal moments of inertia of
a rigid body. There are five cases that are highlighted for the principal moments
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of inertia λ1 ≥ λ2 ≥ λ3 > 0, where λ1, λ2, λ3 satisfy the triangle inequality
λ1 < λ2 + λ3. Let m denote the mass of the rigid body. The point λ1 = λ2 = λ3

corresponds to a sphere of radius r̂ =
√

5λ1

2m ; the point λ1 = λ2 = 2λ3 corresponds

to a cylinder of length l and radius r, where l = 3r and r =
√

2λ1

m ; and the

point λ1 = 6
5λ2 = 2λ3 is a brick whose side lengths are l1, l2, l2 and whose

inertia is located at the centroid of the triangular region. The remaining two
cases in Figure 1 are limiting cases. In particular, the thin disk is a cylinder
with zero length, positive radius, and infinite density, while the thin cylinder is
a cylinder with positive length, zero radius, and infinite density. Note that the
inertia matrix of the thin disk is positive definite, whereas the inertia matrix
of the thin cylinder is positive semidefinite but not positive definite. Table 1
summarizes the parameters and densities for each of these rigid bodies.

k

65

Fig. 1. Feasible region of the principal moments of inertia λ1, λ2, λ3 of a rigid body
satisfying 0 < λ3 ≤ λ2 ≤ λ1, where λ1 < λ2 + λ3. The shaded region shows all feasible
values of λ2 and λ3 in terms of the largest principal moment of inertia λ1. The open
dots and dashed line segment indicate nonphysical, limiting cases.

5 M2R Examples

For all of the examples in this section, we assume that the nominal body-fixed
frame is a principal body-fixed frame. However, the body-fixed frame is not a
principal-axis frame for the off-nominal cases considered below. The nominal
spacecraft shape is chosen to be a brick corresponding to the centroid of the
triangular region in Figure 1. For all cases considered, we choose λ1 = 10 kg-m2,
which for the centroidal brick yields the inertia J3 = diag(10, 25/3, 5). Conse-
quently, the inertias J1, J2, J4, and J5 of the sphere, cylinder, thin disk, and thin
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Table 1. Parameters and densities for the inertia matrices considered in Figure 1. Note
that the parameters for all shapes are set by the ratio λ1/m, where λ1 is the principal
moment of inertia and m is the mass.

Shape Parameters Density

Sphere r̂ =
√

5λ1

2m ρ = 4
3πm

2/5(5λ1

2 )2/5

Cylinder l = 3r, r =
√

2λ1

m ρ = 3πm2/5(2λ1)
2/5

Brick l1 =
√

2λ1

m , l2 =
√

4λ1

m , l3 =
√

8λ1

m ρ = 8m2/5λ
2/5
1

Thin disk l = 0, r =
√

2λ1

m ρ = ∞
Thin cylinder r = 0, l =

√
12λ1

m ρ = ∞

cylinder are given, respectively, by J1 = diag(10, 10, 10), J2 = diag(10, 10, 5),
J4 = diag(10, 5, 5), and J5 = diag(10, 10, 0.1), where all units are kg-m2. The
inertia matrix J3 corresponding to the centroid of the inertia region serves as
the nominal inertia matrix, while a perturbation J(α) of Ji in the direction of
Jj has the form J(α) = (1 − α)Ji + αJj , where α ∈ [0, 1] is the perturbation
parameter. To facilitate numerical integration, J5 is chosen to be a nonsingular
approximation of the inertia of a thin cylinder.

For all examples in the remainder of the paper, let α = β = 1, K1 = I3, Ki =
0.015, A = diag(1, 2, 3), B = I3, Cdist = I3, D = I3, and Q = I6. Furthermore, Kp

and Kv are defined in (19) and (20), respectively. To evaluate the performance
for R2R examples, we use the settling-time metric

k0 = min
k>100

{k : for all i ∈ {1, . . . , 100}, e((k − i)Ts) < 0.05 rad}, (22)

where k is the simulation step, Ts is the integration step size, and e(kTs) is the
eigenaxis error at the kth simulation step. This metric is thus the minimal time
such that the eigenaxis error in the 100 most recent simulation steps is less than
0.05 rad.

5.1 M2R Examples without Disturbances

To illustrate the inertia-free property of the control laws, the inertia of the
spacecraft is varied using

Jij(α) = (1− α)Ji + αJj , (23)

where α ∈ [0, 1] for i, j ∈ {(1, 5), (3, 1), (3, 5), (3, 4)}.
Next, we examine the robustness of the thrusters to misalignment relative to

the principal axes. To model this misalignment, the inertia matrix is rotated
by an angle θ about either the x-axis, y-axis, or z-axis. For each rotation, J3 is
transformed by

J ′
3 = O(θ)J3O(θ)T, (24)



526 M. Camblor et al.

where O(θ) is a direction cosine matrix.
Figure 2 shows how the thruster misalignment angle θ affects the settling

time, where θ is varied from −180 deg to 180 deg. Figure 2 also shows how the
R2R settling time depends on α. Both inertia robustness studies are shown for
SO(3)/3 and SO(3)/9.

5.2 M2R Examples with Disturbances

Figure 3 illustrates how the control laws handle body-constant disturbance
torques about the minor axis. Note that SO(3)/0 and SO(3)/6 are not able
to reject constant torque disturbances.

Next, we consider a gravity gradient disturbance torque τg modeled by [17,
pp. 386–390]

τg = 3n2(OSC/Le3)
×J(OSC/Le3), (25)

where n
�
=

√
μ/r3 is the orbital mean motion, μ is the gravitational parameter,

r is the orbit radius, e3 is the third column of the 3 × 3 identity matrix, and
OSC/L ∈ R

3×3 is the orientation matrix of the spacecraft frame FSC relative to
the local-vertical-local-horizontal frame FL. The satellite orbit is circular with
an altitude of 300 km.

Figure 4 shows that SO(3)/3 and SO(3)/9 can reject gravity gradient dis-
turbances for a R2R maneuver. Furthermore, Figure 5 shows the closed-loop
performance of SO(3)/3 and SO(3)/9 for a commanded inertial attitude in the
presence of a gravity gradient disturbance.

Next, we consider an inertially constant disturbance torque. Figure 6 shows
the performance of all four controllers as the disturbance magnitude is increased.
The settling time is computed for the control laws that can reject the inertially
constant disturbance, whereas the steady-state error is computed for those that
bring the spacecraft to rest with an incorrect attitude.

5.3 M2R Examples with Input Nonlinearities

Next, we consider the effect of three nonlinearities, namely, torque cut-off satu-
ration, control-torque deadzone, and thrusters operating in on-off mode with the
input torque given by the on-off control law u(t) = umaxsign(v(t)), where v(t) is
the torque commanded by the SO(3) control law. Figure 7 shows the effect of in-
creasingly restrictive saturation levels for all of the control laws. Figure 8 shows
how each controller performs the same M2R maneuver using on-off actuation.
Figure 9 illustrates how the settling time changes as a function of the width of
the unknown control-torque deadzone.

We also consider the effect of sensor noise corrupting the angular-velocity
measurement. Two types of noise are considered, namely, gyro bias, that is, a
constant error in the measurement of ω, as well as zero-mean white gyro noise
with a signal-to-noise ratio of 20. Figure 10 shows the performance of all four
controllers when either gyro bias or stochastic gyro noise is present. SO(3)/3,
SO(3)/6, and SO(3)/9 are able to reduce the attitude error below 0.05 rad.
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(c) SO(3)/3. Variations in the settling time are within 30%.
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(d) SO(3)/9. Variations in the settling time are within 44%.

Fig. 2. R2R settling time with no disturbance for SO(3)/3 and SO(3)/9 as a function
of the principal-frame/body-frame rotation angle θ for misalignments about each of
the three principal axes of J3 (a), (b), and the perturbation parameter α for various
combinations of inertia matrices (c), (d). The commanded maneuver is a 40-deg ro-
tation about the body-fixed direction [1 1 1]T. Each controller is implemented with a
single tuning for all inertia cases. Convergence is achieved for all four cases.
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Fig. 3. Body-constant torque-disturbance rejection about the minor axis. The com-
manded maneuver is a 40-deg rotation about the body-fixed direction [1 1 1]T. Note that
the performance of SO(3)/6 is substantially better than the performance of SO(3)/0,
and the performance of SO(3)/3 improves relative to SO(3)/9 as the magnitude of the
torque disturbance increases.

However, SO(3)/0 is not able to achieve the commanded attitude in the presence
of either gyro bias or zero-mean white measurement noise.

6 M2S Examples

6.1 M2S Examples without Disturbances

Next, we consider M2S maneuvers. For spins about a principal axis, Euler’s equa-
tion becomes a linear second-order system, and thus integrators in the controller
are not required to stabilize spin commands. As shown in Figure 11, SO(3)/0 can
stabilize spins about a principal axis. Figure 12 shows, however, that SO(3)/0
cannot follow spin commands about a non-principal axis.

6.2 M2S Examples with Disturbances

Figure 13 shows that SO(3)/3 and SO(3)/9 can achieve spins about a non-
principal axis in the presence of constant torque disturbances.

Figure 14 shows that SO(3)/6 is able to follow spin commands about a non-
principal axis, albeit with large settling times. In the presence of a torque distur-
bance, SO(3)/6 cannot follow spin commands, and the resulting spin is about an
incorrect axis. Consistent with [17, pp. 377], Figure 14 also confirms that non-
principal-axis spins are unstable, since the spacecraft attitude diverges when the
input torque is switched off.



Inertia-Free Spacecraft Attitude Control Laws 529

0 100 200 300 400
0

0.5

1

1.5

Time (sec)

E
ig

en
a
xi

s
A

tt
it
u
d
e

E
rr

o
r

(r
a
d
)

θ

(a) SO(3)/3. Eigenaxis
attitude error.

0 100 200 300 400
−6

−4

−2

0

2

4

6

Time (sec)

T
o
rq

u
e

In
p
u
t

(N
-m

)

u1

u2

u3

(b) SO(3)/3. Torque input

0 1000 2000 3000
−2

−1

0

1

2 x 10−5

Time (sec)

T
o
rq

u
e

In
p
u
t

M
a
g
n
ifi

ed
(N

-m
)

u1

u2

u3

(c) SO(3)/3. Torque input
zoomed.

0 1000 2000 3000
−2

−1

0

1

2 x 10−5

Time (sec)

G
ra

v
it
y

G
ra

d
ie

n
t

T
o
rq

u
e

(N
-m

)

τg1

τg2

τg3

(d) SO(3)/3. Gravity gradient
disturbance torque.
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(f) SO(3)/9. Torque input.
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(h) SO(3)/9. Gravity gradient
disturbance torque.

Fig. 4. Gravity gradient disturbance rejection for SO(3)/3 and SO(3)/9. The com-
manded maneuver is a 90-deg rotation about the body-fixed direction [0 1 0]T. The
spacecraft is stabilized, and the disturbance torque is rejected. Note that the control
input is the mirror image of the disturbance torque once that the commanded attitude
is achieved.
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(c) SO(3)/9. Gravity gradient
disturbance torque.
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(d) SO(3)/9. Torque input.

Fig. 5. Gravity-gradient disturbance rejection for SO(3)/3 and SO(3)/9. The com-
manded motion is along a circular orbit with R(0) = I and the commanded attitude
Rd = I . Note that the inertially constant pointing command is achieved despite the
presence of an attitude-dependent sinusoidal disturbance due to gravity gradients. Note
that the control input is the mirror image of the disturbance torque.
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Fig. 6. Inertially constant disturbance-torque rejection about the inertially fixed direc-
tion [0 0 1]T. The maneuver is a 40-deg rotation about the body-fixed direction [1 1 1]T.
The control laws SO(3)/0 and SO(3)/6 bring the spacecraft to rest with an attitude
offset, whereas SO(3)/3 and SO(3)/9 bring the spacecraft to rest with the commanded
attitude. Note that SO(3)/6 and SO(3)/9 perform substantially better than SO(3)/0
and SO(3)/3.
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Fig. 7. R2R settling time as a function of the control-torque saturation level on all
three axes. The maneuver is a 40-deg rotation about the body-fixed direction [1 1 1]T.
Note that, at low saturation levels, SO(3)/0 stabilizes the spacecraft, whereas SO(3)/3,
SO(3)/6, and SO(3)/9 fail. Saturation does not affect the performance of SO(3)/0 for
saturation levels greater than 0.3 N-m.
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Fig. 8. Performance comparison using on-off thrusters. The maneuver is a 40-deg rota-
tion about the body-fixed direction [1 1 1]T. The tuning parameters and control-torque
magnitude are the same in all four cases.
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Fig. 9. R2R settling time for all four control laws as a function of the width of an
unknown control-torque deadzone. The maneuver is a 40-deg rotation about the body-
fixed direction [1 1 1]T. Note that, for deadzones of small width, SO(3)/0 fails to
stabilize the spacecraft, whereas SO(3)/3, SO(3)/6, and SO(3)/9 can stabilize at much
higher control-torque deadzones.

7 Comparison to Classical Optimal Control

Classical optimal control laws have been applied extensively to spacecraft rota-
tional maneuvers [20–22]. These control laws are based on the minimum princi-
ple, and, unlike the inertia-free SO(3) control laws considered in this paper, they
assume exact knowledge of the inertia properties of the spacecraft. Nevertheless,
it is useful to compare the performance of these control laws to the SO(3) control
laws in order to assess the effect of inertia uncertainty modeling information.

For 3-axis maneuvers, the control laws given in [20–22] involve complicated
switching strategies. For simplicity, we therefore assume that the commanded
maneuver is about the major axis only, giving double integrator dynamics, and
with the direction and moment of inertia of the major axis assumed to be known.
Using the classical time-optimal control law

u = −umaxsign

(
θ − J

2umax
θ̇|θ̇|

)
, (26)

where umax > 0 is the control-torque magnitude and θ is the rotation angle about
the major axis, we simulate the closed-loop system and compare the settling
time to that of the SO(3) control laws operating in on-off mode with the same
magnitude as (26). Note that the inertia in (26) is the true spacecraft inertia.
To determine the performance of (26) under imperfect modeling information,
we then introduce uncertainty about both the major moment of inertia and the
direction of the major axis. Comparisons with the SO(3) control laws provide
a baseline tradeoff between settling time and modeling accuracy. The results of
these comparisons are shown in Figures 15 and 16.
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(c) SO(3)/6. Gyro bias.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time (sec)
E

ig
en

a
xi

s
A

tt
it
u
d
e

E
rr

o
r

(r
a
d
)

(d) SO(3)/9. Gyro bias.
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(g) SO(3)/6. Zero-mean white
gyro measurement noise.
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Fig. 10. (a)–(d) Controller performance in the presence of a gyro bias of [0 0 0.01]T

rad/sec. (e)–(h) Comparison of controller sensitivity to zero-mean white gyro measure-
ment noise with a signal-to-noise ratio of 20. All four controllers are able to bring the
spacecraft to rest. However, SO(3)/0 is not able to stabilize to the correct attitude with
either gyro bias or white noise. In all simulations, the maneuver is a 40-deg rotation
about the body-fixed direction [1 1 1]T. The tuning parameters and signal-to-noise
ratio are kept the same.
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(c) Torque inputs.
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Fig. 11. R2S maneuver for SO(3)/0 with ωd = [0 0 0.3]T rad/sec. The spacecraft is
initially at rest with R = I and Rd(0) = I . The controller is able to follow the spin
command, which is about a principal axis.



Inertia-Free Spacecraft Attitude Control Laws 535

0 100 200 300
0

0.5

1

1.5

2

Time (sec)

E
ig

en
a
xi

s
A

tt
it
u
d
e

E
rr

o
r

(r
a
d
)
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(c) Torque inputs.
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Fig. 12. R2S maneuver for SO(3)/0 with ωd = [0.2 −0.5 0.3]T rad/sec. The spacecraft
is initially at rest with R = I and Rd(0) = I . The controller spins the spacecraft with
the commanded angular rate but about an incorrect axis, as shown by the attitude
error. Thus SO(3)/0 cannot follow the spin command, which is about a non-principal
axis.
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(c) SO(3)/3. Torque inputs.
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(e) SO(3)/9. Eigenaxis error.
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(f) SO(3)/9. Angular velocity
components.
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(g) SO(3)/9. Torque inputs.
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Fig. 13. R2S maneuver for ωd = [0.2 −0.5 0.3]T rad/sec with gravity gradient distur-
bance and the body-constant disturbance torque d = [0 0 0.2]T N-m for SO(3)/3 and
SO(3)/9. The spacecraft is initially at rest with R = I and Rd(0) = I . The controller
rejects the disturbances and follows the spin command.
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(a) SO(3)/6. Eigenaxis error.
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(c) SO(3)/6. Torque inputs.
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(d) SO(3)/6. Torque input norm.
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(e) SO(3)/3. Eigenaxis error.
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(f) SO(3)/3. Angular velocity.
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(g) SO(3)/3. Torque inputs.
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Fig. 14. R2S maneuver for SO(3)/6 and SO(3)/3 with ωd = [0.2 −0.5 0.3]T rad/sec.
The spacecraft is initially at rest with R = I and Rd(0) = I . The controllers follow the
spin command. In the case of SO(3)/3, the torque input is switched off at time t = 500
sec to show the instability of the commanded spin about a non-principal axis.
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(a) SO(3)/0 control law.
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(b) SO(3)/3 control law.
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(c) SO(3)/6 control law.
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(d) SO(3)/9 control law.
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(e) Bang-bang control law.

Fig. 15. Convergence-time comparison for the SO(3) control laws using on-off thrusters
and the classical optimal bang-bang control law. The maneuver is a 30-deg rotation
about the body-fixed principal-axis direction [1 0 0]T. The torque on-level umax = 0.5
N-m is the same for all controllers. The inertia used in the optimal bang-bang control
law is the true spacecraft inertia J .
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Fig. 16. Performance of the classical optimal bang-bang control law in the presence
of an inertia error. The actual bang-bang inertia matrix is rotated relative to the
true spacecraft inertia matrix. This inertia misalignment is a 5-deg rotation about the
body-fixed direction [0 1 0]T. The commanded maneuver is a 30-deg rotation about
the body-fixed direction [1 0 0]T. Note that a slight inertia misalignment leads to failure
of the bang-bang control law.
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Table 2. Summary of controller capabilities. Motion to rest (M2R), gravity gradient
disturbances (GG), constant torque disturbance (in body frame) (BD), constant torque
disturbance (in inertial frame) (ID), torque saturation level (SAT), unknown control-
torque deadzone (DZ), and on-off thruster actuation (ON/OFF). The notation used is,
Y, N: Yes or no; L, S: based on Lyapunov theory or based on simulation.

Maneuver SO(3)/0 SO(3)/3 SO(3)/6 SO(3)/9

M2R Y/L Y/S Y/S Y/L
M2R + ID N/S Y/S N/S Y/L
M2R + GG + BD N/S Y/S N/S Y/L
M2R + SAT Y/S Y/S Y/S Y/S
M2R + DZ Y/S Y/S Y/S Y/S
M2R + ON/OFF Y/S Y/S Y/S Y/S
M2R + GYRO BIAS N/S Y/S Y/S Y/S
M2R + WHITE NOISE N/S Y/S Y/S Y/S
M2S N/S Y/S Y/S Y/L
M2S + BD N/S Y/S N/S Y/L
M2S + SAT N/S Y/S Y/S Y/S

8 Conclusions

We compared four inertia-free PID-type spacecraft attitude control laws
(SO(3)/0, SO(3)/3, SO(3)/6, SO(3)/9) under M2R and M2S command scenarios
with various types of disturbances. All four controllers are able to achieve M2R
and M2S around a principal axis in the absence of disturbances. In addition,
SO(3)/3 and SO(3)/9 can achieve M2R and M2S in the presence of inertially
constant and body-constant disturbances, and M2R in the presence of iner-
tially time-varying disturbances around both principal and non-principal axes.
Note that SO(3)/3 needs six fewer integrators than SO(3)/9, although SO(3)/9
achieves the commanded motion in less time.

Furthermore, all four controllers achieve M2R in the presence of torque satura-
tion. For this objective, SO(3)/0 can stabilize the spacecraft with a significantly
lower level of saturation than SO(3)/3, SO(3)/6, and SO(3)/9. For M2S ma-
neuvers, SO(3)/0 is not effective, although SO(3)/3, SO(3)/6, and SO(3)/9 are
effective for arbitrary spin axes. Table 2 summarizes the cases for which each
SO(3) control law is able or not able to achieve the commanded maneuver.

For an unknown control-torque deadzone nonlinearity, we found that SO(3)/6
and SO(3)/9 are less sensitive to this nonlinearity. For on-off control torques,
SO(3)/3 is the most accommodating. We also compared performance when sen-
sor noise is present. In this case, SO(3)/3, SO(3)/6, and SO(3)/9 can stabilize
M2R maneuvers despite gyro bias or white noise.

Future research will focus on a Lyapunov foundation for SO(3)/3 as well as
extensions to spacecraft with wheels. Preliminary results are given in [19, 23].
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