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A method is presented to obtain state estimates for a possibly nonminimum-phase sys-
tem in the presence of unknown harmonic inputs. The method estimates the states and
reconstructs the unknown harmonic input. An adaptive feedback model injects an input
into the estimator such that the error between the estimator output and the actual output
converges to zero despite the presence of the unknown harmonic input. Using input re-
construction based on a retrospective cost, the unknown harmonic input is reconstructed.
Using the reconstructed input, the parameters of the adaptive feedback system are updated
using recursive least squares. Results are presented for a rigid body, a damped rigid body,
and a 2D missile with a three-loop autopilot topology.

I. Introduction

In the traditional formulation of state estimation, the Kalman filter uses measurements to recursively
refine state estimates. In effect, the Kalman filter uses a model of the system to filter measurements of states
that are measured and to observe states that are not measured.3, 7, 10, 14 The input to the system is typically
modeled as a combination of an unknown stochastic signal and a known deterministic signal. When the
Kalman filter is used within the context of LQG control, the deterministic signal is injected numerically
into the Kalman filter in order to take advantage of the separation principle. In practice, however, the
deterministic input may not be precisely known, and treating this signal as part of the stochastic input may
or may not violate the zero-mean assumption of the process noise and, in either case, may yield poor state
estimates due to the modeling mismatch. Consequently, extensive research has been devoted to developing
extensions of the Kalman filter that are either insensitive to knowledge of the deterministic input or that
attempt to estimate this signal in addition to the states. These techniques are referred to as unbiased Kalman
filters, unknown input observers, and state estimators with input reconstruction.4, 5, 9, 11, 12, 15

Aside from state estimation, the goal of input reconstruction is to estimate the input of a system
based on its output. These techniques depend on model inversion and thus must pay careful attention to
the presence of zeros in the system, especially nonminimum-phase zeros that preclude stable inversion.2 The
starting point for the present paper is the technique of adaptive state estimation.13 This approach uses
an adaptive input reconstruction technique to asymptotically estimate the unknown input to the system.
A regularization technique is used in the case where the transfer function from the disturbance to the
measurement is nonmiminum phase, in which case the Kalman filter is unable to achieve asymptotically
exact estimation. The goal of the present paper is to investigate the performance of the adaptive state
estimation technique of13 for aerospace applications. In particular, we consider state and input estimation
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for a rigid body and a damped rigid body with unknown inputs. For realism, we apply the discrete-time
adaptive state estimation technique of13 to a sampled-data model that exhibits nonminimum-phase zeros
due to sampling. The phenomenon of sampling zeros is discussed in.2 We then apply this technique to the
linearized missile model given in8 and demonstrate the ability to estimate the unknown acceleration. This
technique thus provides an alternative for estimating unknown acceleration.6

II. Problem Formulation

Consider the linear-time-invariant system

x(k + 1) = Ax(k) + Bu(k) + Bw(k), (1)
y(k) = Cx(k), (2)

where x(k) ∈ R
n is the unknown state, u(k) ∈ R

m is an unknown input, w(k) ∈ R
m is unknown zero-mean

Gaussian white noise, and y(k) ∈ R
p is the measured output, which is assumed to be bounded. The matrices

A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n are known, and (A, C) is observable. Furthermore we assume that

u(k) is the output of a Lyapunov-stable, linear system.

In order to obtain an estimate x̂(k) ∈ R
n of the state x(k), we construct an adaptive state estimator

of the form

x̂(k + 1) = Ax̂(k) + Bû(k), (3)
ŷ(k) = Cx̂(k), (4)
z(k) = y(k) − ŷ(k), (5)

where ŷ(k) ∈ R
p is the estimated output, û(k) ∈ R

m is the estimator input, and z(k) ∈ R
p is the measured

output error. Furthermore, the reconstructed input û(k) is the output of the strictly proper adaptive feedback
system of order nc, with input z(k) given by

û(k) =
nc∑
i=1

Mi(k)û(k − i) +
nc∑
i=1

Ni(k)z(k − i), (6)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
m×m and Ni(k) ∈ R

m×p. The goal is to update Mi,k and Ni,k using the
measured output error z(k). Figure 1 shows the adaptive input reconstruction and state estimation (AIRSE)
architecture.

III. Adaptive Input Reconstruction and State Estimation Using a
Retrospective Cost

For i ≥ 1, define the Markov parameter Hi of (A, B, C) given by

Hi
�
= CAi−1B. (7)

For example, H1 = CB and H2 = CAB. Let r be a positive integer. Then, for all k ≥ r,

x̂(k) = Arx̂(k − r) +
r∑

i=1

Ai−1Bû(k − i), (8)

and thus

z(k) = CAr x̂(k − r) + y(k) + H̄ ˆ̄U(k − 1), (9)
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Figure 1. Architecture for Adaptive Input Reconstruction and State Estimation

where

H̄
�
=

[
H1 · · · Hr

]
∈ R

p×rm

and

ˆ̄U(k − 1)
�
=

⎡
⎢⎢⎣

û(k − 1)
...

û(k − r)

⎤
⎥⎥⎦ .

Next, we rearrange the columns of H̄ and the components of ˆ̄U(k − 1) and partition the resulting
matrix and vector so that

H̄ ˆ̄U(k − 1) = H′Û ′(k − 1) + HÛ (k − 1), (10)

where H′ ∈ R
p×(rm−lÛ ), H ∈ R

p×lÛ , Û ′(k − 1) ∈ R
rm−lÛ , and Û(k − 1) ∈ R

lÛ . Then, we can rewrite (9) as

z(k) = S(k) + HÛ(k − 1), (11)

where

S(k)
�
= CArx̂(k − r) + y(k) + H′Û ′(k − 1). (12)

Note that the decomposition of H̄ ˆ̄U(k − 1) in (10) is not unique. Let s be a positive integer. Then,
for i = 1, . . . , s, we replace H, Û(k − 1), H′, and Û ′(k − 1) in (10) with Hj ∈ R

p×lÛj , Ûj(k − 1) ∈ R
lÛj ,
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H′
j ∈ R

p×(rm−lÛj
)
, and Û ′

j(k − 1) ∈ R
rm−lÛj , respectively, such that (10) becomes

H̄ ˆ̄U(k − 1) = H′
jÛ

′
j(k − 1) + HjÛj(k − 1). (13)

Therefore, for j = 1, . . . , s, we can rewrite (11) as

z(k) = Sj(k) + Hj Ûj(k − 1), (14)

where

Sj(k)
�
= CArx̂(k − r) + y(k) + H′

j Û
′
j(k − 1). (15)

Next, let 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks. Replacing k by k − kj in (14) yields

z(k − kj) = Sj(k − kj) + Hj Ûj(k − kj − 1). (16)

Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
�
=

⎡
⎢⎢⎣

z(k − k1)
...

z(k − ks)

⎤
⎥⎥⎦ ∈ R

sp. (17)

Therefore,

Z(k)
�
= S̃(k) + H̃

ˆ̃U(k − 1), (18)

where

S̃(k)
�
=

⎡
⎢⎢⎣

S1(k − k1)
...

Ss(k − ks)

⎤
⎥⎥⎦ ∈ R

sp (19)

and ˆ̃U(k − 1) has the form

ˆ̃U(k − 1)
�
=

⎡
⎢⎢⎣

û(k − q1)
...

û(k − qg)

⎤
⎥⎥⎦ ∈ R

gm, (20)

where k1 ≤ q1 < q2 < · · · < qg ≤ ks + r. The vector ˆ̃U(k−1) is formed by stacking Û1(k−k1−1), . . . , Ûs(k−
ks − 1) and removing copies of repeated components, and H̃ ∈ R

sp×gm is constructed according to the

structure of ˆ̃U(k − 1).

Next, we define the retrospective performance

ẑ(k − kj)
�
= Sj(k − kj) + HjU

∗
j (k − kj − 1), (21)

where the past input estimates Ûj(k − kj − 1) in (16) are replaced by the retrospectively optimized input
estimates U∗

j (k − kj − 1), which are determined below. In analogy with (17), the extended retrospective
performance is defined as

Ẑ(k)
�
=

⎡
⎢⎢⎣

ẑ(k − k1)
...

ẑ(k − ks)

⎤
⎥⎥⎦ ∈ R

sp (22)
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and thus is given by

Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (23)

where the components of Ũ∗(k − 1) ∈ R
l ˆ̃U are the components of U∗

1 (k − k1 − 1), . . . , U∗
s (k − ks − 1) ordered

in the same way as the components of ˆ̃U(k − 1). Subtracting (18) from (23) yields

Ẑ(k) = Z(k) − H̃
ˆ̃U(k − 1) + H̃Ũ∗(k − 1). (24)

Finally, we define the retrospective cost function

J(Ũ∗(k − 1), k)
�
= ẐT(k)R1(k)Ẑ(k) + η(k)Ũ∗T(k − 1)R2(k)Ũ∗(k − 1), (25)

where R1(k) ∈ R
ps×ps is a positive-definite performance weighting, R2(k) ∈ R

gm×gm is a positive-definite
input estimate weighting, and η(k) ≥ 0 is a regularization weighting. The goal is to determine retrospective
input estimates Ũ∗(k − 1) that would have provided better performance than the estimated inputs Û(k − 1)
that were applied to the system. The retrospectively optimized input estimates Ũ∗(k − 1) are then used to
update the controller. Substituting (24) into (25) yields

J(Ũ∗(k − 1), k) = Ũ∗T(k − 1)A(k)Ũ∗(k − 1) + BŨ∗(k − 1) + C(k), (26)

where

A(k)
�
= H̃TR1(k)H̃ + η(k)R2(k), (27)

B(k)
�
= 2H̃TR1(k)[Z(k) − H̃

ˆ̃U(k − 1)], (28)

C(k)
�
= ZT(k)R1(k)Z(k) − 2ZT(k)R1(k)H̃ ˆ̃U(k − 1) + ˆ̃UT(k − 1)H̃TR1(k)H̃ ˆ̃U(k − 1). (29)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this case, J(Ũ∗(k − 1), k) has
the unique global minimizer

ˆ̃U(k − 1) = −1
2
A−1(k)B(k), (30)

which is the retrospectively optimized input estimates.

The regularization weighting η(k) can be used to bound the retrospectively optimized input estimates

Ũ∗(k − 1) and thus indirectly bound the estimated inputs ˆ̃U(k). For example, η(k) may be performance
based

η(k) = η0||Z(k)||22 (31)

or error based

η(k) = η0(k)||Ũ∗(k − 2) − ˆ̃U(k − 2)||22, (32)

where η0(k) ≥ 0. Alternatively, the estimated inputs can be bounded directly by using a saturation function,
where η(k) ≡ 0 in (27) and (30) is replaced by

Ũ∗(k − 1)
�
= sat[a,b][−1

2
A−1(k)B(k)], (33)

where sat[a,b](ζ) is the component-wise saturation function defined for scalar arguments by

sat[a,b](ζ)
�
=

⎧⎪⎨
⎪⎩

b, if ζ ≥ b,
ζ, if a < ζ < b,
a if ζ ≤ a,

(34)

where a < b are the component-wise saturation levels.
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IV. Adaptive Feedback Construction and Update

The estimated input û(k) given by (6) can be expressed as

û(k) = θ(k)φ(k − 1), (35)

where

θ(k)
�
= [M1(k) · · · Mnc(k) N1(k) · · · Nnc(k)] ∈ R

m×nc(m+p) (36)

and

φ(k − 1)
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

û(k − 1)
...

û(k − nc)
y(k − 1)

...
y(k − nc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

nc(m+p). (37)

IV.A. Recursive Least Squares Update of θ(k)

We define the cumulative cost function

JR(θ(k))
�
=

k∑
i=qg+1

λk−i‖φT(i − qg − 1)θT(k) − u∗T(i − qg)‖2 + λk(θ(k) − θ(0))P−1(0)(θ(k) − θ(0))T, (38)

where ‖ · ‖ is the Euclidean norm and, for some ε ∈ (0, 1), λ(k) ∈ (ε, 1] is the forgetting factor, and
P−1(0) ∈ R

nc(m+p)×nc(m+p) is the initial covariance matrix. Minimizing (38) yields

θT(k)
�
= θT(k − 1) + β(k)P (k − 1)φ(k − qg − 1)[φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· [θ(k − 1)φ(k − qg − 1) − u∗(k − qg)]T, (39)

where β(k) is either 0 or 1. When β(k) = 1, the controller is allowed to adapt, whereas, when β(k) = 0, the
adaptation is off. The covariance is updated by

P (k)
�
= (1 − β(k))P (k − 1) + β(k)λ−1(k)P (k − 1) − β(k)λ−1(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1φT(k − qg − 1)P (k − 1). (40)

We initialize the covariance matrix as P (0) = γI, where γ > 0. Furthermore, the updates (39) and (40) are
based on the gth component of Ũ∗(k − 1). However any or all of the components of Ũ∗(k − 1) may be used
in the update of θ(k) and P (k).

V. Examples

In this section, we apply AIRSE to a rigid body, a damped rigid body, and a linearized missile
longitudinal autopilot. We also apply AIRSE to a damped oscillator with unknown damping coefficient for
the following two cases:

1. The unknown input is zero, and we estimate the damping coefficient.

2. The unknown input is not zero and we estimate the input.
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V.A. Example 1: Rigid Body, Unstable and Nonminimum-Phase

Consider a rigid body for which the equation of motion is given by

ẋ = Acx + Bcu, (41)

where

x =

[
q

q̇

]
, Ac =

[
0 1
0 0

]
, Bc =

[
0
1
m

]
, (42)

m = 1 kg is the mass of the rigid body. Sampling (41), with Ts = 1 sec yields

x(k + 1) = Ax(k) + Bu(k), (43)

where

A = eAcTs =

[
1 Ts

0 1

]
, B =

∫ Ts

0

eAcτdτBc =

[
T 2

s

2m
Ts

m

]
. (44)

Since only the position is measured, the output matrix is

C =
[

1 0
]
. (45)

Although the continuous-time system does not have zeros, the discretized system has a nonminimum-phase
sampling zero at −1. This makes the problem challenging since the discretized system is both unstable and
nonminimum-phase. Let u(k) = 0.6 sin(0.2k) be the unknown input, η0 = 0.01, nc = 15, P (0) = 0.1I30×30,
and H̃ = CB. Figure 2 shows the performance and estimator parameters. Figure 3 shows the actual and
reconstructed input. Figure 4 shows the actual and estimated states for the rigid body.
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Figure 2. (a) Performance and (b) Estimator Parameters for the Discretized Rigid Body with an Unknown Harmonic
Input
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Figure 3. Actual and Reconstructed Input u for the Discretized Rigid Body with an Unknown Harmonic Input
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Figure 4. Actual and Estimated States for the Discretized Rigid Body with an Unknown Harmonic Input (a) Position
and (b) Velocity
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V.B. Example 2: Damped Rigid Body, Semistable and Minimum-Phase

Consider a damped rigid body for which the equation of motion is given by (41), with

Ac =

[
0 1
0 − c

m

]
, (46)

m = 1 kg is the mass, and c = 5 N-sec/m is the damping coefficient for the damped rigid body. The system
(41) is sampled with Ts = 1 sec, which yields

A = eAcTs =

⎡
⎣ 1 m

c − m

ce
cTs
m

0 1

e
cTs
m

⎤
⎦ , B =

∫ Ts

0

eAcτdτBc =

⎡
⎣ m

c2e
cTs
m

− m
c2 + Ts

c

−1

ce
cTs
m

+ 1
c

⎤
⎦ . (47)

Since only the position is measured, the output matrix is

C =
[

1 0
]
. (48)

Let u(k) = 0.6 sin(0.2k) be the unknown input, η0 = 0, nc = 10, P (0) = I20×20, and H̃ = CB. Figure
5 shows the performance and estimator parameters. Figure 6 shows the actual and reconstructed input.
Figure 7 shows the actual and estimated states for the damped rigid body.
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Figure 5. (a) Performance and (b) Estimator Parameters for the Discretized Damped Rigid Body with an Unknown
Harmonic Input
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Figure 6. Actual and Reconstructed Input u for the Discretized Damped Rigid Body with an Unknown Harmonic
Input
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Figure 7. Actual and Estimated States for the Discretized Damped Rigid Body with an Unknown Harmonic Input (a)
Position and (b) Velocity
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V.C. Example 3: Damped Oscillator, Damping Coefficient Estimation, Stable and Minimum-
Phase

Consider a damped oscillator with zero input but with unknown damping coefficient c. The equation
of motion is given by

mq̈ + cq̇ + kq = 0. (49)

Equation (49) can be rewritten as

mq̈ + ĉ0q̇ + kq = ĉ0q̇ − cq̇, (50)

where ĉ0 is an initial estimate of c. Equation (50) can be written as (41), where

Ac =

[
0 1

− k
m − ĉ0

m

]
. (51)

The system (41) is sampled with Ts = 0.1 sec, where

A = eAcTs , B =
∫ Ts

0

eAcτdτBc. (52)

Since only the position is measured, the output matrix is

C =
[

1 0
]
. (53)

The mass is m = 1 kg, and k = 2 N-m is the spring stiffness. Futhermore, c = 5 N-sec/m is the true damping
coefficient and ĉ0 = 3 N-sec/m is the initial estimate of c.

The term uest = ĉ0q̇ − cq̇ can be considered as an unknown input. After the unknown input is
reconstructed, c can be estimated using (54), where q̇ is the estimated velocity.

ĉ(k) =
ĉ0q̇(k) − uest(k)

q̇(k)
. (54)

Let u(k) = 0, η0 = 0, nc = 1, P (0) = I2×2, and H̃ = CB. Figure 8 shows the performance and estimator
parameters. Figure 9 shows the actual and estimated states of the damped oscillator. Figure 10 shows
the the actual and estimated damping coefficient of the damped oscillator. Note that the accuracy of the
damping coefficient depends on the sampling time.
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Figure 8. (a) Performance and (b) Estimator Parameters of the Discretized Damped Oscillator with Zero Input
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Figure 9. Actual and Estimated States of the Discretized Damped Oscillator with Zero Input (a) Position and (b)
Velocity

12 of 20

American Institute of Aeronautics and Astronautics



15 20 25 30 35 40
1

2

3

4

5

6

7

8

D
am

pi
ng

 C
oe

ffi
ci

en
t (

N
−

se
c/

m
)

Time (sec)

 

 
Estimated
Actual

Figure 10. Actual and Estimated Damping Coefficient ĉ(k) given by (54) of the Discretized Damped Oscillator with
Zero Input

V.D. Example 4: Damped Oscillator, Unknown Input Reconstruction with an Unknown
Damping Coefficient, Asymptotically Stable and Minimum-Phase

Consider a damped oscillator with nonzero unknown input and unknown damping coefficient c. The
equation of motion is given by

mq̈ + cq̇ + kq = u. (55)

Equation (55) can be rewritten as

mq̈ + ĉ0q̇ + kq = (ĉ0q̇ − cq̇) + u, (56)

where ĉ0 is an initial estimate of c. Equation (56) can be written as (41), where

Ac =

[
0 1

− k
m − ĉ0

m

]
. (57)

The system (41) is sampled with Ts = 0.1 sec, where

A = eAcTs , B =
∫ Ts

0

eAcτdτBc. (58)

Since only the position is measured, the output matrix is

C =
[

1 0
]
. (59)

The mass is m = 1 kg, and the spring stiffness is k = 2 N-m. Furthermore, c = 5 N-sec/m is the true
damping coefficient. It is seen that the AIRSE algorithm reconstructs the unknown input u correctly if c
is close enough to ĉ0. Let u(k) = 0.6 sin(0.2k) be the unknown input, η0 = 0, nc = 5, P (0) = I10×10, and
H̃ = CB. Figure 11 shows the performance and estimator parameters for ĉ0 = 4 N-sec/m. Figure 12 shows
the actual and reconstructed input for ĉ0 = 4 N-sec/m. Figure 13 shows the actual and estimated states of
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the damped oscillator for ĉ0 = 4 N-sec/m. Figure 14 shows the performance and estimator parameters for
ĉ0 = 10 N-sec/m. Figure 15 shows the actual and reconstructed input for ĉ0 = 10 N-sec/m. Figure 16 shows
the actual and estimated states of the damped oscillator for ĉ0 = 10 N-sec/m.
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Figure 11. (a) Performance and (b) Estimator Parameters of the Discretized Damped Oscillator with an Unknown
Harmonic Input (c = 5 N-sec/m, ĉ0 = 4 N-sec/m)
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Figure 12. Actual and Reconstructed Input u of the Discretized Damped Oscillator with an Unknown Harmonic Input
(c = 5 N-sec/m, ĉ0 = 4 N-sec/m)
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Figure 13. Actual and Estimated States of the Discretized Damped Oscillator with an Unknown Harmonic Input (a)
Position and (b) Velocity (c = 5 N-sec/m, ĉ0 = 4 N-sec/m)
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Figure 14. (a) Performance and (b) Estimator Parameters of the Discretized Damped Oscillator with an Unknown
Harmonic Input (c = 5 N-sec/m, ĉ0 = 10 N-sec/m)
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Figure 15. Actual and Reconstructed Input u of the Discretized Damped Oscillator with an Unknown Harmonic Input
(c = 5 N-sec/m, ĉ0 = 10 N-sec/m)
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Figure 16. Actual and Estimated States of the Discretized Damped Oscillator with an Unknown Harmonic Input (a)
Position and (b) Velocity (c = 5 N-sec/m, ĉ0 = 10 N-sec/m)

V.E. Example 5: Missile Longitudinal Autopilot, Stable and Minimum-Phase

Consider a three-loop autopilot topology used as a missile longitudinal autopilot,8 for which the equa-
tions of motion are given by
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ẋ = A1x + B1u, (60)

ẏ = C1x + D1u − K̃ssr, (61)

z = H1x + L1u − Kssr, (62)

where

x =

⎡
⎢⎣ α

q

δp

⎤
⎥⎦ , u = δ̇p, y =

⎡
⎢⎣ Azm − Kssr

qm

δp

⎤
⎥⎦ , (63)

A1 =

[
A B

0 0

]
, B1 =

[
0
1

]
, K̃ss =

[
Kss

0

]
, (64)

C1 =

[
C D

0 1

]
, D1 =

[
0
0

]
, (65)

H1 =
[
Q̄SCzα0

mg
− Q̄SdCmα0x̄

gIYY
0

Q̄SCzδp0

mg
− Q̄SdCmδp0x̄

gIYY

]
, L1 = 0, (66)

A =

[
1

Vm0
( Q̄SCzα0

m − AX0) 1
Q̄SdCmα0

IYY
0

]
, B =

[
Q̄SCzδp0

mVm0
Q̄SdCmδp0

IYY

]
, (67)

C =

[
Q̄SCzα0

mg − Q̄SdCmα0x̄
gIYY

0

0 1

]
, D =

[
Q̄SCzδp0

mg − Q̄SdCmδp0x̄
gIYY

0

]
. (68)

The description and the values of the parameters used above are given in.8 The closed-loop matrices are
given by

Ac = C1(A1C1
−1 + B1Kopt), (69)

Bc = −C1B1Kopt[Kss 0 0]T , (70)

Cc = H1C1
−1, (71)

Kss = [CcA
−1
c (C1B1Kopt[1 0 0]T )]−1, (72)

Kopt = [−2.0740 11.7514 − 119.0269]. (73)

These closed-loop matrices are used for the simulation. Let u(k) = 0.6 sin(0.2k) be the unknown input,
η0 = 0, nc = 5, P (0) = I10×10, and H̃ = CB. Figure 17 shows the performance and estimator parameters.
Figure 18 shows the actual and reconstructed input. Figure 19 shows the actual and estimated states for
the missile longitudinal autopilot.
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Figure 17. (a) Performance and (b) Estimator Parameters for the Missile Longitudinal Autopilot with an Unknown
Harmonic Input
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Figure 18. Actual and Reconstructed Input u for the Missile Longitudinal Autopilot with an Unknown Harmonic Input
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Figure 19. Actual and Estimated States for the Discretized Missile Longitudinal Autopilot with an Unknown Harmonic
Input

VI. Conclusions

We presented a method for estimating the states of minimum and nonminimum-phase systems in the
presence of unknown harmonic inputs. The estimator uses a system model based on the dynamics of the
actual physical system but overall the algorithm does not need the detailed dynamics of the actual physical
system. Also, the algorithm reconstructs the unknown harmonic input at each step by minimizing the error
between y(k) − ŷ(k).

Based on the error between y(k) − ŷ(k), an adaptive feedback model is updated, which gives û(k)
as the output. The output of the feedback model û(k) is then used to obtain the state estimates x̂ of the
system with states x(k).

Finally, the method is demonstrated on minimum and nonminimum-phase linear systems in the pres-
ence of an unknown harmonic input. We also show that the method works for the case of a rigid body, which
is unstable and has a nonminimum-phase sampling zero.

Future research will compare our results to the technique of6 and make a connection to alpha-beta
filters.1
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