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We apply retrospective cost adaptive control (RCAC) with auxiliary nonlinearities to
a command-following problem for uncertain Hammerstein-Wiener systems with memory-
less and hysteretic nonlinearities. The only required modeling information of the linear
plant is a single Markov parameter. To account for the nonlinearities, RCAC uses aux-
iliary nonlinearities that reflect the monotonicity properties of the nonlinearity. Various
memoryless nonlinearities such as deadband, cubic, and saturation are considered. The
hysteresis nonlinearity is modeled using the Prandtl-Ishlinskii model.

I. Introduction

The simplest extension of linear systems to nonlinear systems is to cascade the linear plant with input
and output nonlinearities. The presence of an input nonlinearity constitutes a Hammerstein system, while
the output nonlinearity constitutes a Wiener system. The presence of both input and output nonlinearities
constitutes a Hammerstein-Wiener (HW) system.1–4

Hammerstein systems model linearized dynamics with actuator nonlinearities, whereas Wiener systems
model linearized dynamics with sensor nonlinearities. These nonlinearities typically arise from properties
of the hardware realization of sensors and actuators, for example, mechanical linkages or electromechanical
devices. These nonlinearities may be memoryless, such as saturation and deadband, or they may have
internal dynamics due to smart materials that exhibit hysteresis.

If the nonlinearities are known, then in some cases they can be inverted in software, and the resulting
system is effectively linear. However, a saturation input nonlinearity limits the range of the input signal,
while a saturation output nonlinearity limits the ability to observe the response of the system. Finally,
both input and output nonlinearities distort the input-output behavior of the system, producing spurious
harmonics.

Control of Hammerstein-Wiener systems is more challenging when the input and output nonlinearities
as well as the linear plant dynamics are uncertain. Uncertainty may arise from imperfect identification or
unexpected changes to the system during operation. Although robust control methods may be effective,5,6

these techniques require characterization of the uncertainty and sacrifice performance for reliability.
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An alternative to robust control for Hammerstein-Wiener systems is adaptive control.7,8 The ad-
vantage of adaptive control relative to robust control is the ability of the controller to tune itself to the
actual plant despite modeling errors and unexpected changes. Although some modeling information about
the nonlinearities and linear dynamics may be required, the need to model the system before operation may
be reduced.

In the present paper we apply retrospective cost adaptive control (RCAC) to Hammerstein-Wiener
systems with uncertain linear dynamics and uncertain input and output nonlinearities, which may be either
memoryless or hysteretic. Details on RCAC for linear systems are given in.9–12 The present paper extends
the application of RCAC to Hammerstein systems in.13,15

In13,15 the adaptive control is instantaneously linear, and thus converges to a linear time-invariant
controller. Consequently, RCAC seeks a linear controller that is effective in reducing the distortion due to
the input and output nonlinearities. Nonlinear controller structures that further reduce this distortion are
considered in.16

II. ADAPTIVE CONTROL FOR THE HAMMERSTEIN-WIENER
COMMAND-FOLLOWING PROBLEM

Consider the Hammerstein-Wiener command-following problem

u0(k) = NH(u(k)), (1)

x(k + 1) = Ax(k) +Bu0(k) +D1w(k), (2)

y0(k) = E1x(k) +D2w(k), (3)

y(k) = NW (y0(k)), (4)

z(k) = r(k)− y(k), (5)

where x(k) ∈ Rn is the state, r(k) ∈ Rlr is the command, u(k) ∈ Rlu is the control, w(k) ∈ Rlw is
the exogenous signal, NH : R → R is the input nonlinearity, NW : R → R is the output nonlinearity, and
z(k) ∈ Rlz is the command-following error. We assume that G is uncertain except for a limited number of
Markov parameters. The input nonlinearity NH and output nonlinearity NW are also uncertain. We assume
that the output nonlinearity NW is increasing, while the input nonlinearity NH has known monotonicity.
The intermediate signals v(k) and y0(k) are assumed to be unknown. A block diagram for (1)–(5) is shown
in Figure 1. We apply RCAC to the Hammerstein-Wiener system in order to have the output y follow the
command signal r. The auxiliary nonlinearities N1 and N2 are discussed in Section III.C.

Figure 1. Hammerstein-Wiener-command-following problem with the linear system G, the RCAC adaptive controller,
Hammerstein nonlinearity NH , Wiener nonlinearity NW , and auxiliary nonlinearities N1 and N2. The command feed-
forward path is optional.
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III. Retrospective-Cost Adaptive Control

III.A. Retrospective Cost with Adaptive Regularization

For i ≥ 1, define the Markov parameter

Hi
△
= E1A

i−1B.

For example, H1 = E1B and H2 = E1AB. Let ℓ be a positive integer. Then, for all k ≥ ℓ,

x(k) = Aℓx(k − ℓ) +

ℓ∑
i=1

Ai−1BNH(u(k − i)) +

ℓ∑
i=1

Ai−1D1w(k − i), (6)

and thus

z(k) = NW

(
E1A

ℓx(k − ℓ) +
ℓ∑

i=1

E1A
i−1D1w(k − i) + H̄V̄ (k − 1) +D2w(k)

)
− r(k), (7)

where

H̄
△
=

[
H1 · · · Hℓ

]
∈ R1×ℓ

and

V̄ (k − 1)
△
=


NH(u(k − 1))

...

NH(u(k − ℓ))

 .

Next, we rearrange the columns of H̄ and the components of V̄ (k − 1) and partition the resulting matrix
and vector so that

H̄V̄ (k − 1) = H′V ′(k − 1) +HV (k − 1), (8)

where H′ ∈ R1×(ℓ−lV ), H ∈ R1×lV , V ′(k − 1) ∈ Rℓ−lV , and V (k − 1) ∈ RlV . Then, we can rewrite (7) as

z(k) = S(k) +NW

(
HV (k − 1)

)
, (9)

where

S(k)
△
= NW

(
E1A

ℓx(k − ℓ) +H′V ′(k − 1) +
ℓ∑

i=1

E1A
i−1D1w(k − i) +D2w(k)

)
− r(k) + O(V̄ (k − 1)), (10)

O(V̄ (k − 1))
△
= NW

(
E1A

ℓx(k − ℓ) +

ℓ∑
i=1

E1A
i−1D1w(k − i) + H̄V̄ (k − 1) +D2w(k)

)
−NW

(
E1A

ℓx(k − ℓ) +H′V ′(k − 1) +

ℓ∑
i=1

E1A
i−1D1w(k − i) +D2w(k)

)
+H′V ′(k − 1)−NW

(
HV (k − 1)

)
.

Next, for j = 1, . . . , s, we rewrite (9) with a delay of kj time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in
the form

z(k − kj) = Sj(k − kj) +NW

(
HjVj(k − kj − 1)

)
, (11)
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where (10) becomes

Sj(k − kj)
△
= NW

(
E1A

ℓx(k − kj − ℓ) +H′
jV

′
j (k − kj − 1)

)
− r(k − kj) + O(V̄ (k − kj − 1))

and (8) becomes

H̄V̄ (k − kj − 1) = H′
jV

′
j (k − kj − 1) +HjVj(k − kj − 1),

where H′
j ∈ R1×(ℓ−lVj

), Hj ∈ R1×lVj , U ′
j(k − kj − 1) ∈ Rℓ−lVj , and Vj(k − kj − 1) ∈ RlVj . Now, by stacking

z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=


z(k − k1)

...

z(k − ks)

 ∈ Rs. (12)

Therefore,

Z(k)
△
= S̃(k) + H̃Ṽ (k − 1), (13)

where

S̃(k)
△
=


S1(k − k1)

...

Ss(k − ks)

 ∈ Rs,

Ṽ (k − 1) has the form

Ṽ (k − 1)
△
=


NH(u(k − q1))

...

NH(u(k − qlṼ ))

 ∈ RlṼ ,

where, for i = 1, . . . , lṼ , k1 ≤ qi ≤ ks + ℓ, and H̃ ∈ Rs×lṼ is constructed according to the structure of

Ṽ (k− 1). The vector Ṽ (k − 1) is formed by stacking V1(k− k1 − 1), . . . , Vs(k− ks − 1) and removing copies
of repeated components.

Next, for j = 1, . . . , s, we define the retrospective performance

ẑj(k − kj)
△
= Sj(k − kj) +Hj V̂j(k − kj − 1), (14)

where the past controls Vj(k − kj − 1) in (11) are replaced by the retrospective controls V̂j(k − kj − 1). In
analogy with (12), the extended retrospective performance for (14) is defined as

Ẑ(k)
△
=


ẑ1(k − k1)

...

ẑs(k − ks)

 ∈ Rs

and thus is given by

Ẑ(k) = S̃(k) + H̃
ˆ̃V (k − 1), (15)

where the components of ˆ̃V (k − 1) ∈ RlṼ are the components of V̂1(k − k1 − 1), . . . , V̂s(k − ks − 1) ordered
in the same way as the components of Ṽ (k − 1). Subtracting (13) from (15) yields

Ẑ(k) = Z(k)− H̃Ṽ (k − 1) + H̃
ˆ̃V (k − 1). (16)
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Finally, we define the retrospective cost function

J( ˆ̃V (k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (17)

where R(k) ∈ Rs×s is a positive-definite performance weighting. The goal is to determine refined controls
ˆ̃V (k − 1) that would have provided better performance than the controls U(k) that were applied to the

system. The refined control values ˆ̃V (k − 1) are subsequently used to update the controller.
Next, to ensure that (17) has a global minimizer, we consider the regularized cost

J̄( ˆ̃V (k − 1), k)
△
= ẐT(k)R(k)Ẑ(k) + η(k) ˆ̃V T(k − 1) ˆ̃V (k − 1), (18)

where η(k) ≥ 0. Substituting (16) into (18) yields

J̄( ˆ̃V (k − 1), k) = ˆ̃V (k − 1)TA(k) ˆ̃V (k − 1) +B(k) ˆ̃V (k − 1) + C(k),

where

A(k)
△
= H̃TR(k)H̃ + η(k)IlṼ ,

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ṽ (k − 1)],

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ṽ (k − 1) + Ṽ T(k − 1)H̃TR(k)H̃Ṽ (k − 1).

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this case, J̄( ˆ̃V (k − 1), k) has
the unique global minimizer

ˆ̃V (k − 1) = −1

2
A−1(k)B(k). (19)

III.B. Controller Construction

The control u(k) is given by the strictly proper time-series controller of order nc given by

u(k) =

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)z(k − i), (20)

where, for all i = 1, . . . , nc, Mi(k) ∈ R, and Ni(k) ∈ R. The control (20) can be expressed as

u(k) = θ(k)ϕ(k − 1),

where

θ(k)
△
= [M1(k) · · ·Mnc(k) · · ·N1(k) · · ·Nnc(k)] ∈ Rlu×3nc

and

ϕ(k − 1)
△
= [u(k − 1) · · ·u(k − nc) · · · z(k − 1) · · · z(k − nc)]

T ∈ R3nc .

Next, let d be a positive integer such that Ṽ (k−1) contains u0(k−d) and define the cumulative cost function

JR(θ, k)
△
=

k∑
i=d+1

λk−i∥ϕT(i− d− 1)θT(k)− û0
T(i− d)∥2 + λk(θ(k)− θ0)P

−1
0 (θ(k)− θ0)

T, (21)

where ∥ · ∥ is the Euclidean norm, and λ ∈ (0, 1] is the forgetting factor. Minimizing (21) yields

θT(k) = θT(k − 1) + β(k)P (k − 1)ϕ(k − d− 1) · [ϕT(k − d)P (k − 1)ϕ(k − d− 1) + λ(k)]−1

· [ϕT(k − d− 1)θT(k − 1)− û0
T(k − d)],
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where β(k) is either zero or one. The error covariance is updated by

P (k) = β(k)λ−1P (k − 1) + [1− β(k)]P (k − 1)− β(k)λ−1P (k − 1)ϕ(k − d− 1)

· [ϕT(k − d− 1)P (k − 1)ϕ(k − d) + λ]−1 · ϕT(k − d− 1)P (k − 1).

We initialize the error covariance matrix as P (0) = αI3nc , where α > 0. Note that when β(k) = 0, θ(k) =
θ(k − 1) and P (k) = P (k − 1). Therefore, setting β(k) = 0 switches off the controller adaptation, and thus
freezes the control gains. When β(k) = 1, the controller is allowed to adapt.

III.C. Auxiliary Nonlinearities and the Adaptive RCAC Controller

To account for the presence of the nonlinearities NH and NW , the RCAC controller uses two auxil-
iary nonlinearities. The auxiliary nonlinearity N2 modifies the RCAC controller output uc to produce the
Hammerstein-Wiener plant input u, while the auxiliary nonlinearity N1 modifies u to obtain the regressor
input ur. The auxiliary nonlinearities N1 and N2 are chosen based on limited knowledge of the nonlinearities
NH and NW . For details see.13

III.C.1. Auxiliary Nonlinearity N1

Define the saturation function sata by

N1(uc) = sata(uc) =


−a, if uc < −a,

uc, if − a ≤ uc ≤ a,

a, if uc > a,

(22)

where a > 0 is the saturation level. For minimum-phase plants, the auxiliary nonlinearity N1 is not needed,
and thus the saturation level a is chosen to be a large number. For nonminimum-phase plants, the saturation
level a is chosen to tune the transient behavior. In addition to the transient behavior, the saturation level
is chosen based on the magnitude of the control input needed to follow the command r. This level depends
on the range of the input nonlinearity NH as well as the gain of the linear system G at frequencies in the
spectrum of r.

III.C.2. Auxiliary Nonlinearity N2

To construct N2, we assume that the intervals of monotonicity of the input nonlinearity NH are
known; no further modeling information about NH is needed. Let I1, I2, . . . be intervals that partition the
real numbers. If NH is nondecreasing on Ii, then N2(ur) = ur for all ur ∈ Ii. Alternatively, if NH is
nonincreasing on Ii = (pi, qi), then N2(ur) = pi + qi − ur ∈ Ii for all ur ∈ Ii. Finally, if NH is constant on
Ii, then either choice can be used. Let Ra(f) denote the range of the function f with arguments in [-a,a].

Proposition III.1. Assume that N2 is constructed by the above rule. Then the following statements
hold:

i) NH ◦N2 is piecewise nondecreasing.

ii) Ra(NH ◦N2) = Ra(NH).

Proof III.1. Let Ii = (pi, qi). We first assume that NH is nondecreasing on Ii. Since N2(ur) = ur

for all ur ∈ Ii, it follows that NH ◦N2(ur) = NH(ur) for all ur ∈ Ii. Hence NH ◦N2 is nondecreasing on Ii.
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Next, assume that NH is nonincreasing on Ii. Let ur,1, ur,2 ∈ Ii, where ur,1 ≤ ur,2. Since N2(ur) = pi+qi−ur

for all ur ∈ Ii, it follows that

u2
△
= pi + qi − ur,2 ≤ u1

△
= pi + qi − ur,1.

Therefore, since NH is nonincreasing on Ii, it follows that NH(N2(ur,1)) = NH(u1) ≤ NH(u2) = NH(N2(ur,2)).
Thus, NH ◦N2 is nondecreasing on Ii.

Finally, to prove ii), assume that NH is nondecreasing on Ii. Since N2(ur) = ur for all ur ∈ Ii, it
follows that N2(Ii) = Ii, that is, N2 : Ii → Ii is onto. Alternatively, assume that NH is nonincreasing on Ii.
Then N2(ur) = pi+qi−ur ∈ Ii. Let y = N2(ur) be an element of the codomain, consider y = pi+qi−ur, and
solve for ur yields ur = pi+qi−y. Thus, for all y ∈ Ii, there exists pi+qi−y ∈ Ii such that N2(pi+qi−y) = y.
Therefore, N2 : Ii → Ii is onto. Hence, Ra(NH ◦N2) = Ra(NH).

Example III.1. Consider the input nonlinearity NH(u) = −sat(Ψ[u]) with u(t) = 2 sin(2πt). For
each interval of a partition 0 = t0 < t1 < · · · < tl = 10, the output of the play operator for t ∈ [tj−1, tj ]
expressed as

Ψ[u](t) = max{u(t)− 0.5,min{u(t) + 0.5,Ψ[u](tj−1)}}.

The input nonlinearity NH(u) = −sat(Ψ[u]) is nonincreasing for all u ∈ Ra as shown in Figure 2(a). Let
N2(ur) = −ur according to Proposition III.1. Figure 2(c) shows that the composite nonlinearity NH ◦N2 is
nondecreasing. Note that R2(NH ◦N2) = R2(NH).

−2 −1 0 1 2

−1

−0.5

0

0.5

1

u

N
H

(u
)

(a)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u
r

N
2(u

r)

(b)

−2 −1 0 1 2

−1

−0.5

0

0.5

1

u
r

N
H

oN
2(u

r)

(c)

Figure 2. Example III.1 (a) Input nonlinearity NH(u) = −sat(Ψ[u]), (b) Auxiliary nonlinearity N2(ur) given by (24), and
(c) The composite nonlinearity NH ◦ N2. Note that NH ◦ N2 is piecewise nondecreasing and R2(NH ◦ N2) = R2(NH).

Example III.2. Consider u(t) = 2 sin(2πt) and input nonlinearity shown in Figure 3(a), which is
given by

NH(u) =

−sat0.5(Ψ[u]), if − 2 ≤ u ≤ 1,

u2

5 − 0.7, if 1 < u ≤ 2.
(23)
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We use Ψ[u] considered in Example (III.1). Let

N2(ur) =

−ur, if − 2 ≤ u ≤ 1,

ur, if 1 < u ≤ 2,
(24)

according to Proposition 3.1. Figure 3(c) shows that the composite nonlinearity NH ◦ N2 is piecewise
nondecreasing. Note that R2(NH ◦N2) = R2(NH).

−2 −1 0 1 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

u

N
H

(u
)

(a)

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

u
r

N
2(u

r)

(b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

u
r

N
H

 o
 N

2(u
r)

(c)

Figure 3. Example III.2 (a) Input nonlinearity NH(u) (23), (b) Auxiliary nonlinearity N2(ur) given by (24), and, (c)
The composite nonlinearity NH ◦ N2. Note that NH ◦ N2 is piecewise nondecreasing and R2(NH ◦ N2) = R2(NH).

Knowledge of only the intervals of monotonicity of NH is needed to modify the controller output ur

such that the composite nonlinearity NH ◦ N2 is piecewise nondecreasing. It thus follows that the known
Markov parameters H̃ of G capture correct sign information of the linearized Markov parameters for the
Hammerstein system since NH ◦N2 is piecewise nondecreasing. For details, see.14

IV. NUMERICAL EXAMPLES

We illustrate RCAC for SISO command-following problems with a linear plant in the presence of
Hammerstein-Wiener nonlinearities. In all examples, we assume that at least one of the nonzero Markov
parameters of G is known. For convenience, each example is constructed such that the first nonzero Markov
parameter Hd = 1, where d is the relative degree of G. RCAC generates a control signal uc that attempts to
minimize a performance matrix based on the performance variable z in the presence of the command signal
r, the input nonlinearity NH , and the output nonlinearity NW . We assume that measurements of z are
available for feedback; however, measurements of u0 and y0 are not available. In all cases, we initialize the
adaptive controller to be zero, that is, θ(0) = 0. We do not use a forgetting factor in any of the examples of
this paper, that is, λ = 1 for all examples.
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To illustrate the effect of nonlinearities on the closed-loop performance, we first remove the Hammerstein-
Wiener nonlinearities and simulate the open-loop system for the first 100 time steps. Then, at k = 100,
we turn the adaptation on, and let RCAC adapt to the linear system for 600 time steps. We use a solid
trace to show the simulation results for the closed-loop system before inserting the Hammerstein-Wiener
nonlinearities. Next, at k = 600, we introduce the Hammerstein-Wiener nonlinearities and let RCAC adapt
in the presence of the Hammerstein-Wiener nonlinearities. We use dotted markers for k ≥ 600 to illustrate
performance in the presence of the input and output nonlinearities, NH(u(k)) and NW (y0(k)), when u(k)
and y(k) are obtained from the closed-loop system with RCAC.

V. Numerical Examples: Memoryless-Memoryless Nonlinearities

Example V.1. We consider the minimum-phase asymptotically stable linear plant

G(z) =
z − 0.9

(z − 0.8)(z − 0.7)
(25)

with the deadband input nonlinearity

NH(u) =


u, if u < −0.3,

0, if − 0.3 ≤ u ≤ 0.3,

u, if u > 0.3,

(26)

and the cubic output nonlinearity

NW (y0) = y30 . (27)

Since these nonlinearities are nondecreasing but otherwise assumed to be unknown we choose N1(u) = u
and N2(uc) = sata(uc). We let a = 2, nc = 15, and P0 = 0.2I3nc . We consider the command signal
r(k) = sin(0.25πk) and the disturbance signal w(k) = 0.5 sin(0.5πk). Figure 4 shows the simulation results.

Example V.2. We consider the nonminimum-phase asymptotically stable linear plant

G(z) =
z − 1.1

(z − 0.9)(z + 0.9)
, (28)

with the sigmoidal input nonlinearity

NH(u) = tanh(u) (29)

and the deadband output nonlinearity

NW (y0) =


y0, if y0 < −0.3,

0, if − 0.3 ≤ y0 ≤ 0.3,

y0, if y0 > 0.3.

(30)

Since these nonlinearities are nondecreasing, we choose N1(u) = u and N2(uc) = sata(uc). The command
signal r(k) = 0.8 sin(0.25πk) + 1.6 sin(πk) and the disturbance signal w(k) = 0.5 sin(0.25πk) are considered.
We let a = 7, nc = 20, and P0 = 0.7I3nc . Figure 5 shows the simulation results.

Example V.3. We consider the nonminimum-phase asymptotically stable linear plant

G(z) =
1

z − 1
, (31)
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Figure 4. Example V.1. (a) shows the memoryless input nonlinearity NH given by (26). (b) shows the memoryless
output nonlinearity NW given by (27). (c) shows the closed-loop response to the command signal r(k) = sin(0.5πk) and
the disturbance signal w(k) = 0.5 sin(0.5πk) with the linear plant (25) and the nonlinearities of (a) and (b). (d) shows
the evolution of the controller gain vector θ.

with the deadband input nonlinearity

NH(u) =


u, if u < −0.5,

0, if − 0.5 ≤ u ≤ 0.5,

u, if u > 0.5,

(32)

and the sigmoidal output nonlinearity

NW (y0) = tanh(y0). (33)

The command signal r(k) = 1 sin(π6 k) and the disturbance signal w(k) = 0.5 sin(0.5πk) are considered. Since
this nonlinearities are nondecreasing, we choose N1(u) = u and N2(uc) = sata(uc). We let a = 7, nc = 7,
and P0 = 0.8I3nc . Figure 6 shows the simulation results.

Example V.4. We consider the asymptotically stable, minimum-phase plant

G(z) =
(z − 0.5)(z − 0.9)

(z − 0.7)(z − 0.5− ȷ0.5)(z − 0.5 + ȷ0.5)
, (34)

with the input nonlinearity

N(u) = cos(2u), (35)
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Figure 5. Example V.2. (a) shows the memoryless input nonlinearity NH given by (33). (b) shows the deadband output
nonlinearity NW given by (32). (c) shows the closed-loop response to the command signal r(k) = 0.8 sin(0.25πk)+1.6 sin(πk)
and the disturbance signal w(k) = 0.5 sin(0.25πk) with the linear plant (25) and the nonlinearities of (a) and (b). (d)
shows the evolution of the controller gain vector θ.

and the sigmoidal output nonlinearity

NW (y0) = tanh(y0). (36)

The input NH is neither one-to-one nor onto and satisfies NH(0) = 1. As shown in Figure 7(a), NH(u) is
increasing for all u ∈ ((n− 1

2 )π, nπ), n ∈ Z, and decreasing for all u ∈ (nπ, (n+ 1
2 )π), n ∈ Z. We consider the

single-tone sinusoidal command r(k) = 1 sin(0.2πk) and the disturbance signal w(k) = 0.25 sin(0.5πk). We
let N1(uc) = sata(uc), where a = 106, nc = 14, P0 = 0.1I3nc

, η0 = 0, and H̃ = H1. We choose N2(ur) = ur

for the intervals where NH is increasing, and N2(ur) = −ur + (2n + 1/2)π for the intervals where NH is
decreasing. We turn on the RCAC controller at k = 100 for the Hammerstein-Wiener system. Figure 7
shows the simulation results.

VI. Numerical Examples: Hysteretic-Hysteretic Nonlinearities

VI.A. The Prandtl-Ishlinskii Model

Smart actuators such as piezoelectric and magnetostrictive actuators have shown rate-dependent hys-
teresis nonlinearity, where the hysteresis nonlinearity increases as the rate of the input increases.17,19 In this
paper, we use the rate-dependent Prandtl-Ishlinskii model to represent rate-dependent hysteresis nonlinear-
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Figure 6. Example V.3. (a) shows the deadband input nonlinearity NW given by (32). (b) shows the sigmoidal output
nonlinearity NH given by (33). (c) shows the closed-loop response to the command signal r(k) = 1 sin(π

6 k) and the
disturbance signal w(k) = 0.5 sin(0.5πk) with the linear plant (31) and the nonlinearities of (a) and (b). (d) shows the
evolution of the controller gain vector θ.

ities. This model can characterize rate-dependent hysteresis nonlinearity in piezoelectric actuators.17 This
model is used in this paper to represent the hysteretic input and the output nonlinearities.

The space of absolutely continuous functions is denoted by AC(0, T ). Let the input signal υ(t) ∈
AC(0, T ), and let ρi(υ̇(t)) ∈ AC(0, T ) for all i ∈ {0, 1, . . . , n}, where n ∈ N. Then ρi(υ̇(t)) is chosen such
that

0 = ρ0(υ̇(t)) ≤ ρ1(υ̇(t)) ≤ ρ2(υ̇(t)) ≤ · · · ≤ ρn(υ̇(t)). (37)

The output gi(t) of the rate-dependent play operator is denoted as

gi(t) = Ψρi(υ̇(t))[υ, xi](t) (38)

for inputs and thresholds that are piecewise linear, that is, linear in each interval of a partition 0 = t0 <
t1 < · · · < tl = T . The output of the rate-dependent play operator for t ∈ (tj−1, tj ] can be expressed as

gi(t) = max{υ(t)− ρi(υ̇(t)),min{υ(t) + ρi(υ̇(t)), gi(tj−1)}} (39)

with the initial condition

gi(0) = max{υ(0)− ρi(υ̇(0)),min{υ(0) + ρi(υ̇(0)), xi}}.

The rate-dependent Prandtl-Ishlinskii model is constructed as a superposition of rate-dependent play oper-
ators.18 The output of this model can be expressed as

Φ[υ](t) := a0υ(t) +
n∑

i=1

aiΨρi(υ̇(t))[υ, xi](t), (40)
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Figure 7. Example V.4. (a) shows the memoryless input nonlinearity NH given by (35). (b) shows the sigmoidal output
nonlinearity nonlinearity NW given by (36). (c) shows the closed-loop response to the command signal r(k) = 1 sin(0.25πk)
and the disturbance signal w(k) = 0.25 sin(0.5πk) with the linear plant (34) and the nonlinearities of (a) and (b). (d)
shows the evolution of the controller gain vector θ.

where a0, · · · , an are positive constants.

Next, we define the rate-dependent threshold function

ρi(υ̇(t)) := ζi + ηi|υ̇(t)|, (41)

where ζi and ηi are positive constants. The rate-dependent Prandtl-Ishlinskii model specializes to the rate-
independent Prandtl-Ishlinskii model when υ̇(t) = 0. The rate-dependent model

ΦΓ[υ](t) = (Φ ◦ Γ)[υ](t) (42)

generalizes the rate-dependent Prandtl-Ishlinskii model (40), where Γ is a memoryless, continuous, strictly
monotonic function.

Example VI.1. We consider the linear plant

G(z) =
1

z + 1
(43)

with hysteretic input nonlinearity

v(k) = NH(u(k)) = Φ[u](k) (44)

composed of five play operators n = 5 and thresholds

ρi(u̇(t)) = ζi + ηi|u̇(t)|, (45)
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where ζ1 = 0.0315, ζ2 = 0.0756, ζ3 = 0.1134, ζ4 = 0.1512, ζ5 = 0.189, η1 = 0.2, η2 = 0.4, η3 = 0.6, η4 = 0.8,
and η5 = 1.0. The weights a1 = 0.18, a2 = 0.162, a3 = 0.15, a4 = 0.138, and a5 = 0.12 and the initial
conditions xi = 0 are considered. We consider hysteretic output nonlinearity

y(k) = NW (y0(k)) = Φ[y0](k) (46)

composed of three play operators n = 3 and thresholds

ρi(ẏ0(t)) = ζi + ηi|ẏ0(t)|, (47)

where ζ1 = 0.2, ζ2 = 0.2, ζ3 = 0.2, η1 = 0.4, η2 = 0.2, η3 = 0.3. The weights a0 = 0.6, a1 = 0.4, a2 = 0.3,
and a3 = 0.2 and the initial conditions xi = 0 are considered. We let a = 5, nc = 30, and P0 = 2I3nc . We use
the command signal sin(0.25πk) + 0.5 sin(0.5πk) and the disturbance signal w(k) = 0.5 sin(0.5πk). Figure 8
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Figure 8. Example VI.1. (a) shows the hysteretic input nonlinearity NH given by (44). (b) shows the hysteretic output
nonlinearity NW given by (46). (c) shows the closed-loop response to the command signal r(k) = sin(0.25πk)+0.5 sin(0.5πk)
and the disturbance signal w(k) = 0.5 sin(0.25πk) with the linear plant (25) and the nonlinearities of (a) and (b). (d)
shows the evolution of the controller gain vector θ.

shows the simulation results. We also consider rate-independent hysteretic input and output nonlinearities.
We use the Prandtl-Ishlinskii model (44) with ηi = 0 for the input nonlinearity and the Prandtl-Ishlinskii
model (46) with ηi = 0 for the output nonlinearity. Figure 9 shows the simulation results.

Example VI.2. We consider minimum-phase stable linear plant

G(z) =
z − 0.8

(z + 1)(z − 0.9)
(48)

and the hysteretic nonlinearities (44) and (46). We use the command signal r(k) = 1 and the disturbance
signal w(k) = 0.4 sin(0.25πk). We let a = 5, nc = 4, and P0 = I3nc . We turn on the RCAC controller at
k = 100 for the Hammerstein-Wiener system. Figure 10 shows the simulation results.
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Figure 9. Example VI.1. (a) shows the hysteretic input nonlinearity NH given by (44) with ηi = 0. (b) shows the
hysteretic output nonlinearity NW given by (46) with ηi = 0. (c) shows the closed-loop response to the command
signal r(k) = sin(0.25πk)+0.5 sin(0.5πk) and the disturbance signal w(k) = 0.5 sin(0.25πk) with the linear plant (25) and the
nonlinearities of (a) and (b). (d) shows the evolution of the controller gain vector θ

.

VII. Numerical Examples: Hysteretic-Memoryless nonlinearities

Example VII.1. We consider the minimum-phase unstable double integrator plant

G(z) =
z − 0.9

z2 − 1
(49)

and

NH(u(k)) = Φ[u](k) (50)

with the saturation output nonlinearity

NW (y0) =


−1, if y0 < −1,

y0, if 1 ≤ y0 ≤ −1,

1, if y0 > 1.

(51)

Since these nonlinearities are nondecreasing, we choose N1(u) = u and N2(uc) = sata(uc). We let a = 5,
nc = 23, and P0 = 10.6I3nc . We use r(k) = sin(0.25πk) and w(k) = 0.8 sin(πk) + 0.5 sin(0.25πk). Figure 11
shows the simulation results.
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Figure 10. Example VI.2. (a) shows the rate-dependent hysteretic input nonlinearity NH given by (44). (b) shows the
rate-dependent the hysteretic output nonlinearity NW given by (46). (c) shows the closed-loop response to the step
command signal r(k) = 1 and the disturbance signal w(k) = 0.4 sin(0.25πk) with the linear plant (48) and the nonlinearities
of (a) and (b). (d) shows the evolution of the controller gain vector θ.

Example VII.2. We consider the Lyapunov-stable plant

G(z) =
1

z − 1
(52)

with the input nonlinearity

NH(u) = −u (53)

and the hysteretic output nonlinearity of the Prandtl-Ishlinskii model

y(k) = NW (y0(k)) = Φ[y0](k) (54)

The parameters of Prandtl-Ishlinskii model are selected as n = 2, ζ1 = 0.5, ζ2 = 0.5, η1 = 0.3, η2 = 0.2,
a0 = 0.5, a1 = 0.18, a2 = 0.162, x1, x2 = 0, and ηi = 0. Since these nonlinearities are monotonically
decreasing, we choose N1(u) = −u and N2(uc) = sata(uc). We let a = 5, nc = 30, and P0 = 0.1I3nc . We use
r(k) = sin(0.25πk) and w(k) = 0.1 sin(0.25πk). Figure 19 shows the simulation results.

Example VII.3. We consider the minimum-phase asymptotically stable linear plant

G(z) =
z + 0.9

(z − 0.8)(z − 0.7)
(55)
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Figure 11. Example VII.1. (a) shows the rate-dependent hysteretic input nonlinearity NH given by (57). (b) shows the
memoryless output nonlinearity NW given by (51). (c) shows the closed-loop response to the command signal sin(0.25πk)
and the disturbance signal w(k) = 0.8 sin(πk) + 0.5 sin(0.25πk) with the linear plant (49) and the nonlinearities of (a) and
(b). (d) shows the evolution of the controller gain vector θ.

with the deadband input nonlinearity

NH(u) =


u, if u < −0.6,

0, if − 0.6 ≤ u ≤ 0.6,

u, if u > 0.6

(56)

and the hysteretic output nonlinearity

y(k) = NW (y0(k)) = Φ[y0](k) (57)

are considered. Since these nonlinearities are nondecreasing, we choose N1(u) = u and N2(uc) = sata(uc).
We let a = 4, nc = 30, and P0 = 0.1I3nc . We use r(k) = sin(0.25πk) + 0.4 sin(0.5πk) and w(k) =
0.5 sin(0.25πk) + 0.2 sin(πk). Figure 13 shows the simulation results.

Example VII.4. We consider the minimum-phase asymptotically stable linear plant

G(z) =
z − 0.8

(z − 0.9)2
. (58)

with the deadband input nonlinearity

NH(u) =


u, if u < −0.4,

0, if − 0.4 ≤ u ≤ 0.7,

u, if u > 0.7,

(59)
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Figure 12. Example VII.2. (a) shows the memoryless input nonlinearity NH given by (51), (b) shows the hysteretic
output nonlinearity NW given by (54). (c) shows the closed-loop response to the command signal sin(0.25πk) and the
disturbance signal w(k) = 0.1 sin(0.5πk) with the linear plant (52) and the nonlinearities of (a) and (b). (d) shows the
evolution of the controller gain vector θ.

and the hysteretic output nonlinearity

y(k) = NW (y0(k)) = ΦΓ[y0](k), (60)

where

Γ(y0) = 0.9 tanh(1.7y0 − 0.1). (61)

Since these nonlinearities are nondecreasing, we choose N1(u) = u and N2(uc) = sata(uc). We let a = 5,
nc = 38, and P0 = 2I3nc . The command signal r(k) = sin(0.25πk) and the disturbance signal w(k) =
0.5 sin(0.5πk) + 0.3 sin(πk) are considered. Figure 14 shows the simulation results.

Example VII.5. We consider the minimum-phase asymptotically stable linear plant

G(z) =
z − 0.95

(z − 0.85)(z − 0.82)
(62)

with the saturation nonlinearity

v = NH(u) =


−1, if u < −1,

u, if 1 ≤ u ≤ −1,

1, if u > 1,

(63)

and the generalized rate-dependent Prandtl-Ishlinskii model

y = NW (y0) = ΦΓ[y0] (64)
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Figure 13. Example VII.3. (a) shows the memoryless input nonlinearity NH given by (51), (b) shows the rate-
dependent hysteretic output nonlinearity NW given by (57). (c) shows the closed-loop response to the command signal
sin(0.25πk) + 0.4 sin(0.5πk) and the disturbance signal w(k) = 0.5 sin(0.25πk) + 0.2 sin(πk) with the linear plant (55) and the
nonlinearities of (a) and (b). (d) shows the evolution of the controller gain vector θ.

where

Γ(y0) = 0.9 tanh(1.4y0). (65)

Since these nonlinearities are nondecreasing, we choose N1(u) = u and N2(uc) = sata(uc). We let a = 5,
nc = 12, and P0 = 2.7I3nc . The command signal r(k) = sin(0.25πk) and the disturbance signal w(k) =
0.5 sin(0.5πk) + 0.3 sin(πk) are used. We show the simulation results in Figure 15.

Example VII.6. We consider the asymptotically stable, minimum-phase plant

G(z) =
(z − 0.5)(z − 0.9)

(z − 0.1)(z − 0.5− ȷ0.5)(z − 0.5 + ȷ0.5)
, (66)

with the input nonlinearity

N(u) = cos(2u), (67)

and the Prandtl-Ishlinskii model

NW (y0) = Φ[y0]. (68)

The parameters of the Prandtl-Ishlinskii model are selected as n = 2, ζ1 = 0.5, ζ2 = 0.5, η1 = 0.3, η2 = 0.2,
a0 = 0.5, a1 = 0.18, a2 = 0.162, x1, x2 = 0, and ηi = 0. We use the simulation parameters of Example V.4.
Figure 16 shows the simulation results.

19 of 26

American Institute of Aeronautics and Astronautics



−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

u(k)

u 0k)

(a)

−4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5

y
0
(k)

y(
k)

(b)

0 500 1000 1500 2000 2500 3000
10

−6

10
−4

10
−2

10
0

Time step k

P
er

fo
rm

an
ce

 |z
(k

)|

Linear Plant Nonlinear Plant

(c)

0 500 1000 1500 2000 2500 3000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time step k

θ(
k
)

(d)

Figure 14. Example VII.4. (a) shows the deadband input nonlinearity NH given by (59), (b) shows the rate-dependent
hysteretic output nonlinearity NW given by (60). (c) shows the closed-loop response to the command signal sin(0.25πk)
and the disturbance signal w(k) = 0.5 sin(0.5πk) + 0.3 sin(πk) with the linear plant (58) and the nonlinearities of (a) and
(b). (d) shows the evolution of the controller gain vector θ.

Example VII.7. We consider the minimum-phase asymptotically stable linear plant

G(z) =
z − 0.8

(z − 0.9)(z + 0.9)
(69)

with compound Wiener and Hammerstein nonlinearities defined as

y = NW (y0) = ΓW1 ◦ Φ ◦ ΓW2 [y0] (70)

and

v = NHH(u) = Φ ◦ ΓNH
[u], (71)

where ΓW1 : R → R, ΓW2 : R → R, and ΓNHH
: R → R are nondecreasing memoryless nonlinearities. We

turn on the RCAC controller at k = 100 for the compound Hammerstein-Wiener system with

ΓNH [u] =


u, if u < −0.1,

0, if − 0.1 ≤ u ≤ 0.5,

u, if u > 0.3,

(72)

ΓW1 [· · · ] = tanh(· · · ), (73)
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Figure 15. Example VII.5. (a) shows the memoryless input nonlinearity NH given by (59), (b) shows the rate-dependent
hysteretic output nonlinearity NW given by (68). (c) shows the closed-loop response to the command signal sin(0.25πk)
and the disturbance signal w(k) = 0.5 sin(0.5πk) + 0.3 sin(πk) with the linear plant (62) and the nonlinearities of (a) and
(b). (d) shows the evolution of the control signal u(k). (e) shows the evolution of the controller gain vector θ. (f) shows
the evolution of the output y(k).

and

ΓW2 [y0] =


y0, if y0 < 0,

0, if 0 ≤ y0 ≤ 0.4,

y0, if y0 > 0.4.

(74)

We consider the command signal r(k) = 0.8 sin(0.25πk) + 0.2 sin(0.5πk) and the disturbance signal w(k) =
0.5 + sin(πk) + 0.2 sin(0.25πk). Since these nonlinearities are nondecreasing, we choose N1(u) = u and
N2(uc) = sata(uc). We let a = 5, nc = 22, and P0 = I3nc . The simulation results are shown in Figure 17.

Example VII.8. We consider the minimum-phase asymptotically stable linear plant

G(z) =
z − 0.7

(z − 0.8)(z − 0.6)
. (75)

with the input nonlinearity

NH(u) = 2u3 (76)

and the hysteretic output nonlinearity

y(k) = NW (y0(k)) = Ψζ1 [y0, x1](t), (77)
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Figure 16. Example VII.6.(a) shows the memoryless input nonlinearity NH given by (67). (b) shows the output
hysteretic nonlinearity NW given by (68). (c) shows the closed-loop response to the command signal r(k) = 1 sin(0.25πk)
and the disturbance signal w(k) = 0.25 sin(0.5πk) with the linear plant (66) and the nonlinearities of (a) and (b). (d)
shows the evolution of the components of the controller θ.

where ζ1 = 0.1 and x1 = 0. Since these nonlinearities are nondecreasing, we choose N1(u) = u and
N2(uc) = sata(uc).We let a = 5, nc = 14, and P0 = I3nc . We use the command signal r(k) = 0.8 with
two disturbance signals w(k) = 0.5 sin(0.5πk) and w(k) = 0.5. Figure 18 shows the closed-loop response.
The example shows that the RCAC controller drives the performance to arbitrary low levels when a step
disturbance signal is applied. However, the performance of the RCAC controller does not achieve these levels
when a sinusoidal disturbance signal is used due to distortion from the nonlinearities.

Example VII.9. We consider the minimum-phase asymptotically stable linear plant 75 with the
input nonlinearity output nonlinearities of Example VII.8. Since these nonlinearities are nondecreasing, we
choose N1(u) = u and N2(uc) = sata(uc). We let a = 5, nc = 14, and P0 = I3nc . We use the command
signal r(k) = 1 with the disturbance signal w(k) = 0.2 sin(0.5πk). In order to show the robustness of the
RCAC controller, we present the closed-loop response when Ĥd = 2 and Ĥd = Hd = 1. Figure 19 shows the
simulation results.

Example VII.10. In this example, we simulate the linear system with memoryless and hysteresis
nonlinearities to observe the accuracy of the RCAC controller at various levels of nonlinearity. We consider
the unstable minimum-phase plant

G(z) =
z − 0.8

(z − 0.7)(z − 1.1)
(78)
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Figure 17. Example VII.7. (a) shows the input nonlinearity NH given by (71), (b) shows the output nonlinearity SNW

given by (79). (c) shows the closed-loop response to the command signal r(k) = 0.8 sin(0.25πk) + 0.2 sin(0.5πk) and the
disturbance signal w(k) = 0.5 + sin(πk) + 0.2 sin(0.25πk) with the linear plant (69) and the nonlinearities of (a) and (b).
(d) shows the evolution of the controller gain vector θ.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
−4

10
−3

10
−2

10
−1

10
0

Time step k

P
er

fo
rm

an
ce

 |z
(k

)|

Figure 18. Example VII.8. The closed-loop response to the command signal r(k) = 0.8 and the nonlinearities (76) and
(77) with the linear plant (75) with the disturbance signal w(k) = 0.5 (solid line), and w(k) = 0.5 sin(0.5πk)(dotted line).

with the deadband input nonlinearity

v = NH(u) =


u, if u < −ϱ,

0, if − ϱ ≤ u ≤ ϱ,

u, if u > ϱ,

(79)
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Figure 19. Example VII.9. The closed-loop response to the command signal r(k) = 1 and the nonlinearities (76) and

(77) with the linear plant (75) with the disturbance signal w(k) = 0.2 sin(0.5πk) considering Ĥd = 1 (solid line), and

Ĥd = 2 (dotted line).

and the hysteretic output nonlinearity

y(k) = NW (y0(k)) = Ψζ1 [y0, x1](t), (80)

where ϱ is a positive constant. We use the command input signal r(k) = sin(0.25k) and x1 = 0. Since
these nonlinearities are nondecreasing, we choose N1(u) = u and N2(uc) = sata(uc). We let a = 5, nc = 15,
and P0 = 0.2I3nc . Figure 20 shows the simulation results for the closed-loop response of the two cases. In
the first case we used hysteretic output nonlinearity (80) of ζ1 = 0.2 and deadband input nonlinearities of
ϱ = 0.25 (solid line) and ϱ = 0.5 (dotted line). Second case includes deadband input nonlinearity of ϱ = 0.2
and hysteretic output nonlinearities of ζ1 = 0.25 (solid line) and ζ1 = 0.5 (dotted line). Due to the distortion
from the nonlinearities, it can be concluded that under sinusoidal command input the RCAC controller does
not reduce the error to zero. The example also shows that the accuracy depends on the deadbands in the
nonlinearities, where higher deadbands decrease the accuracy of the closed-loop system.

VIII. Conclusions

Retrospective cost adaptive control (RCAC) was applied to a command-following problem for un-
certain Hammerstein-Wiener systems with memoryless and hysteretic nonlinearities. RCAC used limited
modeling information about the memoryless and hysteretic nonlinearities. RCAC was able to drive the
Hammerstein-Wiener system to follow the reference command for linear plants that are asymptotically sta-
ble or unstable. However, the accuracy of the RCAC controller depends on the deadband in the nonlinearities
and the command input and disturbance signals. Under sinusoidal command input signal or sinusoidal dis-
turbance signal, the RCAC controller does not reduce the error to zero due to the distortion from the
nonlinearities. Also, higher deadbands in the Hammerstein-Wiener systems affect the performance of the
RCAC controller.
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