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Abstract—We present an adaptive control methodology that
requires no plant modeling information. The method is based
on a cumulative retrospective cost adaptive control algorithm,
which is a direct adaptive control algorithm for stabilization,
disturbance rejection, and command following when partial
plant modeling information is available, specifically, the first
nonzero Markov parameter, the relative degree, and estimates
of nonminimum-phase zeros. The same adaptive algorithm is
used online to estimate the required modeling information. By
merging these processes into a single architecture, the resulting
hybrid adaptive control algorithm requires no prior modeling

information. The method is demonstrated on several illustrative
disturbance rejection and command following problems, where
the plant can be either minimum or nonminimum phase, and
stable or unstable.

I. INTRODUCTION

Although model-free control is possible in theory [1],

practical considerations regarding transient response and

the effect of noise generally require that some modeling

information be known. If the adaptation procedure updates

the controller gains directly based on model information that

is known beforehand, then the adaptive control law is direct;

if model information is learned online and the controller

gains are updated based on the current model estimate, then

the adaptive control law is indirect; and, finally, if online

learning is used in support of adaptation, then the adaptive

control law is hybrid. As expressed in [2], hybrid adaptive

control entails the “deeper question”, namely, “how much

needs to be known (in order that an acceptable level of

performance can be secured, during the learning phase and

at the conclusion of learning)?”

In the present paper, we develop and illustrate a hybrid

adaptive control law based on cumulative retrospective cost

optimization. Direct adaptive control based on retrospec-

tive cost optimization [3–6] is a discrete-time approach to

adaptive control based on identified Markov parameters. As

shown in [4, 5] the Markov parameters capture the relative

degree, sign of the high frequency gain, and nonminimum-

phase zeros outside of the spectral radius of the plant. This

approach does not depend on matching conditions and does

not require any information about the poles of the system or

the disturbance signal.
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To extend retrospective-cost-based adaptive control,

Markov parameters can be learned online. This approach

is demonstrated in [7], where a recursive-least-squares al-

gorithm is used to update the Markov parameters based

on closed-loop identification. Examples in [7] illustrate the

ability to adapt to plant modifications in which a minimum-

phase zero changes to a nonminimum-phase zero.

In the present paper, we develop an improved approach to

hybrid retrospective-cost-based adaptive control in which the

online learning is based on retrospective cost optimization.

In particular, it is demonstrated in [8–10] that retrospec-

tive cost optimization provides a technique for updating a

subsystem model, thereby providing the means for online

model refinement. The updated subsystem can represent an

unknown component of the overall system, or it can represent

the entire system, where the latter case provides online

model identification either with or without prior modeling

information.

In the present paper, we use retrospective-cost model iden-

tification concurrently with direct retrospective-cost adaptive

control. At each step, the direct retrospective-cost adaptive

control algorithm uses estimates of the numerator polynomial

needed for the controller update law. Simultaneously, the

retrospective-cost model identification procedure uses data

from the plant to estimate the numerator polynomial needed

for the controller update law.

The resulting hybrid retrospective-cost-based adaptive

control is based on an extended retrospective performance

measure consisting of a cumulative sum of retrospective

costs, as described in [6]. This extended measure, which

provides improved transient response compared to [4, 5],

is minimized by a recursive-least-squares algorithm, which

may involve a forgetting factor. When abrupt plant changes

occur, covariance resetting is used to restart the recursive

minimization and thus the model updating.

II. DISTURBANCE REJECTION AND COMMAND

FOLLOWING

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k) +D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where x(k) ∈ ℝ
n, y(k) ∈ ℝ

ly , z(k) ∈ ℝ
lz , u(k) ∈ ℝ

lu ,

w(k) ∈ ℝ
lw , and k ≥ 0. Our goal is to develop an adaptive

output feedback controller under which the performance

variable z is minimized in the presence of the exogenous

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

FrA03.6

978-1-4244-7425-7/10/$26.00 ©2010 AACC 4812



signal w. The block diagram for (1)-(3) is shown in Figure

1. Note that w can represent either a command signal to be

followed, an external disturbance to be rejected, or both.

Fig. 1. Disturbance rejection and command following architecture.

For example, if D1 = 0 and E0 ∕= 0, then the objective is
to have the output E1x follow the command signal −E0w.

On the other hand, if D1 ∕= 0 and E0 = 0, then the

objective is to reject the disturbance w from the performance

measurement E1x. The combined command following and

disturbance rejection problem is addressed when D1 and E0

are block matrices. More precisely, if D1 =
[

D̂1 0
]

,

E0 =
[

0 Ê0

]

, and w(k) =
[

w1(k)
T w2(k)

T
]T
, then

the objective is to have E1x follow the command −Ê0w2

while rejecting the disturbance w1. Lastly, if D1 and E0 are

empty matrices, then the objective is output stabilization, that

is, convergence of z to zero.

III. CUMULATIVE RETROSPECTIVE COST ADAPTIVE

CONTROLLER

In this section, we review the cumulative retrospective

cost adaptive control algorithm developed in [6]. Consider

a strictly proper time-series controller of order nc, such that

the control u(k) is given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (4)

where, for all i = 1, . . . , nc, Mi : ℕ → ℝ
lu×lu and Ni :

ℕ → ℝ
lu×ly are determined by the adaptive control law

presented below. The control (4) can be expressed as

u(k) = �(k)�(k), (5)

where

�(k)
△
=

[

N1(k) ⋅ ⋅ ⋅ Nnc
(k) M1(k) ⋅ ⋅ ⋅ Mnc

(k)
]

,

and

�(k)
△
=
[

yT(k − 1) ⋅ ⋅ ⋅ yT(k − nc)

uT(k − 1) ⋅ ⋅ ⋅ uT(k − nc)
]T

∈ ℝ
nc(lu+ly).

Next, we represent (1) and (3) as the time-series model

from u and w to z given by

z(k) =

n
∑

i=1

−�iz(k − i) +

n
∑

i=d

�iu(k − i) +

n
∑

i=0

iw(k − i),

(6)

where �1, . . . , �n ∈ ℝ, �d, . . . , �n ∈ ℝ
lz×lu , 0, . . . , n ∈

ℝ
lz×lw , and the relative degree d is the smallest non-negative

integer i such that the ith Markov parameter, either H0
△
= E2

if i = 0 or Hi
△
= E1A

i−1B if i > 0, is nonzero. Note that
�d = Hd.

Next, we define the retrospective performance

ẑ(�̂, k)
△
= z(k) +

�
∑

i=d

�̄i

[

�̂ − �(k − i)
]

�(k − i), (7)

where � ≥ d, �̂ ∈ ℝ
lu×(nc(ly+lu)) is an optimization

variable used to derive the adaptive law, and �̄d, . . . , �̄� ∈

ℝ
lz×lu . The parameters � and �̄d, . . . , �̄� must capture the

information included in the first nonzero Markov parameter

and the nonminimum-phase zeros from u to z [6]. In this

paper, we let �̄d, . . . , �̄� be the coefficients of the numerator

polynomial matrix of the transfer function from u to z, that

is, � = n and, for i = d, . . . , n, �̄i
△
= �i. For other choices

of the parameters � and �̄d, . . . , �̄� , see [6].

Defining Θ̂
△
= vec �̂ ∈ ℝ

nclu(ly+lu) and Θ(k)
△
=

vec �(k) ∈ ℝ
nclu(ly+lu), it follows that

ẑ(Θ̂, k) = z(k) +
�
∑

i=d

ΦT
i (k)

[

Θ̂−Θ(k − i)
]

= z(k)−

�
∑

i=d

ΦT
i (k)Θ(k − i) + ΨT(k)Θ̂, (8)

where, for i = d, . . . , �, Φi(k)
△
= �(k − i) ⊗ �̄T

i ∈

ℝ
(nclu(ly+lu))×lz , where ⊗ represents the Kronecker prod-

uct, and Ψ(k)
△
=

∑�

i=d Φi(k).
Now, define the cumulative retrospective cost function

J(Θ̂, k)
△
=

k
∑

i=0

�k−iẑT(Θ̂, i)Rẑ(Θ̂, i)

+�k
(

Θ̂−Θ(0)
)T

Q
(

Θ̂−Θ(0)
)

, (9)

where � ∈ (0, 1], and R ∈ ℝ
lz×lz and Q ∈

ℝ
(nclu(ly+lu))×(nclu(ly+lu)) are positive definite. Note that

� serves as a forgetting factor, which allows more recent

data to be weighted more heavily than past data.

The cumulative retrospective cost function (9) is mini-

mized by a recursive least-squares (RLS) algorithm with a

forgetting factor [11–13]. Therefore, J(Θ̂, k) is minimized
by the adaptive law

Θ(k + 1) =Θ(k)− P (k)Ψ(k)Ω(k)−1zR(k), (10)

P (k + 1) =
1

�
P (k)−

1

�
P (k)Ψ(k)Ω(k)−1ΨT(k)P (k), (11)

where Ω(k)
△
= �R−1 + ΨT(k)P (k)Ψ(k), P (0) = Q−1,

Θ(0) ∈ ℝ
nclu(ly+lu), and the retrospective performance

measurement zR(k)
△
= ẑ(Θ(k), k). Note that the retrospec-

tive performance measurement is computable from (8) using

measured signals z, y, u, �, and the matrix coefficients

�̄d, . . . , �̄� . The cumulative retrospective cost adaptive con-

trol law is thus given by (10), (11), and

u(k) = �(k)�(k) = vec −1(Θ(k))�(k). (12)
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The key feature of the adaptive control algorithm is the

use of the retrospective performance (8), which modifies

the performance variable z(k) based on the difference be-

tween the actual past control inputs u(k − d), . . . , u(k − n)

and the recomputed past control inputs û(Θ̂, k − d)
△
=

vec −1(Θ̂)�(k− d), . . . , û(Θ̂, k−n)
△
= vec −1(Θ̂)�(k−n),

assuming that the current controller Θ̂ had been used in the

past.

Note, that the direct retrospective cost adaptive controller

presented in this section requires knowledge of the coef-

ficients �d, . . . , �n. In the next section, we show how the

algorithm presented in this section can be used for model

identification as well as direct adaptive control.

IV. RETROSPECTIVE-COST MODEL IDENTIFICATION

To implement the direct adaptive control law presented in

Section III, we require the sign of the high frequency gain,

the relative degree, and the nonminimum phase zeros, which

are captured by the numerator polynomial from u to z, given

by

�(q)
△
= q

n−d�d + q
n−d−1�d+1 + . . .+ q�n−1 + �n.

(13)

These values can be obtained through system identification

before implementing the control or from analytical models

of the system such as discretized differential equations. In

this section, we use the basic algorithm presented in Section

III to estimate (13) from an identified model of

Gzu(q)
△
= E1[qI −A]−1B =

1

�(q)
�(q), (14)

where �(q) = q
n + �1q

n−1 + ⋅ ⋅ ⋅+ �n−1q+ �n.

We seek to identify a model of (14) using a known initial

model G0(q) =
1

�0(q)
�0(q), where �0(q)

△
= q

n0�0,0 +

. . . + q�0,n0−1 + �0,n0
, and �0,0, . . . , �0,n0

∈ ℝ
lz×luΔ ,

furthermore, �0(q) is a monic polynomial of degree n0. In

general luΔ
is chosen to be equal to lu.

The initial model is connected in feedback with

an unknown but structured model of the uncertainty

[Δz(q) Δu(q)]. The objective is to determine

[Δz(q) Δu(q)] such that the output of the closed-

loop model Ĝzu(q)
△
= [I −G0(q)Δz(q)]

−1 [G0(q)Δu(q)],
given by zΔ is as close as possible to z. More precisely our

objective is to minimize ez
△
= z − zΔ.

To identify [Δz(q) Δu(q)], we use the architecture shown
in Figure 2, where we minimize the identification perfor-

mance variable ez , using the cumulative retrospective-cost-

based direct adaptive control algorithm given in Section III.

First, let Δz(q, k) and Δu(q, k) be estimates of

Δz(q) and Δu(q), respectively, attained at each time

step k. Next we write Δz(q, k) = �−1
Δ (q, k)�z(q, k),

Δu(q, k) = �−1
Δ (q, k)�u(q, k), where �Δ(q) = q

nΔ −

�Δ,1(k)q
nΔ−1 − �Δ,nΔ−1(k)q − �Δ,nΔ

(k), �z(q) =
�z,1(k)q

nΔ−1 + �z,2(k)q
nΔ−2 + �z,nΔ−1(k)q+ �Δ,nΔ

(k),
�u(q) = �u,1(k)q

nΔ−1 + �u,2(k)q
nΔ−2 + �u,nΔ−1(k)q +

Fig. 2. Retrospective-cost model identification. The identified model resides
in the dashed box. The diagonal arrow represents data-driven adaptation.

�Δ,nΔ
(k), where nΔ is the order of the identified model,

�Δ,1, . . . , �Δ,nΔ
∈ ℝ

luΔ
×luΔ , �z,1, . . . , �z,nΔ

∈ ℝ
luΔ

×lz ,

�u,1, . . . , �u,nΔ
∈ ℝ

luΔ
×lu .

Next, consider the time-series representation of

[Δz(q, k) Δu(q, k)] given by

uΔ(k) =

nΔ
∑

i=1

�Δ,iuΔ(k − i) +

nΔ
∑

i=1

[�z,i �u,i]

[

z(k − i)
u(k − i)

]

(15)

which can be expressed as uΔ(k) = �Δ(k)�Δ(k), where

�Δ(k)
△
= [�z,1(k) . . . �z,nΔ

(k) �u,1(k) . . .

�u,nΔ
(k) �Δ,1(k) . . . �Δ,nΔ

(k)],

and

�(k)
△
=
[

zT(k − 1) ⋅ ⋅ ⋅ zT(k − nΔ)

uT(k − 1) ⋅ ⋅ ⋅ uT(k − nΔ)

uT
Δ(k − 1) ⋅ ⋅ ⋅ uT

Δ(k − nΔ)
]T

,

where �(k) ∈ ℝ
nΔ(luΔ

+lu+lz). Next, we define the retro-

spective performance for model identification

êz(�̂Δ, k)
△
= ez(k) +

n0
∑

i=1

�0,i

[

�̂Δ − �Δ(k − i)
]

�Δ(k − i)

= ez(k)−

n0
∑

i=1

ΦT
Δ,i(k)ΘΔ(k − i) + ΨT

Δ(k)Θ̂Δ,

where, for i = 0, . . . , n0, ΦΔ,i(k)
△
= �Δ(k − i) ⊗ �T

0,i,

ΨΔ(k)
△
=

∑n0

i=0 ΦΔ,i(k), Θ̂Δ
△
= vec(�̂Δ), and ΘΔ(k)

△
=

vec(�Δ(k)).

Now, define the retrospective cost function for model

identification by

J(Θ̂Δ, k)
△
=

k
∑

i=0

�k−i
Δ êTz (Θ̂Δ, i)RΔêz(Θ̂Δ, i)

+�k
Δ

(

Θ̂Δ −ΘΔ(0)
)T

QΔ

(

Θ̂Δ − ΘΔ(0)
)

, (16)
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which is minimized by the recursive-least-squares algorithm

ΘΔ(k + 1) =ΘΔ(k)− PΔ(k)ΨΔ(k)ΩΔ(k)
−1eR(k), (17)

PΔ(k + 1) =
1

�Δ
PΔ(k)

−
1

�Δ
PΔ(k)ΨΔ(k)ΩΔ(k)

−1ΨT
Δ(k)PΔ(k), (18)

where ΩΔ(k)
△
= �ΔR

−1
Δ + ΨT

Δ(k)PΔ(k)ΨΔ(k), PΔ(0) =

Q−1
Δ , ΘΔ(0) ∈ ℝ

nΔluΔ
(lz+lu+luΔ

), and eR(k)
△
=

êz(ΘΔ(k), k).
Therefore, the retrospective cost model identification al-

gorithm (17) and (18), yields at each time step, Ĝzu(q, k),

which is an estimate of Gzu(q) given by Ĝzu(q, k)
△
=

�̂−1(q, k)�̂(q, k), where �̂(q, k)
△
= �0(q)�Δ(q, k) −

�0(q)�z(q, k) and �̂(q, k)
△
= �0(q)�u(q, k).

V. HYBRID RETROSPECTIVE ADAPTIVE CONTROL

In Section III, we presented a direct adaptive control

method to achieve disturbance rejection and command fol-

lowing when �(q) is known. In Section IV, we presented

a recursive model identification technique, which uses an

initial known model G0(q) to identify the model Ĝzu(q, k),
which estimates Gzu(q), and thus provides, �̂(q, k) an

estimate of �(q).
In this section, we augment the disturbance rejection and

command following architecture shown in Figure 1 with the

model identification architecture presented in Figure 2. Thus,

the plant parameters �d, . . . , �n can be estimated online

while simultaneously implementing the control required to

achieve disturbance rejection and command following. The

augmented architecture is shown in Figure 3.

At each step, the hybrid method implements �̂(q, k),
which is an estimate of �(q). A control u(k) is determined
based on the adaptive law (10)-(12), while u(k) and z(k)
are simultaneously used to identify Ĝzu(q, k).
Using the hybrid architecture in Figure 3, we weaken

the requirement for prior estimates of nonminimum-phase

zeros, high-frequency gain and relative degree. Note that the

hybrid retrospective-cost adaptive control performs well as

long as the retrospective-cost model identification algorithm

converges more quickly than the direct retrospective-cost

adaptive control algorithm. We can enforce this condition

by choosing PΔ(0) large and P (0) small.

VI. DISTURBANCE REJECTION EXAMPLES

The goal in the following examples is to reject

w(k)
△
= [w1(k) w2(k)]

T
, where, for i = 1, 2, wi(k)

△
=

Ai sin(2�!iTsk), where the amplitudes are A1 = 1 and

A2 = 5; the frequencies are !1 = 5 and !2 = 10. The
sample time Ts is 0.01. The disturbances enter the plant

through D1, which is randomly generated.

Example VI.I, 3rd Order, Stable, Minimum Phase:

In this example, we choose G to have poles

−0.8, 0.5,−0.02 and a zero 0.3, which is stable and

minimum phase. We assume that the initial model is

Fig. 3. The hybrid architecture is created by combining the direct
retrospective-cost adaptive control and retrospective-cost model identifica-
tion architectures.
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Fig. 4. Performance comparison. The upper plot shows the identification
performance ez . The lower plot shows the controller performance z.

G0 =
1

z
, and we let nc = 15, P (0) = 0.01I30, nΔ = 20,

and PΔ(0) = 100I60. Figure 4 shows the performance of

the identification loop and the controller loop. As shown in

Figure 4, the identification performance ez approaches zero

and the controller performance z approaches zero. Figure 5

shows a frequency response comparison of the true system

and the identified system after 1000 time steps. We note the

peaks in the estimated frequency response, which are at the

disturbance frequencies.

Example VI.II, 8th Order, Stable, Nonminimum Phase:

In this example, we choose G to have poles

−0.9, 0.9,−0.5 ± 0.5|, 0.5 ± 0.5|,±0.7| and zeros

1.5, 0.1,−0.7 ± 0.3|, 0.3 ± 0.7|, which is stable and

nonminimum phase. We assume that the initial model is

G0 =
1

z
, and we let nc = 15, P (0) = 0.01I30, nΔ = 15,

and PΔ(0) = 0.1I45. Figure 6 shows the performance of

the identification loop and the controller loop. As shown in

Figure 6, the identification performance ez approaches zero

and the controller performance z approaches zero.
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Fig. 6. Performance comparison. The upper plot shows the identification
performance ez . The lower plot shows the controller performance z.

Example VI.III, 8th Order, Unstable, Nonminimum Phase:

In this example, we choose G to have poles

−1.04, 1.04, 0.1 ± 1.0251|,−0.5 ± 0.5|, 0.5 ± 0.5|,
and zeros 1.5, 0.1,−0.7± 0.3|, 0.3± 0.7|, which is unstable
and nonminimum phase. We assume that the initial model
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Fig. 7. Performance comparison. The upper plot shows the identification
performance ez . The lower plot shows the controller performance z.

is G0 =
1

z
, and we let nc = 15, P (0) = 0.01I30, nΔ = 15,

and PΔ(0) = 0.1I45. Figure 7 shows the performance of

the identification loop and the controller loop. As shown in

Figure 7, the identification performance ez approaches zero

and the controller performance z approaches zero.

VII. COMMAND FOLLOWING EXAMPLES

For the following examples w(k)
△
= [w1(k) w2(k)]

T
,

where, for i = 1, 2, w1(k) is a command signal to be

followed, where E0 = [1 0], and w2(k) is a disturbance

to be rejected, specifically, w2(k)
△
= 2 sin(2�2Tsk), unless

otherwise noted. The sample time Ts is 0.01. The disturbance

enters the plant through D1 =
[

0n×1 D̂1

]

, where D̂1 is

randomly generated.

Example VII.I, 8th Order, Stable, Nonminimum Phase:

In this example, we choose G to have poles

−0.9, 0.9,−0.5 ± 0.5|, 0.5 ± 0.5|,±0.7| and zeros

1.5, 0.1,−0.7 ± 0.3|, 0.3 ± 0.7|, which is stable and

nonminimum phase. The goal is to have the output y

follow w1(k) which is a step command at k = 50. For this
examples w2(k) = 0.
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Fig. 8. Plant output for command following. The goal is to have the system
trajectory follow a step command.

We assume that the initial model is G0 =
1

z
, and we let

nc = 15, P (0) = 0.1I30, nΔ = 20, and PΔ(0) = 10I60.
Figure 8 is a plot of the output y and the step command to

be followed w. From Figure 8, the step is followed with a

small transient.

Example VII.II, 8th Order, Stable, Nonminimum Phase:

In this example, we choose G to have poles

−0.9, 0.9,−0.5 ± 0.5|, 0.5 ± 0.5|,±0.7| and zeros

1.5, 0.1,−0.7 ± 0.3|, 0.3 ± 0.7|, which is stable and

nonminimum phase. The goal is to have the output y

following a step command at k = 50, while simultaneously
rejecting a disturbance with amplitude 2 and frequency of 2

Hz.

We assume that the initial model is G0 =
1

z
, and we let

nc = 15, P (0) = 0.1I30, nΔ = 20, and PΔ(0) = 10I60.
Figure 9 is a plot of the y and the step command to be

followed. Note that the adaptive controller is also rejecting

the sinusoidal disturbance w2.
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Fig. 9. Plant output for command following. The goal is to have the
system trajectory follow a step command, while also rejecting a periodic
disturbance.

Example VII.III, 8th Order, Stable, Nonminimum Phase

In this example, we choose G to have poles

−0.9, 0.9,−0.5 ± 0.5|, 0.5 ± 0.5|,±0.7| and zeros

1.5, 0.1,−0.7 ± 0.3|, 0.3 ± 0.7|, which is stable and

nonminimum phase. The goal is to have the output y

follow w1 which is a sinusoidal signal with amplitude 1

and frequency 0.6 Hz. Furthermore, y must follow a step

command at k = 50 that is

w1(k) =

{

sin(�0.012k), k < 50;
sin(�0.012k) + 1, k ≥ 50.

(19)
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Fig. 10. Plant output for command following. The goal is to have the
system trajectory follow a step command and a periodic signal, while also
rejecting a periodic disturbance.

We assume that the initial model is G0 =
1

z
, and we

let nc = 15, P (0) = 0.1I30, nΔ = 20, and PΔ(0) = 10I60.
Figure 10 is a plot of the y and the command to be followed.

Figure 11 shows the performance of the identification loop

and the controller loop. As shown in Figure 4, the identi-

fication performance ez approaches zero and the controller

performance z approaches zero, indicating that the command

has been effectively followed and the disturbances rejected.

VIII. CONCLUSIONS

In this paper, we presented an adaptive control architecture

that requires no prior model information. We achieved this

model-free control architecture by combining a cumulative

retrospective cost direct adaptive control algorithm, with

an online model estimation technique that also uses a

cumulative retrospective cost algorithm. More specifically,
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Fig. 11. Performance comparison. The upper plot shows the identification
performance ez . The lower plot shows the controller performance z.

the online retrospective cost identification estimates the nu-

merator polynomial of the plant from the control to the

performance. These estimates are then used by the direct

adaptive control algorithm. The method was demonstrated

on several illustrative disturbance rejection and command

following problems, where the plant was either minimum

or nonminimum phase, and stable or unstable. Future work

includes convergence analysis of the hybrid algorithm.
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