Lyapunov-Stable Adaptive Stabilization of Nonlinear Systems with Matched Uncertainty

Jesse B. Hoagg and Dennis S. Bernstein
Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140, jhoagg@umich.edu

1. INTRODUCTION
Adaptive stabilization of linear time-invariant plants with full state feedback has been considered in [1-4] using Lyapunov-based gradient update laws. Lyapunov-based adaptive stabilization has several extensions to nonlinear systems. In [5], a variation of the controller presented in [4] is shown to stabilize a class of scalar second-order nonlinear systems with partial-state-dependent uncertainty. In particular, the adaptive controller of [5] can stabilize the scalar nonlinear system \(m \dot{q}(t) + q(t)g(t) + f(q(t))s(t) = bu(t) \), where the functions \(f(\cdot) \) and \(g(\cdot) \) are lower bounded but otherwise unknown. In the present paper, a novel full-state-feedback adaptive controller is used to stabilize \(n \)-th order nonlinear systems with bounded state-dependent uncertainty. First, we develop the controller for linear systems, then extended the result to nonlinear systems.

2. ADAPTIVE STABILIZATION FOR LINEAR SYSTEMS
We consider the single-input linear-time invariant system
\[
\dot{x} = Ax + Bu,
\]
where \(A \in \mathbb{R}^{n \times n} \) and \(B \in \mathbb{R}^{n \times 1} \). We make the following assumptions.

(i) The system is in companion form, where
\[
A \triangleq \begin{bmatrix}
-a_{n-1} & -a_{n-2} & \cdots & -a_2 & -a_1 & -a_0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}, \tag{2.2}
\]
\[
B \triangleq \begin{bmatrix} b & 0 & \cdots & 0 \end{bmatrix}^T. \tag{2.3}
\]

(ii) \(b \neq 0 \), and \(\text{sgn}(b) \) is known.

(iii) The full state \(x \) is available for feedback.

We begin this section by providing several useful results regarding a matrix in controllable canonical form. Consider the matrix \(A \in \mathbb{R}^{n \times n} \), which has the characteristic polynomial \(d(s) \triangleq s^n + d_{n-1}s^{n-1} + d_{n-2}s^{n-2} + \cdots + d_1s + d_0 \) and is in the companion form (2.2). The Hurwitz matrix associated with the characteristic polynomial \(d(s) \) is
\[
H \triangleq \begin{bmatrix}
d_{n-1} & 1 & 0 & 0 & \cdots & 0 & 0 \\
d_{n-3} & d_{n-2} & d_{n-1} & 1 & \cdots & 0 & 0 \\
d_{n-5} & d_{n-4} & d_{n-3} & d_{n-2} & \cdots & 0 & 0 \\
d_{n-7} & d_{n-6} & d_{n-5} & d_{n-4} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \cdots & d_1 & d_2 \\
0 & 0 & 0 & 0 & \cdots & 0 & d_0
\end{bmatrix}. \tag{2.4}
\]

The following result, given in [6], concerns the solution to the Lyapunov equation for a matrix in controllable canonical form.

Lemma 2.1. Consider the asymptotically stable controllable canonical form \(A \). Let \(P \in \mathbb{R}^{n \times n} \) be the positive definite solution to the Lyapunov equation \(A^TP + PA = -Q \), where \(Q \in \mathbb{R}^{n \times n} \) is positive definite. Let \(p_1 \) denote the first column of \(P \). Then \(p_1 \) satisfies \(2DHDP_1 = q \), where \(H \) is given by (2.4), \(D \triangleq \text{diag}(1,-1,1,\ldots) \), and
\[
q = \begin{bmatrix}
\sum_{1 \leq i,j \leq n,i+j=2} (-1)^{i-j}Q_{i,j} \\
\sum_{1 \leq i,j \leq n,i+j=4} (-1)^{i-j}Q_{i,j} \\
\vdots \\
\sum_{1 \leq i,j \leq n,i+j=2n} (-1)^{i-n}Q_{i,j}
\end{bmatrix}. \tag{2.5}
\]

Lemma 2.2. Let \(g(s) \triangleq g_{n-1}s^{n-1} + g_{n-2}s^{n-2} + \cdots + g_0 \) be a Hurwitz polynomial where \(g_{n-1} > 0 \) and define
\[
A_s(k) \triangleq \begin{bmatrix}
-k|b|g_{n-1} & -k|b|g_{n-2} & \cdots & -k|b|g_0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0
\end{bmatrix}, \tag{2.6}
\]
where \(k \in \mathbb{R} \). Then, there exists \(k_n > 0 \) such that, for all \(k \geq k_n \), \(A_s(k) \) is asymptotically stable and thus, there exists a positive definite \(P(k) \) such that
\[
A_s^T(k)P(k) + P(k)A_s(k) = -e^{-\alpha k}Q, \tag{2.7}
\]
where \(Q > 0 \) and \(\alpha \geq 0 \). Furthermore, \(\lim_{k \to \infty} p_1(k) = 0 \) and \(\lim_{k \to \infty} e^{\alpha k}p_1(k) \) exists, where \(p_1(k) \) denotes the first column of \(P(k) \). If, in addition, \(\alpha > 0 \), then there exists \(k_2 \geq k_n \) such that, for all \(k \geq k_2 \), \(e^{\alpha k}P(k) \) is negative definite.

Proof. Let \(H(k) \) be the Hurwitz matrix associated with the characteristic polynomial of \(A_s(k) \). The Hurwitz stability conditions for the characteristic polynomial of \(A_s(k) \) are polynomials in \(k \) given by
\[
\Lambda_1 \triangleq k|b|g_{n-1} > 0, \tag{2.8}
\]
\[
\Lambda_2 \triangleq \begin{bmatrix}
k|b|g_{n-1} & 1 \\
k|b|g_{n-3} & k|b|g_{n-2} \\
\end{bmatrix} > 0, \tag{2.9}
\]
\[
\Lambda_3 \triangleq \begin{bmatrix}
k|b|g_{n-1} & 1 & 0 \\
k|b|g_{n-3} & k|b|g_{n-2} & k|b|g_{n-1} \\
\end{bmatrix} > 0, \tag{2.10}
\]
\[
\vdots \\
\Lambda_n \triangleq \begin{bmatrix} L_3 & \cdots & 0 \\
\vdots & \ddots & \ddots \\
0 & \cdots & k|b|g_0 \end{bmatrix} > 0. \tag{2.11}
\]

0-7803-9098-9/05/$25.00 ©2005 AACC
For sufficiently large \(k \), the Hurwitz conditions are satisfied since \(g(s) \) is Hurwitz with positive leading coefficient. Therefore, there exists \(k_0 > 0 \) such that, for all \(k \geq k_0 \), the matrix \(A_s(k) \) is asymptotically stable. Then, for all \(k \geq k_0 \), there exists \(P(k) > 0 \) satisfying (2.7).

Now, we consider the asymptotic properties of \(p_1(k) \). For all \(k \geq k_0 \), the inverse of the Hurwitz matrix exists and can be expressed as \(H^{-1}(k) = \frac{1}{\det(H(k))} \tilde{H}(k) \), where

\[
H(k) \triangleq \begin{bmatrix}
[H(k)_{1,1}] & -[H(k)_{1,2}] & \cdots & -(1)^{n+1} [H(k)_{1,n}] \\
-[H(k)_{2,1}] & [H(k)_{2,2}] & \cdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
-(1)^{n+1} [H(k)_{n,1}] & \cdots & \cdots & [H(k)_{n,n}]
\end{bmatrix}
\]

(2.12)

where \([H(k)]_{i,j}\) is the \((i,j)\)th minor of \(H(k) \). The determinant of \(H(k) \) is a degree \(n \) polynomial in \(k \), while \([H(k)]_{i,j}\) is a polynomial in \(k \) of degree not exceeding \(n - 1 \). Therefore, \(\lim_{k \to \infty} H^{-1}(k) = 0 \), and \(\lim_{k \to \infty} kH^{-1}(k) \) exists. Using Lemma 2.1 we obtain \(\lim_{k \to \infty} p_1(k) = \lim_{k \to \infty} \frac{1}{2}D^{-1}H^{-1}(k)D^{-1} - \alpha \delta kQ = 0 \) and \(\lim_{k \to \infty} k^{\alpha} p_1(k) = \lim_{k \to \infty} \frac{1}{2}D^{-1}kH^{-1}(k)D^{-1}k = 0 \), exists, where \(Q \) is determined from \(Q \) using (2.5).

Next, we show that for \(k \) sufficiently large, \(\frac{\partial P}{\partial k} < 0 \). Taking the partial derivative of (2.7) with respect to \(k \) yields

\[
-\bar{A}_s(k) \frac{\partial P}{\partial k} = \bar{Q}(k)
\]

(2.13)

where

\[
\bar{Q}(k) \triangleq -a \alpha \alpha k + \delta e_1^T P(k) + P(k)e_1 \delta^T,
\]

\(e_1 = [1 \ 0 \ \cdots \ 0]^T \in \mathbb{R}^n \), and \(\delta = -[b \ [g_{n-1} \ \cdots \ g_0]^T \in \mathbb{R}^n \). Define \(\Omega(k) \triangleq \sqrt{\frac{2}{\alpha} e^{\alpha k} P(k) e_1 \delta^T} \), and since \(0 \leq \Omega^T(k)Q(k) \), it follows that \(\delta e_1^T P(k) + P(k)e_1 \delta^T \leq \frac{\alpha}{2} e^{\alpha k} Q + \frac{\alpha}{2} \delta e_1^T P(k)Q^{-1}P(k)e_1 \delta^T \). Combining this with (2.13) yields

\[
\bar{Q}(k) \leq -e^{-\alpha k} \left[\frac{\alpha}{2} Q + \frac{\alpha}{2} \delta e_1^T P(k)Q^{-1}P(k)e_1 \delta^T \right].
\]

(2.14)

Since \(\lim_{k \to \infty} k^{\alpha} p_1(k) \) exists, it follows that \(\lim_{k \to \infty} e^{\alpha k} p_1(k) = 0 \), and thus \(\lim_{k \to \infty} \frac{1}{2} e^{2\alpha k} \delta e_1^T P(k)Q^{-1}P(k)e_1 \delta^T \leq \frac{1}{2} Q \). Therefore, \(\bar{Q}(k) \) is asymptotically stable, \(\frac{\partial P}{\partial k} < 0 \). Now, we present a Lyapunov proof of a high-gain stabilizing controller for the linear system (2.1)-(2.3).

Lemma 2.3. Consider the linear system (2.1)-(2.3). Let \(g(s) \) be the Hurwitz polynomial

\[
g(s) \triangleq g_{n-1}s^{n-1} + g_{n-2}s^{n-2} + \cdots + g_0,
\]

(2.15)

where \(g_{n-1} > 0 \). Define \(G \triangleq \begin{bmatrix} g_{n-1} & g_{n-2} & \cdots & g_0 \end{bmatrix} \), and consider the feedback

\[
u(t) = -\text{sgn}(b) k G x(t),
\]

(2.16)

where \(k \in \mathbb{R} \). Then there exists \(k_0 > 0 \) such that, for all \(k \geq k_0 \), the origin of the closed-loop system is asymptotically stable.

Proof. The system (2.1)-(2.3) with the feedback (2.16) can be written as \(x(t) = \bar{A}_s(k) + \Delta \bar{x}(t) \), where \(\bar{A}_s(k) \) is given by (2.6), \(\Delta \triangleq \begin{bmatrix} \delta \ 0_{n \times (n-1)} \end{bmatrix} \in \mathbb{R}^{n \times n} \), and \(\delta \triangleq [-a_{n-1} \ \cdots \ -a_0]^T \in \mathbb{R}^n \). Lemma 2.2 implies that there exists \(k_1 > 0 \) such that, for all \(k \geq k_1 \), \(\bar{A}_s(k) \) is asymptotically stable. For all \(k \geq k_1 \), let \(P(k) > 0 \) be the solution to the Lyapunov equation \(A_s^T(k) P(k) + P(k) \bar{A}_s(k) = - (Q + I) \), where \(Q > 0 \). Furthermore, let \(p_1(k) \) denote the first column of \(P(k) \). Next, consider the Lyapunov candidate \(V(x) = x^T P(k)x \), where \(k \geq k_1 \). Taking the derivative along the closed-loop trajectory yields

\[
\dot{V}(x) = -x^T (Q + I) x + x^T \Delta^T P(k) + P(k) \Delta x.
\]

(2.17)

Since

\[
0 \leq \left(\sqrt{2} P(k) \Delta - \frac{1}{\sqrt{2}} I \right)^T \left(\sqrt{2} P(k) \Delta - \frac{1}{\sqrt{2}} I \right)
\]

it follows that \(\Delta^T P(k) + P(k) \Delta \leq \frac{1}{2} I + 2 \Delta^T P^2(k) \Delta \). Combining this with (2.17) yields

\[
\dot{V}(x) \leq -x^T Q x - \frac{1}{2} x^T x + 2 x^T \left(\delta e_1^T P(k)e_1 \delta^T \right) \leq \frac{1}{2} I. \]

Therefore, for all \(k \geq k_1 \), \(\dot{V}(x) < 0 \) if \(x \neq 0 \), and the origin is asymptotically stable.

Now, we present a Lyapunov-stable adaptive stabilization algorithm for linear systems.

Theorem 2.1. Consider the linear system (2.1)-(2.3). Let \(g(s) \) be the Hurwitz polynomial (2.15) where \(g_{n-1} > 0 \). Define \(G \triangleq \begin{bmatrix} g_{n-1} & g_{n-2} & \cdots & g_0 \end{bmatrix} \), and consider the adaptive feedback controller

\[
u(t) = -\text{sgn}(b) k G x(t),
\]

(2.18)

\[
k(t) = e^{-\alpha(t)} x^T(t) R x(t),
\]

(2.19)

where \(R \) is positive definite and \(\alpha > 0 \). Then, there exists \(k_0 > 0 \) such that for all \(k \geq k_0 \), the equilibrium solution \((0,0)\) of the closed-loop system (2.1)-(2.3) and (2.18)-(2.19) is Lyapunov stable. Furthermore, for all initial conditions \(x(0) \) and \(k(0) \), \(k_\infty \triangleq \lim_{t \to \infty} k(t) \) exists and \(\lim_{t \to \infty} x(t) = 0 \).

Proof. The dynamics (2.1)-(2.3) with the feedback (2.18) can be expressed as

\[
\dot{x}(t) = \bar{A}(k(t)) x(t),
\]

(2.20)

where \(\bar{A}(k(t)) \triangleq A - k(t) \text{sgn}(b) BG \). Lemma 2.3 implies that there exists \(k_0 \) such that for all \(k \geq k_0 \), \(\bar{A}(k) \) is asymptotically stable. Let \(k_0 \geq k_0 \), define \(A_e \triangleq \bar{A}(k_e) \), and
define $\hat{k}(t) \triangleq k_e - k(t)$ so that (2.19)-(2.20) can be written as
\[\dot{x} = A_e x + sgn(b)k_B G x. \]
Since A_e is asymptotically stable, there exists $P_e > 0$ such that $A_e^T P_e + P_e A_e = -Q$, where $Q > 0$. Next, consider the Lyapunov candidate

\[V(x, \hat{k}) = x^T \frac{\partial P(k)}{\partial k} x + \frac{1}{2} x^T P_e x + k^2, \]
where $V : \mathbb{R}^n \times \mathbb{D} \to [0, \infty)$ and the domain \mathcal{D} will be determined. The derivative of $V(x, \hat{k})$ along a closed-loop trajectory is

\[\dot{V}(x, \hat{k}) = \dot{k} x^T [\text{sgn}(g) G^T B^T P_e + \text{sgn}(g) k_B P_e B G] x + x^T Q x - 2k e^{-\alpha k} x^T R x. \] \hspace{1cm} (2.21)

First, consider the case $\dot{k} \geq 0$, then

\[\dot{V}(x, \hat{k}) \leq -x^T Q x + k \sigma_1 x^T x, \]
where $\sigma_1 \triangleq \lambda_{\max} (\text{sgn}(g) G^T B^T P_e + \text{sgn}(g) k_B P_e B G)$. If $\sigma_1 \leq 0$, then

\[\dot{V}(x, \hat{k}) \leq -x^T Q x. \]
If $\sigma_1 > 0$, then let $0 < \varepsilon < \lambda_{\min}(Q)$. Thus, for all \hat{k} such that $0 \leq \hat{k} \leq \frac{\lambda_{\min}(Q)}{\sigma_1}$,

\[\dot{V}(x, \hat{k}) \leq -x^T x. \]
Now, consider the case $\dot{k} \leq 0$, then

\[\dot{V}(x, \hat{k}) \leq -x^T Q x + k \sigma_2 x^T x, \]
where $\sigma_2 \triangleq \lambda_{\min} (\text{sgn}(g) G^T B^T P_e + \text{sgn}(g) k_B P_e B G - 2R)$. If $\sigma_2 \geq 0$, then

\[\dot{V}(x, \hat{k}) \leq -x^T Q x. \]
If $\sigma_2 < 0$, then, for all \hat{k} such that $0 \leq \hat{k} \leq \frac{\lambda_{\min}(Q) - \varepsilon}{\sigma_2}$,

\[\dot{V}(x, \hat{k}) \leq -x^T x. \]
Thus, for all $x \in \mathbb{R}^n$ and all $\hat{k} \in \mathcal{D}$, $\dot{V}(x, \hat{k}) \leq -x^T x$ and the solution $(0, k_e)$ is Lyapunov stable.

Next, we show that, $k(t)$ converges. The dynamics (2.1)- (2.3) with the feedback (2.18) be expressed as

\[\dot{x}(t) = [A_e(k) + \Delta] x(t), \] \hspace{1cm} (2.23)
where $A_e(k)$ is given by (2.6), $\Delta \triangleq \left[\delta \ 0_{n \times (n-1)} \right] \in \mathbb{R}^{n \times n}$, and $\delta \triangleq [-a_{n-1} \ldots -a_0] \in \mathbb{R}^n$. Lemma 2.2 implies that there exists $k_0 > 0$ such that, for all constant $k \geq k_0$, $A_e(k)$ is asymptotically stable. For $k \geq k_0$, define $V_0(x, k) \triangleq x^T P(k)x$, where $P(k) > 0$ satisfies the Lyapunov equation $A_e^k(k) P(k) + P(k) A_e(k) = -e^{-\alpha k} R$, and $\alpha > 0$. Taking the derivative of $V_0(x, k)$ along a trajectory of (2.19) and (2.23) yields

\[\dot{V_0}(x, k) = -e^{-\alpha k} x^T R x + k x^T \frac{\partial P(k)}{\partial k} x + x^T [A_e^T(k) P(k) + P(k) \Delta] x \] \hspace{1cm} (2.24)
Define $\Omega(k) \triangleq \frac{1}{2} e^{-\frac{3}{2} k} R^2 - \sqrt{2} e^{-\frac{3}{2} k} R^{-\frac{1}{2}} P(k) \Delta$, and since $0 \leq \Omega^T(k) \Omega(k)$, it follows that $\Delta^T P(k) + P(k) \Delta \leq \frac{1}{2} e^{-\alpha k} R + 2 e^{\alpha k} \Delta^T P(k) R^{-1} P(k) \Delta$. Combining this with (2.24) yields

\[\dot{V_0}(x, k) \leq -e^{-\alpha k} x^T \left[\frac{1}{2} R - 2 e^{2 \alpha k} \delta P_1(k) R^{-1} P_1(k) \delta \right] x + k x^T \frac{\partial P(k)}{\partial k} x. \] \hspace{1cm} (2.25)

Lemma 2.2 implies that $\lim_{k \to \infty} e^{\alpha k} p_1(k)$ exists, and thus $\lim_{k \to \infty} e^{2 \alpha k} \delta P_1(k) R^{-1} P_1(k) \delta = 0$, and there exists $k_1 \geq k_0$ such that, for all $k \geq k_1$,

\[2 e^{2 \alpha k} \delta P_1(k) R^{-1} p_1(k) \delta \leq \frac{1}{4} \Delta. \] \hspace{1cm} (2.26)

To prove that $\lim_{k \to \infty} k(t)$ exists, suppose that $k(t)$ diverges to infinity in either finite or infinite time. Then there exists $t_3 > 0$ such that $k(t_3) = k_3$. Since $k(t)$ does not escape at t_3, it follows from (2.19) that $x(t)$ does not escape at time t_3. Let $t > t_3$ be such that $k(t)$ exists on $[t_3, t)$. Integrating (2.26) from t_3 to t and from k_3 to $k(t)$ and solving for $k(t)$ yields $k(t) \leq k(t_3) + 4 V_0(x(t_3), k_3) - 4 V_0(x(t), k(t)) \leq k(t_3) + 4 V_0(x(t_3), k_3)$. Hence $k(t)$ is bounded on $[0, \infty)$, and thus $k(t)$ does not diverge to infinity. Since $k(t)$ is non-decreasing, $k_\infty \triangleq \lim_{t \to \infty} k(t)$ exists.

Next, we show that $x(t)$ is bounded. Define the function $V_1(x) = x^T x$. Taking the derivative of $V_1(x)$ along a trajectory of (2.19)-(2.20) yields $V_1(x, k) = x^T \left[A_e^k(k) + \bar{A}(k) \right] x$. Since $k(t)$ converges, there exist $\eta > 0$ such that $V_1(x, k) \leq \eta x^T x = \eta e^{-\alpha k} k$, which implies $\dot{V}_1(x, k) \leq \eta e^{-\alpha k} k$. Integrating from 0 to t and from $k(0)$ to $k(t)$ and solving for $V_1(x(t))$ yields $V_1(x(t)) = \frac{1}{\alpha} e^{-\alpha k(t)} + V_1(x(0)) - \frac{1}{\alpha} e^{-\alpha k(0)}$. Since $k(t)$ is bounded, we conclude that $\dot{V}_1(x(t))$ is bounded. Thus, $x(t)$ is bounded.

Now, we show that $\lim_{t \to \infty} x(t) = 0$. Since $\lim_{t \to \infty} k(t)$ exists, $A(k(t))$ is bounded. The dynamics (2.20) implies $|\dot{x}(t)| \leq |\dot{A}(k(t))| |x(t)|$ and since $\dot{A}(k(t))$ and $x(t)$ are bounded, it follows that $\dot{x}(t)$ is bounded. Thus, $\frac{1}{\alpha} |e^{-\alpha k(t)} x^T(t) R x(t)| = e^{-\alpha k(t)} \left(-\dot{k}(t) x^T(t) R x(t) + 2 x^T(t) R \dot{x}(t) \right)$ is bounded. Since the derivative of $\dot{k}(t) = e^{-\alpha k(t)} x^T(t) R x(t)$ is bounded, $\dot{k}(t)$ is uniformly continuous. Since $k(t)$ is uniformly continuous and $\lim_{t \to \infty} k(t)$ exists, Barabat’s lemma implies that $\lim_{t \to \infty} e^{-\alpha k(t)} x^T(t) R x(t) = 0$. Thus, $\lim_{t \to \infty} x(t) = 0$.

3. Adaptive Stabilization for Nonlinear Systems

In this section, we consider adaptive stabilization for the nth order nonlinear system

\[q^{(n)}(t) + m_n q^{(n-1)}(t) + \ldots + q^{(1)}(t) = bu(t), \] \hspace{1cm} (3.1)
where, for $i = 0, \ldots, n - 1$, $m_i : \mathbb{R}^n \to \mathbb{R}$ and $b \in \mathbb{R}$. We make the following assumptions.

(i) The functions m_0, \ldots, m_{n-1} are locally Lipschitz.

(ii) The functions m_0, \ldots, m_{n-1} are bounded. That is, for $i = 0, \ldots, n - 1$, there exists $\mu > 0$ such that, for all $q^{(n-1)}, \ldots, q, q \in \mathbb{R}$, $[m_i(q^{(n-1)}, \ldots, q, q)] \leq \mu$.

The bound μ is unknown.

(iii) $b \neq 0$, and $\text{sgn}(b)$ is known.

(iv) The full state $q, \dot{q}, \ldots, q^{(n-1)}$ is available for feedback.

The system (3.1) can be written in the state-dependent controllable canonical form
\[
\dot{x}(t) = A(x(t))x(t) + Bu(t),
\]
where
\[
A(x) \triangleq \begin{bmatrix}
-m_{n-1}(x) & -m_{n-2}(x) & \cdots & -m_0(x) \\
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix},
\]
\[
B^T \triangleq \begin{bmatrix}
b & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix},
\]
\[
x^T \triangleq \begin{bmatrix}
q^{(n-1)} & q^{(n-2)} & \cdots & \dot{q} & q
\end{bmatrix}.
\]

We now present a nonlinear extension of Lemma 2.3.

Lemma 3.1. Consider the system (3.2)-(3.4). Let $g(s)$ be the Hurwitz polynomial
\[
g(s) \triangleq g_{n-1}s^{n-1} + g_{n-2}s^{n-2} + \cdots + g_0,
\]
where $g_{n-1} > 0$. Define $G \triangleq \begin{bmatrix} g_{n-1} & g_{n-2} & \cdots & g_0 \end{bmatrix}$, and consider the feedback
\[
u(t) = -\text{sgn}(b(k))Gx(t),
\]
where $k \in \mathbb{R}$. Then there exists $k_s > 0$ such that, for all $k \geq k_s$, the origin of the closed-loop system is globally asymptotically stable.

Proof. The system (3.2)-(3.4) with the feedback (3.7) can be written as
\[
\dot{x}(t) = [A_s(k) + \Delta(x(t))]x(t),
\]
where $A_s(k)$ is given by (2.6), $\Delta(x) \triangleq \begin{bmatrix} \delta(x) & 0_{n \times (n-1)} \end{bmatrix}^T \in \mathbb{R}^{n \times n}$, and $\delta(x) \triangleq \begin{bmatrix} -m_{n-1}(x) & \cdots & -m_0(x) \end{bmatrix}^T \in \mathbb{R}^n$. Lemma 2.2 implies that there exists k_1 such that, for all $k \geq k_1$, the matrix $A_s(k)$ is asymptotically stable. For all $k \geq k_1$, let $P(k)$ be the solution to the Lyapunov equation $A^T_s(k)P(k) + P(k)A_s(k) = -Q + I$, where $Q > 0$. Furthermore, let $p_1(k)$ denote the first column of $P(k)$. Lemma 2.2 also provides the asymptotic property $\lim_{k \to \infty} p_1(k) = 0$. Now, consider the Lyapunov candidate $V(x) \triangleq x^T P(x) x$, where $k \geq k_1$. Taking the derivative along a closed-loop trajectory yields
\[
\dot{V}(x) = -x^T (Q + I) x + x^T [\Delta^T(x) P(k) + P(k) \Delta(x)] x.
\]
Since $0 \leq \Omega(x)^T \Omega(x)$ where $\Omega(x) \triangleq \sqrt{2}P(k)\Delta(x) - \frac{1}{\sqrt{2}}I$, it follows that $\Delta^T(x) P(k) + P(k) \Delta(x) \leq \frac{1}{2} I + 2\Delta^T(x) P^2(k) \Delta(x)$. Combining this with (3.9) yields
\[
\dot{V}(x) \leq -x^T Qx - \frac{1}{2} x^T x + 2x^T [\delta(x)p_1^T(k)p_1(k)\delta(x)] x.
\]
(3.10)

Since $p_1(k) \to 0$ as $k \to \infty$, let $k_a \geq k_1$ be such that, for all $k \geq k_a$, $p_1^T(k)p_1(k) \leq \left(\frac{1}{2\sqrt{2}} \right) I$, where $\delta^T \triangleq \begin{bmatrix} \mu & \cdots & \mu \end{bmatrix}$. Therefore, for all $k \geq k_a$, $\dot{V}(x) \leq -x^T Qx$. Hence, for all $k \geq k_a$, the origin is globally asymptotically stable.

Now we present the main result of this paper, namely, Lyapunov-stable adaptive stabilization of a class of nonlinear systems.

Theorem 3.1. Consider the nonlinear system (3.2)-(3.4). Let $g(s)$ be the Hurwitz polynomial (3.6), where $g_{n-1} > 0$.

Define $G \triangleq \begin{bmatrix} g_{n-1} & g_{n-2} & \cdots & g_0 \end{bmatrix}$, and consider the adaptive feedback controller
\[
u(t) = -\text{sgn}(k)Gx(t),
\]
where R is positive definite and $\alpha > 0$. Then, there exists $k_s > 0$, such that for all $k_c \geq k_s$, the equilibrium solution $(0, k_c)$ of the closed-loop system (3.2)-(3.4) and (3.11)-(3.12) is Lyapunov stable. Furthermore, for all initial conditions $x(0)$ and $k(0)$, $k_c \triangleq \lim_{t \to \infty} k(t)$ exists and $\lim_{t \to \infty} x(t) = 0$.

Proof. The dynamics (3.2)-(3.4) with the feedback (3.11) can be written as
\[
\dot{x}(t) = [A_s(k) + \Delta(x(t))]x(t),
\]
where $A_s(k)$ is given by (2.6), $\Delta(x) \triangleq \begin{bmatrix} \delta(x) & 0_{n \times (n-1)} \end{bmatrix}^T \in \mathbb{R}^{n \times n}$, and $\delta(x) \triangleq \begin{bmatrix} -m_{n-1}(x) & \cdots & -m_0(x) \end{bmatrix}^T \in \mathbb{R}^n$. Lemma 2.2 implies that there exists k_1 such that for all $k \geq k_1$, $A_s(k)$ is asymptotically stable. For all $k \geq k_1$, let $P(k)$ be the solution to the Lyapunov equation $A^T_s(k)P(k) + P(k)A_s(k) = -(Q + I)$, where $Q > 0$. Furthermore, let $p_1(k)$ denote the first column of $P(k)$. Lemma 2.2 also provides the asymptotic property $\lim_{k \to \infty} p_1(k) = 0$. Since $p_1(k) \to 0$ as $k \to \infty$, let $k_a \geq k_1$ be such that, for all $k \geq k_a$, $p_1^T(k)p_1(k) \leq \left(\frac{1}{2\sqrt{2}} \right) I$, where $\delta^T \triangleq \begin{bmatrix} \mu & \cdots & \mu \end{bmatrix}$. Let $k_c \geq k_s$, define $A_e \triangleq A_s(k_c)$, and define $\tilde{k}(t) \triangleq k_c - k(t)$ so that (3.12)-(3.13) can be written as
\[
\dot{x} = A_e x + \text{sgn}(b)\tilde{k}BGx + \Delta(x)x.
\]
(3.14)

Since A_e is asymptotically stable, then there exists $P_e > 0$ such that $A^T_e P_e + P_e A_e = -(Q + I)$, where $Q > 0$. Let p_e denote the first column of P_e. Next, consider the Lyapunov...
candidate $V(x, \tilde{k}) \triangleq x^T P x + \tilde{k}^2$, where $V : \mathbb{R}^n \times \mathbb{D} \to [0, \infty)$ and the domain \mathbb{D} will be determined. The derivative of $V(x, \tilde{k})$ along a closed-loop trajectory is

$$\dot{V}(x, \tilde{k}) = x^T \left[A^T P_e + P_e A_e \right] x - 2\tilde{k} \frac{\partial P(k)}{\partial k} x + \sigma^2 + \frac{1}{2} \frac{T}{\eta} \frac{T}{\Delta^T(x)} P(k) R^{-1} P(k) \Delta(x) x.$$

Combining this with (3.17) yields

$$\dot{V}(x, k) \leq -\frac{1}{2} e^{-\alpha k} x^T R x + \frac{1}{2} \frac{T}{\eta} \frac{T}{\Delta^T(x)} P(k) R^{-1} P(k) \Delta(x) x.$$

(3.18)

Lemma 2.2 implies that $\lim_{t \to \infty} e^{\alpha k} p_1(k)$ exists, and thus $\lim_{t \to \infty} e^{\alpha k} p_1(k) = 0$. Since $\delta(x)$ is bounded for all $x \in \mathbb{R}$, it follows that $\lim_{t \to \infty} 2 e^{\alpha k} \delta(x) p_1(k) R^{-1} p_1(k) \Delta(x) x = 0$, and there exists $k_1 \geq k_2$ such that, for all $k \geq k_1$, $2 e^{\alpha k} \delta(x) p_1(k) R^{-1} p_1(k) \delta(x) x \leq \frac{1}{2} R$. Then, for all $k \leq k_1$, $V_0(x, k) \leq -\frac{1}{2} e^{-\alpha k} x^T R x + \frac{1}{2} \frac{T}{\eta} \frac{T}{\Delta^T(x)} P(k) R^{-1} P(k) \Delta(x) x$. Lemma 2.2 also implies that there exists $k_2 \geq k_1$, for all $k \geq k_2$, $\eta e^{\alpha k} x^T R x \leq \frac{1}{4} k$, which implies

$$\dot{V}(x, k) \leq -\frac{1}{4} k,$$

(3.19)

To prove that $\lim_{t \to \infty} k(t)$ exists, suppose that $k(t)$ diverges to infinity in either finite or infinite time. Then there exists $t_0 > 0$ such that $k(t_0) = k_0$. Since $k(t)$ does not escape at t_0, it follows from (3.12) that $x(t)$ does not escape at time t_0. Let $t > t_0$ be such that $k(t)$ exists on $[t_0, t]$. Integrating (3.19) from t_0 to t and from k_0 to $k(t)$ and solving for $k(t)$ yields $k(t) \leq k(t_0) \leq 4 V_0(x(t_0), k_0) - 4 V_0(x(t), k_0) \leq k(t_0) + 4 V_0(x(t_0), k_0)$. Hence $k(t)$ is bounded on $[0, \infty)$, and thus $k(t)$ does not diverge to infinity. Since $k(t)$ is non-decreasing, $\lim_{t \to \infty} k(t)$ exists.

Next, we show that $x(t)$ is bounded. Define the function $V_1(x) = x^T x$. Taking the derivative of $V_1(x)$ along a trajectory of (3.12)-(3.13) yields $V_1(x, k) = x^T \left[A^T(k) + A_s(k) \right] x + x^T \left[A^T(x) + A(x) \right] x$. Since $k(t)$ converges and $\Delta(x)$ is bounded, there exist $\eta > 0$ such that $V_1(x, k) \leq \eta x^T R x = \eta e^{\alpha k} x^T R x$, which implies $V_1(x, k) \leq \eta e^{\alpha k} x^T R x$. Integrating from 0 to t and from k_0 to $k(t)$ and solving for $V_1(x(t))$ yields $V_1(x(t)) \leq e^{\alpha k} x^T R x + \eta e^{\alpha k} x^T R x$. Since $k(t)$ is bounded, we conclude that $V_1(x(t))$ is bounded. Thus, $x(t)$ is bounded.

Next, we show that $\lim_{t \to \infty} x(t) = 0$. The dynamics (3.13) implies

$$\dot{x}(t) = \left[-\frac{\partial A_s(k)}{\partial k} + A_s(k) \right] x(t) + \left[A_s(k) + \frac{1}{2} \frac{T}{\Delta^T(x)} P(k) \Delta(x) R^{-1} P(k) \Delta(x) \right] x(t).$$

(3.20)

Since $\lim_{t \to \infty} k(t)$ exists, $A_s(k)$ is bounded. Furthermore, for all $x \in \mathbb{R}^n$, $\Delta(x) = \Delta(x(t))$ is bounded. Since $\dot{A}(k(t)) = \Delta(x(t))$, and $x(t)$ is bounded, it follows from (3.20) that $\dot{x}(t)$ is bounded. Then, $\frac{1}{2} \frac{T}{\Delta^T(x)} P(k) \Delta(x) R^{-1} P(k) \Delta(x)$ is bounded. Since the derivative of $k(t)$ is uniformly continuous, $k(t)$ is uniformly continuous and $\lim_{t \to \infty} k(t)$ exists, Barabanov’s lemma implies that $\lim_{t \to \infty} e^{-\alpha k(t)} x^T(t) R x(t) = 0$. Thus, $\lim_{t \to \infty} x(t) = 0$.

\[\square \]
4. Nonlinear Spring-Mass-Damper Example

In this section, we consider Lyapunov-stable adaptive stabilization of the nonlinear spring-mass-damper

\[m\ddot{q}(t) + c\dot{q}(t) + k\dot{q}(t) = u(t), \]

where

\[\ddot{q}(t) = \begin{cases} \left(c + \frac{d}{2} \right) \dot{q}(t), & |\dot{q}(t)| < \delta, \\ c\dot{q}(t) + \text{sgn}(\dot{q}(t))d, & |\dot{q}(t)| \geq \delta, \end{cases} \]

and \(\delta, c, d, h, k_0 > 0 \). The function \(\dot{c}(\cdot) \) is a continuous approximation of Coulomb friction and satisfies assumption (i). The function \(k(\cdot) \) is a linear spring with a deadzone.

This nonlinear system is shown in Figure 1. Note that the uncontrolled system has a continuum of equilibria, and the origin of the system is semistable, but not asymptotically stable. (For the definition of semistability, see [7]). For this example, the mass \(m = 3 \) kg, the viscous friction \(c = 2 \) kg/s, the Coulomb friction \(d = 20 \) N, the spring stiffness \(k_0 = 2 \) kg/s², the deadzone gap \(h = 10 \) m, and \(\delta = 0.1 \) m/s.

Note that the system (4.1) satisfies assumptions (i)-(iv) and the adaptive controller presented in Theorem 3.1 can be used to stabilize the origin. This controller is given by

\[u(t) = -k(t) \left[g_1 \right. \left. \begin{array}{c} g_1 \\ g_0 \end{array} \right] \left[\begin{array}{c} \dot{q}(t) \\ q(t) \end{array} \right], \]

\[k(t) = e^{-\alpha k(t)} \left[\begin{array}{c} \dot{q}(t) \\ q(t) \end{array} \right]^T R \left[\begin{array}{c} \dot{q}(t) \\ q(t) \end{array} \right], \]

where \(g_0 > 0, g_1 > 0, k(0) \geq 0, \alpha > 0 \), and \(R \) is positive definite. We choose the controller parameters \(g_0 = 11, g_1 = 7, \alpha = 0.1, \text{and } R = I \). The system (4.1) with the adaptive controller (4.4)-(4.5) is simulated with the initial conditions \(k(0) = 0, q(0) = -25 \) m, and \(\dot{q}(0) = 10 \) m/s. The time histories of the position \(q(t) \) and velocity \(\dot{q}(t) \) for the open-loop and closed-loop systems are shown in Figure 2. The equilibrium of the open-loop system is semistable, and, while the velocity converges to zero, the position converges to approximately -15.6 m. The adaptive controller stabilizes the equilibrium so that both the velocity and position converge to zero. The adaptive parameter \(k \) converges to approximately 42.3.

Next we apply Theorem 3.1 to the unstable system \(m\ddot{q}(t) + c\dot{q}(t) - k\dot{q}(t) = u(t) \), which is a modification of (4.1) in which the sign of the stiffness term is negative. This system is simulated with the adaptive controller (4.4)-(4.5) connected in feedback. The initial conditions are \(k(0) = 0, q(0) = -25 \) m, and \(\dot{q}(0) = 15 \) m/s. Figure 3 shows the time histories of the position and velocity for the open-loop and closed-loop system.

The open-loop system is unstable, and the adaptive controller stabilizes the origin.

REFERENCES