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ABSTRACT
A discrete-time adaptive feedback disturbance rejection algorithm is developed for applications where the dis-
turbance spectrum is unknown. Feedforward control methods are frequently used to reject disturbances with a
known spectrum, but a feedback controller is required when the disturbance is unknown. Multi-input multi-output
(MIMO) disturbance rejection algorithms are developed for controllers represented by both state-space models and
time-series models. The controller parameters are updated using a gradient algorithm. Adaptive step size functions
are developed, which guarantee that the controller matrices asymptotically approach their optimal value. We define
a retrospective performance as the performance of the system at the current time assuming the current controller
had been used over a previous window of time. The retrospective performance is minimized as a surrogate measure
of the true performance. Using the retrospective performance allows us to remove dependence on unknown plant
and disturbance information. The algorithm requires knowledge of some Markov parameters of the system from
the control signal inputs to the performance variables. No information is required of the disturbance spectrum. We
demonstrate feedback disturbance rejection on constant, tonal, and broadband disturbances.

1 INTRODUCTION
The adaptive control literature is dominated by adaptive stabilization and model reference adaptive control [1–

5]. Adaptive stabilization has been approached using parameter-estimation-based adaptive controllers, universal
stabilizers, and high-gain adaptive controllers. Model reference adaptive control addresses the adaptive tracking
problem by forcing an uncertain system to behave like a reference model. In addition to stabilization and tracking,
disturbance rejection is a third common control problem. In fact, disturbance rejection is the objective for many
applications in noise control, vibration suppression, and structural control. In the present paper, we consider the
disturbance rejection problem for uncertain systems with unknown disturbance spectrum. Our approach to this
problem is discrete-time adaptive feedback disturbance rejection.

Adaptive feedforward control is frequently used to reject harmonic disturbances when the disturbance frequen-
cies are known or can be estimated [6–9]. Adaptive feedforward algorithms typically rely on least-mean-square
(LMS) or recursive least-mean-square (RLMS) algorithms to update parameters. These methods include the
filtered-u LMS and filtered-x LMS algorithms. However, adaptive feedforward algorithms do not account for the
transfer function from the control signals to the measurements.

As an alternative, we consider adaptive feedback disturbance rejection [10, 11]. In [10], an adaptive feedback
disturbance rejection algorithm is developed based on a retrospective performance measure. The retrospective
performance of a system is the performance of the system at the current time assuming that the current controller
was used over a past window of time. In [10], the retrospective performance measure is used in connection with
time-series modelling of the plant and the controller to develop an adaptive disturbance rejection algorithm that
requires only knowledge of the numerator of the transfer function from the control to the performance measurement.

In the present paper, we adopt the notion of a retrospective performance measure and develop adaptive distur-
bance rejection algorithms based on a state-space model of the plant. By using the retrospective performance, we
eliminate the algorithms dependence on unknown plant information and unknown disturbance information. The
algorithm requires knowledge of Markov parameters from the control to the performance, rather than the numer-
ator of this transfer function as in [10]. We develop gradient-based update laws and adaptive step size functions
that minimize the retrospective performance. We consider two adaptive algorithms that are identical in method
but differ in the representation of the controller. In one case, the controller is represented by a state-space model
and in the other, it is represented by a time-series model.
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In Section 2, we formulate the disturbance rejection problem and rewrite the performance variable in terms of
Markov parameters. In Section 3, we develop a state-space adaptive feedback disturbance rejection controller. A
time-series adaptive feedback disturbance rejection controller is given in Section 4. We provide numerical examples
in Section 5 and conclusions in Section 6.

2 DISTURBANCE REJECTION PROBLEM FORMULATION
Consider the linear shift-invariant discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (2.1)

z(k) = E1x(k) + E2u(k) + E0w(k), (2.2)

y(k) = Cx(k) + Du(k) + D2w(k), (2.3)

where x(k) ∈ R
n, u(k) ∈ R

lu , w(k) ∈ R
lw , y(k) ∈ R

ly , and z(k) ∈ R
lz . We assume that A is an asymptotically

stable matrix. The standard disturbance rejection problem has two input signals and two output signals. The
inputs are the disturbance w(k) and the control u(k). The outputs are the measurement y(k) and the performance
z(k). The objective of feedback disturbance rejection is to determine a control u(k) using the measurement y(k)
that minimizes the performance z(k) in the presence of the external disturbance w(k). We assume that w(k) is not
measured.

In fixed-gain feedforward disturbance rejection, the control u(k) is determined without using the measurement
y(k). In adaptive feedforward disturbance rejection, a measurement of the performance z(k) is required for adapta-
tion. We consider adaptive feedback disturbance rejection where y(k) is used to determine u(k), and a measurement
of z(k) is used for adaptation.

Propagating the state backwards for q times steps, equations (2.1) and (2.2) can be combined to yield

z(k) =E1A
qx(k − q) +

[

Ĥ0 Ĥ1 · · · Ĥq

]











w(k)
w(k − 1)

...
w(k − q)











+
[

H0 H1 · · · Hq

]











u(k)
u(k − 1)

...
u(k − q)











, (2.4)

where the Markov parameters from the disturbance w(k) to the performance z(k) are given by Ĥ0
△
= E0 and, for

i = 1, . . . , q, Ĥi
△
= E1A

i−1D1. The Markov parameters from the control u(k) to the performance z(k) are given by

H0
△
= E2 and, for i = 1, . . . , q, Hi

△
= E1A

i−1B.

Next, we define the retrospective performance window p > 0. For all j = 0, . . . , p − 1, the performance is

z(k − j) =E1A
qx(k − q − j) +

[

Ĥ0 Ĥ1 · · · Ĥq

]











w(k − j)
w(k − 1 − j)

...
w(k − q − j)











+
[

H0 H1 · · · Hq

]











u(k − j)
u(k − 1 − j)

...
u(k − q − j)











.

(2.5)

We define the performance block vector Z(k), the disturbance block vector W (k), and the control block vector
U(k) by

Z(k)
△
=







z(k)
...

z(k − p + 1)






, W (k)

△
=







w(k)
...

w(k − p − q + 1)






, U(k)

△
=







u(k)
...

u(k − p − q + 1)






. (2.6)

Equation (2.5) implies

Z(k) = HzuU(k) + HzwW (k) +







E1A
qx(k − q)

...
E1A

qx(k − q − p + 1)






, (2.7)
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where

Hzw
△
=













Ĥ0 · · · Ĥq 0lz×lw · · · 0lz×lw

0lz×lw

. . .
. . .

. . .
...

...
. . .

. . . 0lz×lw

0lz×lw · · · 0lz×lw Ĥ0 · · · Ĥq













∈ R
plz×(p+q)lw , (2.8)

Hzu
△
=













H0 · · · Hq 0lz×lu · · · 0lz×lu

0lz×lu

. . .
. . .

. . .
...

...
. . .

. . . 0lz×lu

0lz×lu · · · 0lz×lu H0 · · · Hq













∈ R
plz×(p+q)lu . (2.9)

3 ADAPTIVE FEEDBACK DISTURBANCE REJECTION WITH A STATE-SPACE CONTROLLER
In this section, we consider adaptive feedback disturbance rejection using a state-space model of the controller.

Consider the controller

xc(k + 1) = Ac(k)xc(k) + Bc(k)y(k), (3.1)

u(k) = Cc(k)xc(k), (3.2)

where for xc(k) ∈ R
nc . By combining (3.1) and (3.2), the control can be written in terms of all three controller

matrices

u(k) = Cc(k)Ac(k − 1)xc(k − 1) + Cc(k)Bc(k − 1)y(k − 1). (3.3)

Now, we define the measurement block vector Y (k) and the controller state block vector Xc(k) by

Y (k)
△
=







y(k − 1)
...

y(k − q − p)






, Xc(k)

△
=







xc(k − 1)
...

xc(k − q − p)






, (3.4)

so that the control can be expressed as

u(k) = Cc(k)Ac(k − 1)S1Xc(k) + Cc(k)Bc(k − 1)T1Y (k), (3.5)

where, for i = 1, . . . , q + p,

Si
△
=
[

0nc×(i−1)nc
Inc

0nc×nc(p+q−i)

]

∈ R
nc×nc(p+q), (3.6)

Ti
△
=
[

0ly×(i−1)ly Ily 0ly×ly(p+q−i)

]

∈ R
ly×ly(p+q). (3.7)

Similarly, the control block vector can be expressed as

U(k) =

p+q
∑

i=1

Li [Cc(k − i + 1)Ac(k − i)SiXc(k) + Cc(k − i + 1)Bc(k − i)TiY (k)] . (3.8)

Therefore, the performance block vector (2.7) can be written as

Z(k) =Hzu

p+q
∑

i=1

Li [Cc(k − i + 1)Ac(k − i)SiXc(k) + Cc(k − i + 1)Bc(k − i)TiY (k)]

+ HzwW (k) +







E1A
qx(k − q)

...
E1A

qx(k − q − p + 1)






. (3.9)
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The retrospective performance is the performance of the system at time k assuming that the controller given
at time k was used during p previous time steps. The retrospective performance serves as a surrogate measure of
the true performance. For the state-space controller, the retrospective performance block vector is defined as

Ẑss(k)
△
=Hzu

p+q
∑

i=1

Li [Cc(k)Ac(k)SiXc(k) + Cc(k)Bc(k)TiY (k)]

+ HzwW (k) +







E1A
qx(k − q)

...
E1A

qx(k − q − p + 1)






. (3.10)

Combining (2.7) and (3.10) yields

Ẑss(k) = Z(k) − HzuU(k) + Hzu

p+q
∑

i=1

Li [Cc(k)Ac(k)SiXc(k) + Cc(k)Bc(k)TiY (k)] . (3.11)

Note that equation (3.11) does not explicitly contain the disturbance signal. Furthermore, computing the ret-
rospective performance block vector requires knowledge of only q Markov parameters from the control to the
performance.

Next, define the state-space controller retrospective performance cost function

Jss(k)
△
=

1

2
ẐT

ss(k)Ẑss(k). (3.12)

The gradients of Jss(k) with respect to the controller matrices are given by

∂Jss(k)

∂Ac(k)
=

p+q
∑

i=1

CT
c (k)LT

i HT
zuẐss(k)XT

c (k)ST
i , (3.13)

∂Jss(k)

∂Bc(k)
=

p+q
∑

i=1

CT
c (k)LT

i HT
zuẐss(k)Y T(k)TT

i , (3.14)

∂Jss(k)

∂Cc(k)
=

p+q
∑

i=1

[

LT
i HT

zuẐss(k)XT
c (k)ST

i AT
c (k) + LT

i HT
zuẐss(k)Y T(k)ST

i BT
c (k)

]

. (3.15)

The controller parameter updates are given by

Ac(k + 1) = Ac(k) − ηss(k)
∂Jss(k)

∂Ac(k)
, (3.16)

Bc(k + 1) = Bc(k) − ηss(k)
∂Jss(k)

∂Bc(k)
, (3.17)

Cc(k + 1) = Cc(k) − ηss(k)
∂Jss(k)

∂Cc(k)
, (3.18)

where ηss(k) is the adaptive step size. Now, we present a result that provides formulas for optimal step size
functions and inequalities that guarantee improvement in the estimates of the controller matrices.

Proposition 3.1. Assume that there exists A∗
c , B∗

c , and C∗
c such that Jss(k) is minimized for all k. Define

the controller parameter errors

EAc
(k)

△
= A∗

c − Ac(k), EBc
(k)

△
= B∗

c − Bc(k), ECc
(k)

△
= C∗

c − Cc(k), (3.19)

the performance errors

εAc
(k)

△
= Ẑss(k)|Ac(k)=A∗

c
− Ẑss(k), (3.20)

εBc
(k)

△
= Ẑss(k)|Bc(k)=B∗

c
− Ẑss(k), (3.21)

εCc
(k)

△
= Ẑss(k)|Cc(k)=C∗

c
− Ẑss(k), (3.22)

4



and the performance error cost functions

JAc
(k, ηss(k))

△
= ||EAc

(k + 1)||
2
F − ||EAc

(k)||
2
F , (3.23)

JBc
(k, ηss(k))

△
= ||EBc

(k + 1)||
2
F − ||EBc

(k)||
2
F , (3.24)

JCc
(k, ηss(k))

△
= ||ECc

(k + 1)||
2
F − ||ECc

(k)||
2
F . (3.25)

Let k ≥ 0 and assume that ∂Jss(k)
∂Ac(k) 6= 0, ∂Jss(k)

∂Bc(k) 6= 0, and ∂Jss(k)
∂Cc(k) 6= 0. Then

JAc
(k, ηss(k)) < 0, JBc

(k, ηss(k)) < 0, JCc
(k, ηss(k)) < 0, (3.26)

if and only if

0 < ηss(k) < 2η∗

Ac
(k), 0 < ηss(k) < 2η∗

Bc
(k), 0 < ηss(k) < 2η∗

Cc
(k), (3.27)

where the optimal step size functions are given by

η∗

Ac
(k)

△
=

||εAc
(k)||

2
2

∣

∣

∣

∣

∣

∣

∂Jss(k)
∂Ac(k)

∣

∣

∣

∣

∣

∣

2

F

, η∗

Bc

△
=

||εBc
(k)||

2
2

∣

∣

∣

∣

∣

∣

∂Jss(k)
∂Bc(k)

∣

∣

∣

∣

∣

∣

2

F

, η∗

Cc
(k)

△
=

||εCc
(k)||

2
2

∣

∣

∣

∣

∣

∣

∂Jss(k)
∂Cc(k)

∣

∣

∣

∣

∣

∣

2

F

. (3.28)

Proof. Subtracting A∗
c from the update law (3.16) yields

EAc
(k + 1) = EAc

(k) + ηss(k)
∂Jss(k)

∂Ac(k)
. (3.29)

Combining (3.23) with (3.29) results in

JAc
(k, ηss(k)) = 2ηss(k)tr

(

EAc
(k)

∂Jss(k)

∂Ac(k)

T
)

+ η2
ss(k)

∣

∣

∣

∣

∣

∣

∣

∣

∂Jss(k)

∂Ac(k)

∣

∣

∣

∣

∣

∣

∣

∣

2

F

. (3.30)

Considering only the trace term

tr

(

EAc
(k)

∂Jss(k)

∂Ac(k)

T
)

=tr



EAc
(k)

(

∂Jss(k)

∂Ac(k)
−

∂Jss(k)

∂Ac(k)

∣

∣

∣

∣

Ac(k)=A∗

c

)T


 (3.31)

=tr

(

EAc
(k)

(

−

p+q
∑

i=1

SiXc(k)εT
Ac

(k)HzuLiCc(k)

))

(3.32)

= −

(

εT
Ac

(k)

(

p+q
∑

i=1

HzuLiCc(k)EAc
(k)SiXc(k)

))

(3.33)

= − ||εAc
(k)||

2
2 . (3.34)

Therefore, (3.30) is equivalent to

JAc
(k, ηss(k)) = −2ηss(k) ||εAc

(k)||
2
2 + η2

ss(k)

∣

∣

∣

∣

∣

∣

∣

∣

∂Jss(k)

∂Ac(k)

∣

∣

∣

∣

∣

∣

∣

∣

2

F

. (3.35)

It follows that JAc
(k, ηss(k)) < 0 if and only if

0 < ηss(k) < 2
||εAc

(k)||
2
2

∣

∣

∣

∣

∣

∣

∂Jss(k)
∂Ac(k)

∣

∣

∣

∣

∣

∣

2

F

= 2η∗

Ac
(k). (3.36)

The results for JBc
(k, ηss(k)) and JCc

(k, ηss(k)) follow by similar reasoning.
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Unfortunately, the optimal step size functions given by (3.28) are not implementable since measurements of
εAc

(k), εBc
(k), and εCc

(k) are not available.. Therefore, we desire a step size function that satisfies the inequalities
(3.27). Consider the implementable step size function

η̂ss(k) = min(η̂Ac
, η̂Bc

, η̂Cc
), (3.37)

where

η̂Ac

△
=

1

(p + n) ||Hzu||
2
F ||Cc(k)||

2
F ||Xc(k)||

2
2

, (3.38)

η̂Bc

△
=

1

(p + n) ||Hzu||
2
F ||Cc(k)||

2
F ||Y (k)||

2
2

, (3.39)

η̂Cc

△
=

1

(p + n) ||Hzu||
2
F [||Ac(k)||F ||Xc(k)||2 + ||Bc(k)||F ||Y (k)||2]

2 . (3.40)

Proposition 3.2. The implementable step size function given by (3.37)-(3.40) satisfies the inequalities

0 < η̂ss(k) ≤ η∗

Ac
(k), 0 < η̂ss(k) ≤ η∗

Bc
(k), 0 < η̂ss(k) ≤ η∗

Cc
(k). (3.41)

Proof. Consider
∣

∣

∣

∣

∣

∣

∣

∣

∂Jss(k)

∂Ac(k)

∣

∣

∣

∣

∣

∣

∣

∣

F

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

p+q
∑

i=1

CT
c (k)LT

i HT
zuεAc

(k)XT
c (k)ST

i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F

, (3.42)

≤

p+q
∑

i=1

∣

∣

∣

∣CT
c (k)LT

i HT
zuεAc

(k)XT
c (k)ST

i

∣

∣

∣

∣

F
(3.43)

≤ ||εAc
(k)||2 ||Cc(k)||F

p+q
∑

i=1

σmax (HzuLi) ||SiXc(k)||2 (3.44)

≤ ||εAc
(k)||2 ||Cc(k)||F ||Xc(k)||2

[

p+q
∑

i=1

σmax (HzuLi)

]

. (3.45)

Similarly,
∣

∣

∣

∣

∣

∣

∣

∣

∂Jss(k)

∂Bc(k)

∣

∣

∣

∣

∣

∣

∣

∣

F

≤ ||εBc
(k)||2 ||Cc(k)||F ||Y (k)||2

[

p+q
∑

i=1

σmax (HzuLi)

]

, (3.46)

∣

∣

∣

∣

∣

∣

∣

∣

∂J(k)

∂Cc(k)

∣

∣

∣

∣

∣

∣

∣

∣

F

≤ ||εCc
(k)||2 [||Ac(k)||F ||Xc(k)||2 + ||Bc(k)||F ||Y (k)||2]

[

p+q
∑

i=1

σmax (HzuLi)

]

. (3.47)

Inequality (3.45) implies

||εAc
(k)||

2
2

∣

∣

∣

∣

∣

∣

∂Jss(k)
∂Ac(k)

∣

∣

∣

∣

∣

∣

2

F

≥
||εAc

(k)||
2
2

||εAc
(k)||

2
2 ||Cc(k)||

2
F ||Xc(k)||

2
2

[

∑p+q
i=1 σmax (HzuLi)

]2 (3.48)

≥
1

(p + q) ||Hzu||
2
F ||Cc(k)||

2
F ||Xc(k)||

2
2

= η̂Ac
(k). (3.49)

Similarly, inequality (3.46) implies

||εBc
(k)||

2
2

∣

∣

∣

∣

∣

∣

∂Jss(k)
∂Bc(k)

∣

∣

∣

∣

∣

∣

2

F

≥
1

(p + q) ||Hzu||
2
F ||Cc(k)||

2
F ||Y (k)||

2
2

= η̂Bc
(k), (3.50)

and inequality (3.47) implies

||εCc
(k)||

2
2

∣

∣

∣

∣

∣

∣

∂Jss(k)
∂Cc(k)

∣

∣

∣

∣

∣

∣

2

F

≥
1

(p + q) ||Hzu||
2
F

[

||Ac(k)||
2
F ||Xc(k)||

2
2 + ||Bc(k)||

2
F ||Y (k)||

2
2

] = η̂Cc
(k). (3.51)

It follows from inequalities (3.49)-(3.51) that η̂ss(k) satisfies the inequalities (3.41).
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To summarize, the state-space based adaptive feedback disturbance rejection algorithm is given by the controller
(3.1)-(3.2), and the controller update laws (3.16)-(3.18) with the step size function ηss(k) = η̂ss(k).

4 ADAPTIVE FEEDBACK DISTURBANCE REJECTION WITH A TIME-SERIES CONTROLLER
In this section, we consider adaptive feedback disturbance rejection using a time-series model of the controller.

Using a time-series model of the controller offers several advantages over the state-space model. First, for the same
controller order, a time-series controller requires fewer discrete states to update the controller parameters. This
can lessen the computational burden of the algorithm. Furthermore, we do not need to propagate the controller
states when we use a time-series model. Finally, the time-series controller performs better than the state-space
controller in simulation. Consider the controller

u(k) =

nc
∑

i=1

−aci
(k)u(k − i) +

nc
∑

i=1

bci
(k)y(k − i), (4.1)

where for i = 1, . . . , nc, aci
(k) ∈ R

lu×lu and bci
(k) ∈ R

lu×ly . We define the controller parameter matrix

θ(k)
△
=
[

−ac1
(k) · · · −acnc

(k) bc1
(k) · · · bcnc

(k)
]

, (4.2)

and the regressor

Φuy(k)
△
=





















u(k − 1)
...

u(k − nc − q − p + 1)
y(k − 1)

...
y(k − nc − q − p + 1)





















, (4.3)

where θ(k) ∈ R
lu×nc(lu+ly) and Φuy(k) ∈ R

(lu+ly)(nc+q+p−1). The controller (4.1) can be written in terms of (4.2)
and (4.3) as

u(k) = θ(k)R1Φuy(k), (4.4)

where, for i = 1, . . . , q + p, Ri ∈ R
nc(lu+ly)×(p+q)(lu+ly) is given by

Ri
△
=

[

0nclu×(i−1)lu Inclu 0nclu×((p−i)lu+(i−1)ly) 0nclu×ncly 0nclu×(p−i)ly

0ncly×(i−1)lu 0ncly×nclu 0ncly×((p−i)lu+(i−1)ly) Incly 0ncly×(p−i)ly

]

. (4.5)

Similarly, the control block vector can be expressed as

U(k) =

p+q
∑

i=1

Liθ(k − i + 1)RiΦuy(k), (4.6)

where

Li
△
=





0(i−1)lu×lu

Ilu

0(p+q−i)lu×lu



 ∈ R
(p+q)lu×lu . (4.7)

Therefore, the performance block vector (2.7) can be written as

Z(k) =Hzu

p+q
∑

i=1

Liθ(k − i + 1)RiΦuy(k) + HzwW (k) +







E1A
qx(k − q)

...
E1A

qx(k − q − p + 1)






. (4.8)

The retrospective performance block vector for a time-series controller is defined as

Ẑts(k)
△
=Hzu

p+q
∑

i=1

Liθ(k)RiΦuy(k) + HzwW (k) +







E1A
qx(k − q)

...
E1A

qx(k − q − p + 1)






. (4.9)
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By combining (2.7) and (4.9), we obtain

Ẑts(k) = Z(k) − HzuU(k) + Hzu

p+q
∑

i=1

Liθ(k)RiΦuy(k). (4.10)

Define the retrospective performance cost function

Jts(k)
△
=

1

2
ẐT

ts(k)Ẑts(k). (4.11)

The gradient with respect to the controller parameters is given by

∂Jts(k)

∂θ(k)
=

q+p
∑

i=1

LT
i HT

zuẐts(k)ΦT
uy(k)RT

i . (4.12)

Therefore, the controller gradient update law is

θ(k + 1) = θ(k) − ηts(k)
∂Jts(k)

∂θ(k)
, (4.13)

where ηts(k) is the adaptive step size. The following result provides a formula for the step size function that
causes the greatest improvement in the controller parameter matrix at each time step. This is the optimal step
size function. In addition, the result provides a bound on the step size function, which guarantees the controller
parameter matrix asymptotically approaches its optimal value.

Proposition 4.1. Assume that there exists θ∗ such that Jts(k) is minimized for all k. Define the parameter
error

E(k)
△
= θ∗ − θ(k), (4.14)

the performance error

ε(k)
△
= Ẑts|θ(k)=θ∗ − Ẑts(k), (4.15)

and the performance error cost function

J(k, ηts(k))
△
= ||E(k + 1)||

2
F − ||E(k)||

2
F . (4.16)

Let k ≥ 0 and assume that ∂Jts(k)
∂θ(k) 6= 0. Then

J(k, ηts(k)) < 0 (4.17)

if and only if

0 < ηts(k) < 2η∗

ts(k), (4.18)

where the optimal step size is given by

η∗

ts(k)
△
=

||ε(k)||
2
2

∣

∣

∣

∣

∣

∣

∂Jts(k)
∂θ(k)

∣

∣

∣

∣

∣

∣

2

F

. (4.19)

Proof. The proof follows by substituting Hzu for Bzu in Appendix B of [10].

Unfortunately, the optimal step size given by (4.19) is not implementable since a measurement of ε(k) is not
available. Therefore, we need to find an implementable step size function that satisfies (4.18). Consider the step
size function

η̂ts(k)
△
=

1

(p + q) ||Hzu||
2
F ||Φuy(k)||

2
2

. (4.20)
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By an argument similar to the one presented in Appendix C of [10], it can be shown that the candidate step size
function η̂ts(k) satisfies

0 < η̂ts(k) ≤ η∗

ts(k). (4.21)

The adaptive feedback disturbance rejection algorithm is given by the time-series controller (4.4), and the controller
parameter matrix update law (4.13) with the step size function ηts(k) = η̂ts(k).

5 ACOUSTIC DUCT EXAMPLE
Consider the equations of motion for an acoustic duct, given in [12, 13],

1

c2
ptt(χ, t) = pχχ(χ, t) + ρ0v̇u(t)δ(χ − χu) + ρ0v̇w(t)δ(χ − χw), (5.1)

z(t) = p(χz, t), (5.2)

y(t) = p(χy, t), (5.3)

where p(χ, t) is the acoustic pressure, ρ0 = 1.21 kg/m3 is the equilibrium density of air, c = 343 m/s is the acoustic
wave speed in air at room conditions, vu(t) and vw(t) are the speaker cone velocities of the control and disturbance
speakers respectively, and χu, χw, χz, and χy are the positions of the control, disturbance, performance, and
measurement, respectively. The boundary conditions are open at χ = 0 and open at χ = L, where L is the length
of the duct. The system (5.1)-(5.3) can be written in the standard state-space form by truncating the system to
finite dimensions. Assuming separation of variables and retaining the first r modes, the acoustic pressure is given
by

p(χ, t) =
r
∑

i=1

qi(t)Vi(χ). (5.4)

Now the system may be written as the 2r-dimensional state-space system

ẋ(t) = Âx(t) + B̂u(t) + D̂1w(t), (5.5)

z(t) = Ê1x(t), (5.6)

y(t) = Ĉx(t), (5.7)

where x(t)
△
=
[

q1(t) q̇1(t) · · · qr(t) q̇r(t)
]

, u(t)
△
= v̇u(t), w(t)

△
= v̇w(t),

Â
△
=















0 1
−ω2

1 −2ζ1ω1

. . .

0 1
−ω2

r −2ζ1ωr















, B̂
△
=















0
ρ0V1(χu)

...
0

ρ0Vr(χu)















, D̂1
△
=















0
ρ0V1(χw)

...
0

ρ0Vr(χw)















, (5.8)

Ê1
△
=
[

V1(χz) 0 · · · Vr(χz) 0
]

, Ĉ
△
=
[

V1(χy) 0 · · · Vr(χy) 0
]

. (5.9)

Furthermore, for i = 1, . . . , r the modal frequencies are ωi
△
= iπ

L
, the mode shapes are Vi

△
= c
√

2
L

sin iπ
L

χ, and the

damping ratios, due to the introduction of proportional damping, are ζi.

For this numerical example, we let r = 6 modes, L = 2 m, χw = 0.1 m, χy = 0.5 m, χz = 1.0 m, χu = 1.5
m, and for i = 1, . . . , 6, ζi = 0.05. The modal frequencies are 85.75 Hz, 171.5 Hz, 257.25 Hz, 343.0 Hz, 428.75 Hz,
and 514.5 Hz. The continuous-time system is sampled with a zero-order-hold at 2 kHz. Now, we implement the
time-series adaptive feedback disturbance rejection controller presented in Section 4 to demonstrate disturbance
rejection on constant, tonal, and broadband disturbances.

5.1 Acoustic Duct with Constant Disturbance
The 6 mode acoustic duct model described above is excited by the constant disturbance w(k) = 20 m/s2.

The initial conditions of the acoustic duct are assumed to be zero. The time-series adaptive feedback disturbance
rejection algorithm is implemented with nc = 12, p = 5, and q = 3. Figure 1 shows the open-loop and closed-loop
response to the constant disturbance w(k). For 0.5 seconds, the plant is allowed to run open-loop. The adaptive
controller is then turned on and asymptotically rejects the constant disturbance.

9



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (sec)

z(
k)

Figure 1: At 0.5 seconds, the adaptive feedback disturbance rejection controller is turned on and rejects the constant
disturbance.
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Figure 2: At 0.5 seconds, the adaptive feedback disturbance rejection controller is turned on and rejects the 200
Hz tonal disturbance.

5.2 Acoustic Duct with Tonal Disturbance
Now, we demonstrate disturbance rejection with a tonal disturbance. The disturbance w(k) is given by a

single-tone at 200 Hz. The time-series adaptive feedback disturbance rejection algorithm is implemented with
nc = 12, p = 5, and q = 3. The acoustic duct is assumed to have zero initial conditions. For 0.5 seconds, the
plant operates in open-loop. Then the disturbance rejection algorithm is turned on and asymptotically rejects the
constant disturbance. Figure 2 shows the disturbance rejection in the time domain. Figure 3 shows the magnitude
and phase of the controller transfer function after the controller parameters θ(k) converge. To reject the disturbance,
the adaptive controller converges to a notch near the 200 Hz disturbance frequency.

Next, we consider a dual-tone disturbance with frequencies of 200 Hz and 348 Hz. The time-series adaptive
feedback disturbance rejection algorithm is implemented with nc = 24, p = 5, and q = 5. The initial conditions
of the duct and the controller are assumed to be zero. After operating in open-loop for 0.5 seconds, the adaptive
controller is turned on. Figure 4 shows that the disturbance is asymptotically rejected.

5.3 Acoustic Duct with Broadband Disturbance
Finally, we demonstrate disturbance attenuation on the acoustic duct with a broadband disturbance. The

disturbance w(k) is given by Gaussian white noise. The initial conditions of the acoustic duct and the controller
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Figure 3: The magnitude and phase of the controller after the controller parameters θ(k) converge. The controller
placed a notch near the 200 Hz disturbance frequency.
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Figure 4: At 0.5 seconds, the adaptive feedback disturbance rejection controller is turned on and rejects the 200
Hz and 348 Hz tonal disturbances.

are assumed to be zero. The time-series adaptive feedback disturbance rejection algorithm is implemented with
nc = 24, p = 10, and q = 6. We allowed the adaptive controller to adapt until θ(k) converged. Using this fixed
controller, we calculated the closed-loop transfer function from w(k) to z(k). Figure 5 compares the open-loop and
closed-loop transfer function from the disturbance w(k) to the performance z(k).

6 CONCLUSIONS
In this paper, we developed discrete-time adaptive feedback disturbance rejection algorithms. Algorithms are

developed for controllers represented by both a state-space model and a time-series model. The method does not
require any information of the disturbance spectrum. A retrospective performance measure was used to develop
gradient update laws and adaptive step size functions that do not depend upon the unknown disturbance spectrum
or unknown plant information. The novel feature of this paper is that the algorithm requires information of some
Markov parameters from the control input to the performance output rather then the numerator of this transfer
function. Lastly, we numerically demonstrated the feedback disturbance rejection algorithm on constant, tonal,
and broadband disturbances.
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Figure 5: The open-loop and closed-loop transfer functions from w(k) to z(k).
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