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Abstract: Two existing Hammerstein-Wiener identification algorithms and a third
novel Hammerstein-Wiener identification algorithm are considered for applica-
tion to the magnetospheric system. A modified subspace algorithm that allows
missing data points is described and used for identifying periodically switching
Hammerstein-Wiener models, to capture the periodically time-varying nature of
the system. These models are used to predict ground-based magnetometer response
using the ACE satellite measurements.
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1. INTRODUCTION

The magnetosphere is the region of space dom-
inated by the magnetic field of the Earth. By
predicting magnetospheric conditions, damage to
critical systems aboard satellites and large power
transformers on the earth can be avoided. Al-
though large-scale, first principles models of the
magnetosphere exist (Powell et al., 1999), they
are extremely expensive to run in real-time, and
have to be run at a poor resolution for real-time
performance. While empirical models are simplis-
tic compared to first principles models, they are
useful for predicting specific quantities at specific
locations.

Previous empirical models include neural network
models (Weigel et al., 2003) and Hammerstein-
Wiener (H-W) models (Palanthandalam-Madapusi
et al., 2005), where the H-W model structure
consists of linear dynamics with static input and
output nonlinearities as shown in Figure 1. Since
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rements of magnetospheric conditions are
by ground-based magnetometers, which ro-
ith a one-day periodicity with respect to the
etosphere, the system has a one-day period-
In (Palanthandalam-Madapusi et al., 2005),
soid is used as an additional input to em-
the periodically time-varying nature of the
. In the current work, periodically switch-
odels are used to model the periodically
arying nature of the system.
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. Hammerstein-Wiener Model

s paper, subspace-based identification meth-
or periodically switching H-W models of
agnetospheric system are considered. For
pplication, two existing H-W identification
ds (Goethals et al., 2004; Palanthandalam-
pusi et al., 2005) are used, and a third H-
entification algorithm is developed. These
algorithms are then used as the basis for
fying periodically switching H-W models.



Subspace identification for periodic systems is
developed in (Hench, 1995; Verhaegen and Yu,
1995). In particular, (Hench, 1995) uses lifting
to express the periodically time-varying identifica-
tion problem as a set of linear time-invariant iden-
tification problems. However, for a slowly time-
varying periodic system with a large period p,
both these methods are inefficient, since they re-
quire the calculation and storage of p state space
matrices. For example, in the magnetospheric sys-
tem, which has a one-day periodicity with mea-
surements at every minute, 1440 sets of state-
space matrices have to be calculated and stored.
Another issue with real-life data such as the mag-
netospheric data is that there are often missing
data points.

To deal with these issues, first a subspace al-
gorithm that allows for missing data points is
described. Although this modification is known,
it is of great practical importance and is ap-
parently unpublished. Furthermore, this subspace
algorithm is essential for identifying periodically
switching models. This technique is used with
the three H-W identification algorithms men-
tioned above to identify periodically switching H-
W models for the magnetospheric system. With
the focus on prediction, all three methods are
compared and the results reported.

2. MAGNETOSPHERIC APPLICATION

Much of the dynamics in the magnetosphere is
controlled by the Sun’s atmosphere, which flows
supersonically away from the Sun past the Earth
and the other planets. The solar wind carries em-
bedded in it the Sun’s magnetic field, commonly
referred to as the interplanetary magnetic field
(IMF).

The solar wind and IMF interact with the magne-
tosphere producing phenomena such as the aurora
and ionospheric currents. When the aurora and
ionospheric currents become severe, the upper at-
mosphere can heat up dramatically and expand,
causing increased drag on satellites. In addition,
large ionospheric currents can drive currents in
power lines, which can overwhelm, and destroy
transformers. It is therefore important that we
understand when and where these large currents
may occur and be able to predict them.

The ACE satellite, which is positioned at the La-
grangian gravitational null point between the Sun
and the Earth, measures the solar wind and IMF
conditions approximately one hour before they
encounter the magnetosphere. The exact delay
is calculated based on the solar wind velocity.
This delay implies that measurements made by
the ACE satellite at time t, reach the Earth at
approximately time t + 1 hour. Thus, the ACE
measurements are delayed by roughly an hour for
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s the inputs to the identified model. Most
tantly, because of this delay, the identified
l has a one-hour predictive capability since
puts are available one hour into the future.

oal of the current study is to use the ACE
rements to predict the magnetosphere con-
s. The ionospheric currents cause magnetic
rbations that are measured by ground-based
etometers. Thus, the magnetometer data
e used as an indication of the magnetospheric
tions. By predicting ground-based magne-
er response using the ACE data, one can
ine possible disturbances and may be able

e steps to minimize damage.

3. HAMMERSTEIN-WIENER
IDENTIFICATION

H-W identification algorithms are consid-
ere. Based on these three algorithms, peri-

lly switching H-W models are constructed in
quent sections for the magnetospheric sys-

rst method (Palanthandalam-Madapusi et

005) consists of a two step procedure, in
the Hammerstein subsystem is identified
first step and the Wiener nonlinearity is

fied as a second least-squares step. To iden-
e Hammerstein subsystem, a basis function
sion of the known inputs is used.

econd method also consists of a two step
dure. To identify the Hammerstein subsys-
n the first step, the algorithm described in
hals et al., 2004) is used, which uses least
es support vector machines. The step for
fying the Wiener nonlinearity is the same.

to lack of space, the reader is referred
alanthandalam-Madapusi et al., 2005) and
hals et al., 2004) for details of the first two
identification algorithms. The third method,
is a novel one-step H-W identification algo-

, is explained in detail in the next subsection.

ne Step Hammerstein-Wiener Identification

der a Wiener system of the form

xk+1 = Axk + Buk, (3.1)

yk = Cxk + Gh(xk) + Duk, (3.2)

x ∈ R
n, u ∈ R

m, y ∈ R
l, h : R

n → R
q, A ∈

, B ∈ R
n×m, C ∈ R

l×n, D ∈ R
l×m and

l×q. The linear part of the output equation

k, while Gh(x) is the nonlinear part of the
t equation.

Notation Define the output block Hankel
ces



Y0|2i−1
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0 y1 · · · yj−1

...
...

. . .
...

yi−1 yi · · · yi+j−2

yi yi+1 · · · yi+j−1

...
...

. . .
...

y2i−1 y2i · · · y2i+j−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.3)

=

[
Y0|i−1

Yi|2i−1

]
=

[
Yp

Yf

]
, (3.4)

where i and j are user-defined integers such that
i ≥ n and j � i. Also,

Y0|2i−1 =

[
Y0|i

Yi+1|2i−1

]
=

[
Y +

p

Y −
f

]
. (3.5)

The subscript p denotes the ‘past’ and the sub-
script f denotes ‘future’. The input block Hankel
matrices U0|2i−1, Up, Uf , U+

p and U−
f are defined

as in (3.3)-(3.5) with y replaced by u. The defi-
nitions of the “nonlinear” block Hankel matrices
H0|2i−1, Hp, Hf , H+

p and H−
f are analogous to

(3.3)-(3.5) with y replaced by h(x).The extended
observability matrix is

Γi
�
=

⎡
⎢⎢⎢⎣

C
CA
...

CAi−1

⎤
⎥⎥⎥⎦ . (3.6)

Since i ≥ n, if (A,C) is observable, then Γi has
rank n. Let Mi ∈ R

li×mi be the lower block
triangular Toeplitz matrix

Mi =

⎡
⎢⎢⎢⎢⎢⎣

D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAi−2B CAi−3B · · · · · · D

⎤
⎥⎥⎥⎥⎥⎦

, (3.7)

and define Ψi ∈ R
li×qi as

Ψi =

⎡
⎢⎣

G · · · 0
...

. . .
...

0 · · · G

⎤
⎥⎦ . (3.8)

Finally, the state sequence Xi ∈ R
n×j is

Xi
�
=

[
xi xi+1 · · · xi+j−2 xi+j−1

]
. (3.9)

3.1.2. State Estimation

Definition 1. The nonlinear system (3.1)-(3.2) is
observable if the triple (A, C, G) is such that

Θi
�
=

[
Γi Ψi

]
∈ R

li×(n+qi) has full column rank
for all i ≥ n.

Note that, for a system to be observable it is
necessary that li ≥ n + qi for all i ≥ n, which
implies l > q. Also, a necessary condition for
observability is that the pair (A, C) be observable
in the linear sense.
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a 3.1. If the nonlinear system (3.1)-(3.2) is
able, then the intersection of the row space

‘past’ block Hankel matrix Wp
�
=

[
Up

Yp

]

ow space of the ‘future’ block Hankel matrix[
Uf

Yf

]
contains the state sequence Xi.

f: From (3.1) and (3.2),

Yp = ΓiX0 + ΨiHp + MiUp, (3.10)

Yf = ΓiXi + ΨiHf + MiUf . (3.11)

the system is observable, (3.11) can be
n as[

Xi

Hf

]
=

[
−Θ†

iMi Θ†
i

] [
Uf

Yf

]
, (3.12)

† is the Moore-Penrose generalized inverse.
ermore,

Xi =
[
−Θ†

i,nMi Θ†
i,n

] [
Uf

Yf

]
, (3.13)

Θ†
i,n denotes the first n rows of Θ†

i . From
, it is clear that the state sequence Xi is
ined in the row space of Wf or the ‘future’
-output data. Similarly from (3.10),

X0 =
[
−Θ†

i,nMi Θ†
i,n

] [
Up

Yp

]
. (3.14)

X0 and Xi are related as

Xi = AiX0 + ΔiUp, (3.15)

Δi
�
=

[
Ai−1B Ai−2B · · · B

]
. (3.16)

using (3.14) and (3.15), we obtain

=
[
−AiΘ†

i,nMi + Δi AiΘ†
i,n

] [
Up

Yp

]
. (3.17)

(3.17), the state sequence Xi is equally
ined in the ‘past’ input-output data Wp.
from (3.13) and (3.17), the state sequence Xi

tained in the intersection of Wp and Wf . �

the notion of persistent excitation is defined.

ition 2. A sequence of inputs {ui}
N
i=1 is per-

tly exciting for the system (3.1)-(3.2) if the
ing conditions are satisfied:

he matrix

[
H0|2i−1

U0|2i−1

]
has full row rank

he intersection between the row space of
he state sequence X0 and row space of the

atrix

[
H0|2i−1

U0|2i−1

]
is trivial

he state sequence X0 has full row rank n.

em 3.1. If the nonlinear system (3.1) and
is observable and the input sequence {ui}

N
i=1

sistently exciting, then the intersection of the
paces of the matrices Wp and Wf yields the
sequence Xi.



Proof. From Lemma 3.1, the intersection of Wp

and Wf contains the state sequence Xi. Next,
using (3.10), we write

[
Yp

Up

]
=

[
Γi Ψi Mi

0 0 Imi

] ⎡
⎣ X0

Hp

Up

⎤
⎦ , (3.18)

which implies that

rank

[
Yp

Up

]
= rank

⎡
⎣ X0

Hp

Up

⎤
⎦ = n + qi + mi.

Similarly, it can be shown that

rank

[
Yf

Uf

]
= rank

⎡
⎣ Xi

Hf

Uf

⎤
⎦ = n + qi + mi

and

rank

⎡
⎢⎢⎣

Up

Yp

Uf

Yf

⎤
⎥⎥⎦ = rank

⎡
⎣ X0

H0|2i−1

U0|2i−1

⎤
⎦ = n + 2qi + 2mi.

Now, using the Grassmann dimension theorem
((Bernstein, 2005), Theorem 2.3.1) gives

dim

(
row space

[
Up

Yp

] ⋂
row space

[
Uf

Yf

])

= rank

[
Up

Yp

]
+ rank

[
Uf

Yf

]
− rank

⎡
⎢⎢⎣

Up

Yp

Uf

Yf

⎤
⎥⎥⎦

= n. (3.19)

Thus, from Lemma 3.1 and (3.19), the intersection
of the row spaces of Wp and Wf yields a valid state
sequence. �

There are several ways to compute the above
intersection. One method is to use a QR decompo-

sition of the matrix

[
Wp

Wf

]
, followed by a singular

value decomposition. Since the intersection can
be calculated in any basis, the estimated state
sequence X̂i differs from the actual states Xi to
within a similarity transformation. Once the esti-
mates X̂i of the state sequence Xi are computed,
the system matrices can be computed by solving
the least squares problems

argmin
A,B

∣∣∣∣
∣∣∣∣X̂i+1 −

[
A B

] [
X̂i

Ui|i

]∣∣∣∣
∣∣∣∣
F

, (3.20)

argmin
ΘCG,D

∣∣∣∣
∣∣∣∣Yi|i −

[
ΘCG D

] [
fCG(X̂i)

Ui|i

]∣∣∣∣
∣∣∣∣
F

, (3.21)

where fCG : R
n → R

ŝ are basis functions, and
ΘCGfCG(X̂i) ≈ CXi + GHi|i.

When additional noise terms are present in (3.1)
and (3.2) the oblique projection method described
in (Van Overschee and De Moor, 1996) is used to
estimate the states. The calculation of the state
space matrices remain the same as (3.20)-(3.21).
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Hammerstein-Wiener Extension Identi-
n for H-W systems is a straightforward
sion of the Wiener identification problem
bed in the previous section. Consider the
ear discrete-time system

+1 = Axk + F(uk) + wk, (3.22)

yk = Cxk + Gh(xk) + G(uk) + vk, (3.23)

F : R
m → R

n and G : R
m → R

l. By
g F and G in terms of a set of basis functions
m → R

s (Palanthandalam-Madapusi et al.,
Lacy and Bernstein, 2001), the system can
ritten as

1 = Axk + Bf(uk) + wk, (3.24)

k = Cxk + Gh(xk) + Df(uk) + vk, (3.25)

the matrices B and D contain the coeffi-
of the basis function expansion. Thus, by
a basis function expansion for the input
earity, the identification problem is reduced
iener identification problem with general-

puts. For details of the above procedure see
nthandalam-Madapusi et al., 2004).

SUBSPACE IDENTIFICATION WITH
MISSING DATA

ection considers the case in which some data
are unavailable. Let q be a time step for
a measurement of uq or yq is unavailable.
we define the output block Hankel matrix

|2i−1
�
=

y0 · · · yq−2i+1 yq+1 · · · yj−1

...
. . .

...
...

. . .
...

yi−1 · · · yq−i−1 yq+i−1 · · · yi+j−2

yi · · · yq−i yq+i · · · yi+j−1

...
. . .

...
...

. . .
...

y2i−1 · · · yq−1 yq+2i−1 · · · y2i+j−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.1)[

Y0|i−1

Yi|2i−1

]
=

[
Yp

Yf

]
. (4.2)

that Y0|2i−1 has the same form as the output
Hankel matrices defined in (Van Overschee
e Moor, 1996) and section 3.1, except that

e columns of the original Y0|2i−1 containing
e omitted. When several data points are
g, the block Hankel matrix is constructed
rly by omitting all columns that contain
me steps corresponding to the missing data.
ermore,

Y0|2i−1 =

[
Y0|i

Yi+1|2i−1

]
=

[
Y +

p

Y −
f

]
. (4.3)

nput block Hankel matrices U0|2i−1, Up, Uf ,

nd U−
f are defined analogous to (4.1)-(4.3)

replaced by u. Finally, the state sequences
d Xi are defined as



X0
�
=

[
x0 · · · xq−2i+1 xq+1 · · · xi+j−1

]
,

Xi
�
=

[
xi · · · xq−i xq+i · · · xi+j−1

]
. (4.4)

These state sequences have a gap of 2i − 1 time
steps when one data point (uq or yq) is missing.
X0 has states missing from time steps q − 2i + 2
through q, while Xi has states missing from time
step q − i + 1 through q + i − 1.

With these modified definitions of block Hankel
matrices, it can be shown that, in the deter-
ministic case, the state sequence estimated by
the procedures described in (Van Overschee and
De Moor, 1996) is indeed Xi defined as (4.4). Fur-
thermore, when the noise terms are present, the
procedures in (Van Overschee and De Moor, 1996)
yield optimal estimates of Xi. The above modifica-
tion is valid for the H-W identification procedure
described in section 3.1 as well.

5. IDENTIFICATION OF PERIODICALLY
SWITCHING MODELS

To identify periodically switching models, con-
sider

xk+1 = Akxk + Bkuk + wk, (5.1)

yk = Ckxk + Dkuk + vk, (5.2)

where the period is p and switching occurs at time
steps αp + r1, αp + r2, · · · , αp + rβ . Here α is any
integer, β is the number of switching models and
r1 < r2 < · · · < rβ are the offset switching times.
Hence, for all k, Ak = Ak+p,and, for t = 1, . . . , β,

Aαp+rt−1+1 = Aαp+rt−1+2 = · · · = Aαp+rt
,

and similarly for Bk, Ck,Dk.

To identify the tth set of state-space matrices, the
data points corresponding to all of the other sets
of matrices are regarded as missing data points
as in section 4. This procedure is applicable to
the three H-W identification algorithms described
before, but requires prior knowledge of the offset
switching times ri, and requires that

rt − rt−1 ≥ 2i, t = 1, . . . , β. (5.3)

6. IDENTIFICATION FOR
MAGNETOMETER DATA

The ACE IMF and solar wind data are used as
inputs to the model, while the ground-based mag-
netometer data are used as outputs of the model.
Knowledge of the physics and previous experience
(Palanthandalam-Madapusi et al., 2005) suggests
that a combination of the Bz and By components
is desirable for the inputs to the model, where
Bz and By are the z and y components of the
magnitude of the IMF, respectively. On testing
several combinations of these two components, it
is found that BtVx sin4(θ/2) works best, where

Bt
�
=

x-com
comb
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√
B2

y + B2
z , θ

�
= a cos Bz/Bt, and Vx is the

ponent of the velocity of the IMF. Similar
inations of terms have previously been con-
d (Akasofu, 2000). Additional linearly en-
inputs include the density of plasma (solar

, Bt, Bz, and By.

the flow pattern of the inonospheric currents
Sun-fixed coordinate system with the mag-
eter station rotating within it, the system
one-day periodicity. Periodically switching
models are used to capture this one-day
icity and model the different dynamics gov-
the nightside and dayside of the magneto-

ic system.

hing between two, three, and four sets of
space matrices within a one-day period are
ered. The offset switching times are chosen
hat an equal amount of time is spent in each
e. Thus, if two switching models are present
ay, switching occurs every 12 hours.

7. IDENTIFICATION RESULTS

lustration, data for the month of January,
measured by the ground-based magnetome-
Thule, Greenland, is used. The first 15 days’
are used for identification, while the next
ys are used for validation. The output of
entified periodically switching H-W model
the first method is shown in Figure 2. In
odel, switching between three sets of state-
matrices occurs at regular time intervals of
rs each. Data to the left of the black vertical
re used for identification, while the identified
l is used to predict the data to the right

vertical line. When using real-time data,
tion of only one hour is possible, however
tion for 16 days is possible in the above

ple since the inputs for the entire period
ailable. Figure 3 shows the output of the
ically switching H-W model identified using
cond method. Again, switching occurs every
rs. Finally, the output of the periodically
ing H-W model identified using the third
d is shown in figure 4.

rediction efficiencies of the three periodically
ing H-W models are calculated as PE = 1−

k − ŷk)2/σ2
y (Weigel et al., 2003), where σ2

y

variance of the measured output y. From
1, the prediction efficiency for periodically
ing H-W model based on the first method

n to be better than the efficiencies for the
two methods for both the amplitude B and
ctuation dB/dt of the magnetic field. These
tion efficiencies compare favorably to the
tion efficiencies of the neural network model
eigel et al., 2003).



Table 1. Prediction efficiencies

Method 1 Method 2 Method 3
PE for B 0.7951 0.5006 0.4958

PE for dB/dt 0.7389 0.5946 0.3114

8. CONCLUSION

Two existing Hammerstein-Wiener identification
algorithms and a novel Hammerstein-Wiener iden-
tification algorithm were considered for appli-
cation to the magnetospheric system. A modi-
fied subspace algorithm that allows missing data
points was described and used for identifying pe-
riodically switching models. To capture the pe-
riodically time-varying nature of the system, pe-
riodically switching Hammerstein-Wiener models
were then identified using the three Hammerstein-
Wiener identification methods. The inputs to the
models were measurements from the ACE satel-
lite, while the outputs of the model were ground-
based magnetometer readings. The prediction ef-
ficiencies of the three methods were compared.
Future work will focus on other lower-latitude
magnetometers and identification based on richer
model structures.
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