Abstract—Given line-of-sight drift-velocity measurements at points on the earth, our goal is to estimate the electric potential distribution to match the drift velocity pattern. The electric potential is first expressed as a coefficient expansion of radial basis functions, and based on this expansion the expressions for the velocities are derived. A least-squares problem is then set up to minimize the error between the estimated velocity and the measurements. The coefficient vector obtained by solving the least squares problem is used to reconstruct the potential pattern. To further improve the fit, optimization of basis function parameters are also considered. Necessary gradient expressions are derived, which are then used in a quasi-Newton optimization algorithm. The new technique is demonstrated with a test problem and with real data.

1. INTRODUCTION

The high-latitude ionospheric electric potential is a fundamental parameter that specifies the strength and pattern of magnetospheric and ionospheric convection. Variations in strong ionospheric potentials may drive large currents in power grids. Unexpected currents may disrupt consumer power by destroying transformers that were not designed to handle the externally driven currents. By predicting when these large ionospheric electric fields and strong currents may exist, power companies may take precautionary measures to reduce the power disruptions.

There are numerous methods for determining the existence of large electric fields. Since the electric field in the polar cap is tightly coupled to the Sun’s atmospheric environment (or solar wind), most methodologies are based on satellite measurements approximately one hour upstream of the magnetosphere. For example, the model presented by [6] can be driven by the solar wind measurements to predict the state of the ionospheric electric field approximately one hour ahead of time.

Alternative models are based on data assimilation. There are currently two models that provide the high latitude electric field structure in real time using data assimilation, namely the SuperDARN model, and the real-time version of the assimilative mapping of ionospheric electrodynamics technique (rtAMIE). The SuperDARN model uses the empirical model described by [4] along with real time data from the suite of SuperDARN radars. Solar wind conditions are used to specify the background pattern, while the radar data are used to provide better specification. This technique is effective for determining the electric field structure because the radar measurements are assumed to be \(\mathbf{V} = \mathbf{E} \times \mathbf{B} \) drifts. The configuration of the SuperDARN radars allows for the simultaneous measurement of perpendicular line of sight velocities, which can be used to fit a global electric potential pattern with few geophysical assumptions. The SuperDARN radar model can be viewed at HTTP://superdarn.jhuapl.edu/rt/map/index.html.

The assimilative mapping of ionospheric electrodynamics (AMIE) technique is one of the most important data assimilation tools in the space physics community [3, 5]. This technique uses a large (or small) number of polar data sources to produce maps of the polar electrodynamics, including the electric potential, currents, electron precipitation, and conductance. AMIE can ingest a wide variety of data including ground- and satellite-based magnetometer data, ionospheric convection data from incoherent scatter and high-frequency radars, in-situ satellites, and ionosondes, and electron particle precipitation estimates from in-situ satellites and imaging satellites. This makes AMIE one of the most versatile techniques for examining the polar electrodynamics.

One problem with both of these techniques is that they use spherical harmonics to describe the high-latitude potential patterns. This technique provides a large-scale view of the high-latitude potential and is applicable in regions where the data is spaced apart about the same distance as the resolution of the spherical harmonic functions. In locations in which the data are clustered closer than the resolution, the spherical harmonics will not be able to resolve the small spatial scales. We therefore turn to radial basis functions which can be placed at arbitrary locations, allowing a coarse or fine resolution as the data requires. Radial basis function’s multi-resolution and multi-dimensional capability makes it a powerful tool for many applications [1, 2].

To test the applicability of radial basis function approximation, we have set up a test problem using data from the SuperDARN radar network. Each radar makes scans of the ionosphere, receiving back signals of the ionospheric velocity along the direction in which the radar is measuring. This scenario is termed line-of-sight velocity.

We represent the electric potential as a coefficient expansion of radial basis functions, and based on this expansion
we derive the expression for the velocity at each radar measurement point. We then set up a least-squares problem to minimize the error between the estimated velocity and the measurements. The coefficient vector obtained by solving the least squares problem is then used to reconstruct the potential pattern.

To further improve the fit, optimization of the basis function parameters is also considered. For the optimization, the gradients of the cost function with respect to the basis function parameters are derived. These gradients are then used in a standard BFGS quasi-Newton optimization algorithm.

2. PROBLEM FORMULATION

We consider gaussian radial basis functions, which are of the form

$$ e^{-\alpha \|x-c\|^2} $$

where, α determines the spread of the basis function and c determines the center of the basis function. We represent the centers of the basis functions and the points in terms of the coordinates

$$ x = \begin{bmatrix} \phi \sin \theta \\ \phi \cos \theta \end{bmatrix}, \quad c = \begin{bmatrix} \phi_c \sin \theta_c \\ \phi_c \cos \theta_c \end{bmatrix}, $$

where (r, ϕ, θ) for a set of spherical coordinates with the origin at the center of the earth. However, the basis functions are chosen to be functions of ϕ and θ alone, since the radius on the surface of the earth can be assumed to be constant. Choosing a set of j basis functions, we define $f \in \mathbb{R}^{1 \times j}$ as

$$ f \triangleq \begin{bmatrix} e^{-\alpha_1 \|x-c_1\|^2} \\ e^{-\alpha_2 \|x-c_2\|^2} \\ \vdots \\ e^{-\alpha_j \|x-c_j\|^2} \end{bmatrix}. $$

Now, let the electric potential Φ be approximated by a basis function expansion given by

$$ \Phi \approx \tilde{\Phi} = fU, \quad (2.1) $$

where $U \in \mathbb{R}^{j \times 1}$ is the vector of the coefficients, $U \triangleq \begin{bmatrix} u_1 & u_2 & \cdots & u_j \end{bmatrix}^T$. Then the electric field vector is

$$ \hat{E} = -\nabla \tilde{\Phi} = -\nabla fU, \quad (2.2) $$

where $\hat{E} \in \mathbb{R}^{3 \times 1}$ and $\nabla f \in \mathbb{R}^{3 \times j}$. Based on this electric field the drift velocity $\hat{V} \in \mathbb{R}^{3 \times 1}$ can be calculated as

$$ \hat{V} = \frac{\hat{E} \times B}{|B|^2}, \quad (2.3) $$

where B is the magnetic field. Now, if l is the line-of-sight vector, a least-squares problem can then be set up to minimize the error between the estimated component of the drift velocity along the line of sight of measurement \hat{V}_l and the measured velocity V. Thus, the problem is to minimize the cost function

$$ J(U) \triangleq (\hat{V}_l - V)^2. \quad (2.4) $$

3. LEAST-SQUARES SOLUTION

The least-squares problem is to estimate a coefficient matrix U to minimize the cost function $J(U)$. First we derive an expression for \hat{V}.

The gradient ∇f in spherical coordinates is given by

$$ \nabla f = \begin{bmatrix} \frac{\partial}{\partial r} f \\ \frac{1}{r} \frac{\partial}{\partial \phi} f \\ \frac{1}{r \sin \phi} \frac{\partial}{\partial \theta} f \end{bmatrix}^T. \quad (3.1) $$

Thus, the expression for the gradient of the i^{th} radial basis function in f is

$$ \nabla e^{-\alpha_i \|x-c_i\|^2} = \begin{bmatrix} \frac{\partial}{\partial r} e^{-\alpha_i \|x-c_i\|^2} \\ \frac{1}{r} \frac{\partial}{\partial \phi} e^{-\alpha_i \|x-c_i\|^2} \\ \frac{1}{r \sin \phi} \frac{\partial}{\partial \theta} e^{-\alpha_i \|x-c_i\|^2} \end{bmatrix}. \quad (3.2) $$

The components of (3.2) can be evaluated as

$$ \frac{\partial}{\partial r} e^{-\alpha_i \|x-c_i\|^2} = 0, \quad (3.3) $$

$$ \frac{1}{r} \frac{\partial}{\partial \phi} e^{-\alpha_i \|x-c_i\|^2} = -2\alpha_i \left[(\phi \sin \theta - \phi_c \sin \theta_c) \sin \theta + (\phi \cos \theta - \phi_c \cos \theta_c) \cos \theta \right] e^{-\alpha_i \|x-c_i\|^2}, $$

$$ \frac{1}{r \sin \phi} \frac{\partial}{\partial \theta} e^{-\alpha_i \|x-c_i\|^2} = -2\alpha_i \left[(\phi \sin \theta - \phi_c \sin \theta_c) \phi \cos \theta - (\phi \cos \theta - \phi_c \cos \theta_c) \phi \sin \theta \right] e^{-\alpha_i \|x-c_i\|^2}. $$

Thus the matrix ∇f can be constructed by computing the gradient for each basis function. Once we have the gradient, the electric field vector is

$$ \hat{E} = -\nabla fU, $$

and

$$ \hat{V} = \frac{\hat{E} \times B}{|B|^2}, $$

But before evaluating the cross product $E \times B$, we first convert both the quantities to cartesian coordinates. If $B = [B_r \ B_\phi \ B_\theta]^T$, then

$$ B_{xyz} = \begin{bmatrix} B_r \phi \cos \theta + B_\phi \cos \phi \cos \theta - B_\theta \sin \theta \\ B_r \phi \sin \theta + B_\phi \cos \phi \sin \theta + B_\theta \cos \theta \\ B_r \phi \cos \phi - B_\phi \sin \phi \end{bmatrix}. $$

Writing the gradient of the basis function matrix as $\nabla f = [\nabla f_r \ \nabla f_\phi \ \nabla f_\theta]^T$, the gradient along the cartesian
Therefore directions is
\[
\nabla f_{xyz} = \begin{bmatrix}
\nabla f_x \\
\nabla f_y \\
\nabla f_z
\end{bmatrix}
\]

Further if the confidence level of each data point is known, the cost function
is
\[
J(U) = (AU - V)^2.
\]

The minimizing solution of (3.6) is then
\[
U = (A^T A)^{-1} A^T V.
\]

Therefore the cost function \(J(U) \) becomes
\[
J(U) = ((AU) - V)^2.
\]

If the line-of-sight vector makes an angle \(\gamma \) with the longitude at that location, then \(A_i \in \mathbb{R}^{1 \times j} \) can be expressed as
\[
A_i = \frac{1}{|B|^2} \begin{bmatrix}
-B_z \nabla f_{y} + B_y \nabla f_{z} \\
-B_z \nabla f_{x} + B_x \nabla f_{z} \\
-B_y \nabla f_{z} + B_x \nabla f_{y}
\end{bmatrix}.
\]

The minimizing solution of (3.6) is then
\[
U = (A_i^T A_i)^{-1} A_i^T V.
\]

Further if the confidence level of each data point is known, then a weighted least squares problem can be setup with a weighting matrix \(W \). The weighting matrix is chosen to be a diagonal matrix containing entries on the diagonal corresponding to the standard deviation of the corresponding data point. The new cost function would then be
\[
J_w(U) = W^{-1} A_i U - W^{-1} V,
\]

and the weighted least-squares solution is
\[
U = (A_i^T W^{-1} A_i)^{-1} A_i^T W^{-1} V.
\]
potential pattern. In these figures, the center of the plot is the
Figure 1 shows a typical ionospheric high-latitude electric
problem. This test problem allows for the debugging of
the code and parameter testing of the method in general.

We then have
\[
\frac{\partial a}{\partial \alpha_i} = \frac{a}{\alpha_i} \left[1 - \alpha_i \| \mathbf{x} - \mathbf{c}_i \|_2^2 \right],
\]
\[
\frac{\partial a}{\partial \phi_i} = \frac{2 \alpha_i e^{\alpha_i (x - c_i)^2}}{r} \sin \phi_i \sin \theta + \cos \theta + \sin \theta \cos \theta + a \alpha_i,
\]
\[
\frac{\partial a}{\partial \theta_i} = \frac{2 \alpha_i e^{\alpha_i (x - c_i)^2}}{r} \sin \phi \cos \theta + \cos \theta + \sin \theta \cos \theta + a \alpha_i,
\]
\[
\frac{\partial b}{\partial \alpha_i} = \frac{b}{\alpha_i} \left[1 - \alpha_i \| \mathbf{x} - \mathbf{c}_i \|_2^2 \right],
\]
\[
\frac{\partial b}{\partial \phi_i} = \frac{2 \alpha_i e^{\alpha_i (x - c_i)^2}}{r \sin \phi} \left[\sin \phi_i \cos \theta + \cos \theta + \sin \theta \cos \theta + b \alpha_i \right],
\]
\[
\frac{\partial b}{\partial \theta_i} = \frac{2 \alpha_i e^{\alpha_i (x - c_i)^2}}{r \sin \phi} \left[\phi_i \cos \theta \cos \phi + \phi_i \sin \theta \sin \phi \sin \theta + b \alpha_i \right],
\]
where
\[
a_c = 2 \alpha_i \left(\phi \sin \theta - \phi_i \sin \theta \phi_i \cos \theta \right) \cos \theta_i,
\]
\[
b_c = 2 \alpha_i \left(\phi \sin \theta - \phi_i \sin \theta \phi_i \cos \theta \right) \phi_i \cos \theta_i
\]
Thus from the above expressions, (4.5), (4.6) and (4.7) can
be evaluated. Therefore the gradient of the cost function
with respect to each \(\alpha_i, \phi_i, \) and \(\theta_i \) can be calculated by
following the above steps.

Once the expression for the gradient is available, a
standard optimization algorithm like BFGS quasi-Newton
algorithm can be employed to optimize the parameters of
the basis functions.

5. Test Data

In order to test the method, we developed a test
problem. This test problem allows for the debugging of
the code and parameter testing of the method in general.
Figure 1 shows a typical ionospheric high-latitude electric
potential pattern. In these figures, the center of the plot is the
North magnetic pole, while the outer ring is 50° magnetic
latitude. The plots are in a Sun-fixed coordinate system,
such that the top of the plot is noon, while the bottom is
midnight. The right side is dawn. The Earth rotates under
this electric potential pattern. The two-cell pattern is due to
the solar wind flowing past the Earth, dragging the Earth’s
magnetic field lines over the poles. The field lines return
at lower latitude, resulting in a two-cell pattern where the
flow is directed over the pole from the top of the plot to
the bottom of the plot, then returning near the sides of the
plot. The peak and valley of the potential are set to 50
kV magnitude. At each grid point, the North-South and
East-West velocity components are taken. These different
components can be used as line-of-sight velocities within
the solver described above.

Figure 2 shows the fit of the electric potential using both
components of the velocity at each grid point. This was
done using 125 radial basis function specified on a uniform
latitude-longitude grid. The maximum and minimum in
the potential are realized to within ~10% of the true
potential. With more basis functions, this pattern is even
better specified. Using only the North-South component of
the flow (Figure 3) gives a close estimate of the electric
potential pattern. Although there is some clear distortion
of the potential near the magnetic pole, the size and magnitude
of the potential are in very good agreement with the
true potential. Using only the East-West component of the
velocity vectors, (Figure 4) gives the least accurate estimate
of the potential magnitude. The potential is underestimated
by ~20%. There are additional cells at lower latitude which
are non-physical, although they are small in magnitude.

6. Real Data

The real ionospheric electric potential pattern is usually
much more complex than the one described above, and
the simplified description is correct only to zeroth order.
Figure 5 shows an electric potential pattern estimated by
the AMIE technique using SuperDARN line-of-sight radar
data on October 1, 2002 at 00:00 UT. The pattern is mostly
circular with a peak in the potential of 39 kV.

Figure 6 shows the resulting electric potential pattern
from the estimation technique described above. The data
points used for estimation are shown as crosses. The data
is non-uniformly spaced and is concentrated in two clumps,
one near noon and one near midnight. The resulting pattern
is circular in shape and has approximately the same spatial
size as the AMIE pattern cell.

7. Conclusions

Using line-of-sight drift-velocity measurements at
points on the earth, the problem of estimating the electric
potential was set up as a least-squares problem. The electric
potential was assumed to be approximated by a coefficient
expansion of radial basis functions, and based on this expan-
sion, expressions for the velocity at each point were derived.
These expressions were used to evaluate the least-squares
solution. Further, the expressions for the gradient of the
cost function with respect to the basis function parameters
were also derived, which was used in an optimization code
to optimize the basis function parameters. Results were
demonstrated with fictitious and real data.

References

with Radial Basis Functions for Medical Imaging,” IEEE Transac-
B. C. McCallum and T. R. Evans, “Reconstruction and Representa-

Fig. 1. Electric potential pattern for the fictitious data set.

Fig. 2. Estimated electric potential pattern using both components of velocity.

Fig. 3. Estimated electric potential pattern using only the north-south component of velocity.
Fig. 4. Estimated electric potential pattern using only the east-west component of velocity.

Fig. 5. Electric potential pattern for the Goose Bay data.

Fig. 6. Estimated electric potential pattern for the Goose Bay data.