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Abstract—We present a two-step method for identifying
SISO Hammerstein systems. First, using a persistent input
with retrospective cost optimization, we estimate a parametric
model of the linear system. Next, we pass a single harmonic
signal through the system. We use l-delay input reconstruction
with the parametric model of the linear system to estimate
the inaccessible intermediate signal. Using the estimate of the
intermediate signal we estimate a nonparametric model of
the static nonlinearity, which is assumed to be only piecewise
continuous. This method is demonstrated on several numerical
and experimental examples of increasing complexity.

I. INTRODUCTION

Nonlinear model structures involving a single linear dy-

namic block and a single nonlinear static block comprise a

natural first step in nonlinear system identification. A nonlin-

ear mapping at the input yields a Hammerstein model, while

a nonlinear mapping at the output yields a Wiener model. The

literature on system identification for these models structures

is extensive, and shows that nonlinear system identification

for these problems remains a challenging and useful area

of research. Representative references on Hammerstein and

Wiener system identification include [1, 4, 10] and [1–5],

respectively.

The starting point for the present paper on Hammerstein-

system identification is the semiparametric approach devel-

oped in [5] for identifying Wiener systems. This approach

involves two steps and is semiparametric, which, as described

in [6], refers to the fact that the nonlinear block is estimated

nonparametrically, whereas the linear dynamics are identified

parametrically. In the first step, a single harmonic is applied

to the system to determine the phase shift of the output of

the linear system relative the input to the linear system;

this information is then used to construct a nonparametric

approximation of the nonlinearity. Next, using knowledge

of the output nonlinearity, which is not assumed to be

invertible, retrospective cost optimization (RCO) is used

to estimate the parameters of the linear model. RCO was

originally developed for adaptive control [7, 8, 11], and has

subsequently been applied to various identification problems,

including model refinement [5, 9].

In the present paper we develop a two-step semiparametric

technique for identifying single-input, single-output (SISO)
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Hammerstein systems. In the first step we use a sufficiently

rich signal to estimate the linear dynamics of the system.

We then use retrospective cost optimization to estimate the

parametric model of the linear dynamics, although alternative

techniques [14] can be used for this step, such as output-

error modeling methods. When an initial model of the linear

system is available, retrospective cost optimization can utilize

this information. In the present paper we do not assume that

an initial model is available.

For the second step, we apply a single harmonic input

signal, and measure the output once the trajectory of the

system reaches steady state. We then use input reconstruc-

tion, which is based on l-delay left invertibility of the

linear parametric model [12]. By using input reconstruction

with the identified linear parametric model, we estimate the

inaccessible intermediate signal. We examine the estimate

of the intermediate signal (which is not harmonic due to

the nonlinearity) relative to the input, and use the symmetry

properties of these signals to estimate the nonharmonic phase

shift. This estimate allows us to infer the phase shift of the

unmeasured intermediate signal (that is, the output of the

nonlinearity) and thus reconstruct this signal up to an arbi-

trary amplitude. By plotting the reconstructed intermediate

signal versus the input signal, we thus obtain a nonparametric

approximation of the nonlinear block of the system.

The contents of the paper are as follows. In Section 2 we

define the Hammerstein identification problem. A method

for parametric identification of the linear time-invariant dy-

namics using retrospective cost optimization is reviewed in

Section 3, while a method for nonparametric identification of

the static nonlinearity using input reconstruction and single

harmonic input is presented in Section 4. These methods

are demonstrated on numerical and experimental examples

in sections 5 and 6, respectively. Concluding remarks are

presented in Section 7.

II. PROBLEM FORMULATION

Consider the block-structured Hammerstein model

shown in Figure 1a, with input u(k) ∈ ℝ and intermediate

signal

v(k) = ℋ(u(k)), (1)

where ℋ : ℝ 7−→ ℝ is the static nonlinearity, and ℒ is the

SISO discrete-time linear time-invariant dynamic system

x(k + 1) = Ax(k) +Bv(k), (2)

y(k) = Cx(k), (3)
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where y(k) ∈ ℝ is the output, x(k) ∈ ℝ
n is the state vector,

and k is the sample index.

We assume that ℒ is asymptotically stable and ℋ is

piecewise continuous. Note that we do not assume that ℋ
is invertible, one-to-one, continuous, or ℋ(0) = 0. Also, we

assume that v(k) is not accessible, and that x(0) is unknown
and possibly nonzero.

Figure 1b shows the scaled-domain modification

ℒ�(�)
△
= ℒ

(�

�

)

of ℒ, where � is a nonzero real number.

Therefore, ℒ�(�v) = ℒ(v). Each value of � scales both

the gain of ℒ and the domain of ℋ. However, � is not

identifiable.

(a) (b)

Fig. 1. (a) Block-structured Hammerstein model, where u is the input, v is
the intermediate signal, y is the output, ℋ is a static nonlinearity, and ℒ is a
discrete-time linear time-invariant dynamic system. (b) An equivalent scaled
model, where � is a scaling factor and ℒ� is a scaled-domain modification
of ℒ satisfying ℒ�(�v) = ℒ(v). The scaling factor � is not identifiable.

III. PARAMETRIC IDENTIFICATION OF THE LINEAR

TIME-INVARIANT DYNAMICS

Using a sufficiently rich input u and measuring the out-

put y of the Hammerstein system, we identify a model of ℒ
given by ℒ̂ using retrospective cost optimization (RCO). The

RCO algorithm is presented in [9] together with guidelines

for choosing its tuning parameters, namely, nc, p, and �. We

do not assume that the initial state of ℒ is zero.

Consider the adaptive feedback architecture for ℒ̂ shown in

Figure 2, where ℒ̂m denotes the initial model with input w ∈
ℝ and output ŷ ∈ ℝ, and where ℒ̂Δ denotes the feedback

delta model with inputs u, ŷ ∈ ℝ and output w. The goal is
to adaptively tune ℒ̂Δ so that the performance variable

z(k)
△
= y(k)− ŷ(k) (4)

is minimized in the presence of the identification signal u.
For simplicity, we choose ℒ̂m to be the one-step delay 1/z.
In the case that information is known about the linear system,

an initial model can be used in place of the unit delay.

Fig. 2. Identification architecture for Hammerstein models using RCO.

When an initial model of the linear system is not available,

various system identification methods can be used to obtain

the parametric estimate of ℒ, such as output-error modeling
methods [14]; see Example 6.3. To identify a parametric

model ℒ̂ for the linear system using the signals u and y,

we assume that ℋ is approximately linear for the domain of

u used to drive y. In a sense, we ignore the nonlinearity ℋ,

the validity of this assumption is investigated in [15].

IV. NONPARAMETRIC IDENTIFICATION OF THE STATIC

NONLINEARITY

Consider the harmonic input signal

u(k) = A0sin(!0kTs) = A0sin(Ω0k), (5)

where A0 is the amplitude, !0 is the angular frequency

in rad/sec, Ts is the sample period in sec/sample, and

Ω0
△
= !0Ts is the angular sample frequency in rad/sample.

The intermediate signal is

v(k) = ℋ(u), (6)

and the output signal is

y(k) = G(z)ℋ(u), (7)

where G(z) = C(zI − A)−1B is a transfer function rep-

resentation of ℒ. To obtain the nonparametric estimate ℋ̂
of the nonlinearity ℋ, we require an estimate v̂(k) of the

inaccessible intermediate signal v(k). To obtain v̂(k), we use
input reconstruction [12, 13]. Together, ℒ̂ and ℋ̂ comprise a

semiparametric model of the Hammerstein system.

A. Input Reconstruction

With an estimate ℒ̂ of the linear system ℒ, we pass

(5) through (1)-(3). Next we wish to obtain an estimate

v̂ of the intermediate signal v. To obtain v̂, we use input

reconstruction, which depends on the l-delay invertibility of
the estimate of G(z).
Let l be a nonnegative integer. Then G(z) is l-delay

invertible if there exists a proper transfer function Gl(z)
(called an l-delay inverse of G(z)) such that Gl(z)G(z) =
z
−l for almost all z ∈ ℂ [12]. For a SISO system, G is l-
delay invertible for all l ≥ d, where d is the relative degree

of G(z).

Fig. 3. Input reconstruction. Using l-delay invertibility of the estimated
linear system, the intermediate signal can be reconstructed.

Using input reconstruction we obtain

v̂l(k) = Ĝ−1(z)z−ly(k), (8)

where v̂l(k) = v̂(k − l) for k ≥ l. For the case l =
d, the estimate v̂(k) is in nonharmonic phase with the

true intermediate signal v(k), where nonharmonic phase is

defined in Section IV-D. We also consider the case l ∕= d,
since d is not assumed to be known. Using the harmonic

input u and v̂ we can determine the nonharmonic phase shift,
and then determine an estimate of the nonparametric map of

the nonlinearity.
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B. Signal Symmetry

Note that the continuous-time harmonic signal sin(!0t)
is symmetric in the intervals

[

0, 12T0

]

and
[

1
2T0, T0

]

about

the points 1
4T0 and 3

4T0, respectively, where T0
△
=

2�

!0
is

the period of the harmonic input. To preserve symmetry for

the sampled signal (5) about the points 1
4T0 and 3

4T0, we

assume that Ω0 =
�

2m
, where m is a positive integer. Thus

N0
△
= 4m =

T0

Ts
is the period of the discrete-time input (5).

With this choice of Ω0, the sampled signal u(k) is symmetric
in the intervals

[

0, 12N0

]

and
[

1
2N0, N0

]

about the points

1
4N0 and 3

4N0, respectively. Furthermore, q
△
= d− l is an

integer, that is, the estimated intermediate signal v̂(k), which
is shifted relative to u(k) due to d−l, the error in the relative
degree between ℒ and ℒ̂, is symmetric about 1

4N0 + q in

the interval
[

q, 1
2N0 + q

]

and about 3
4N0 + q in the interval

[

1
2N0 + q,N0 + q

]

.

Next, we note that the intermediate signal v, which is not
generally harmonic, possesses the same symmetry as u on the
same intervals. By exploiting knowledge of this symmetry,

we can identify the nonharmonic phase shift of v̂ relative to

u. Since v̂ is not sinusoidal, the nonharmonic phase shift of

v̂ relative to u refers to the shifting of the symmetric portions

of v̂ relative to the symmetric portions of u. Knowledge of
this nonharmonic phase shift allows us to determine v up to

a constant multiple, specifically, v̂ is shifted relative to u by

a known number of samples.

To clarify the above discussion, we present two examples

using A0 = 1, m = 18 (so that Ω0 = �/36). First, consider
the polynomial nonlinearity v = ℋ(u) = 0.6(u + 1)3 − 1,
which is neither even nor odd. Figure 4a illustrates the result-

ing signals u(k), v(k), v̂(k) in harmonic steady state, where
the delay q, between v(k) and v̂(k), is added to simulate

modeling inaccuracy. Note that u and v are symmetric about
the discrete-time index � in the interval

[

� − 1
4N0, � +

1
4N0

]

and about � + 1
2N0 in the interval

[

� + 1
4N0, �2 +

3
4N0

]

.

Likewise, v̂ is symmetric about the discrete-time index " in
the interval

[

"− 1
4N0, "+

1
4N0

]

and about " + 1
2N0 in the

interval
[

"+ 1
4N0, "+

3
4N0

]

.

Second, we consider the even polynomial nonlinearity

v = ℋ(u) = u2. Figure 4b illustrates the resulting signals

u(k), v(k), and v̂(k) in harmonic steady state. The signal

u of Figure 4b is equal to the signal u shown in Figure 4a.

However, in addition to the two points of symmetry shown

in Figure 4a, note that v and v̂ have two additional points

of symmetry, specifically, v is symmetric about � + 1
4N0 in

the interval
[

�, � + 1
2N0

]

and about � + 3
4N0 in the interval

[

� + 1
2N0, � +N0

]

, and v̂ is symmetric about " + 1
4N0 in

the interval
[

", "+ 1
2N0

]

and about "+ 3
4N0 in the interval

[

"+ 1
2N0, "+N0

]

.

C. Symmetry Search Algorithm

We now review from [5] an algorithm for determining

" from v̂. We then use " to estimate the nonharmonic phase
shift of v̂ relative to u. For convenience, we assume that
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Fig. 4. Illustration of the symmetry properties of the signals u, v, and v̂. For
(a) the non-even polynomial nonlinearity is v = ℋ(u) = 0.6(u+ 1)3 − 1
and (b) the even polynomial nonlinearity is v = ℋ(u) = u2. For both

cases, u and v are symmetric about � in the interval
[

� − 1
4
N0, � +

1
4
N0

]

and about � + 1
2
N0 in the interval

[

� + 1
4
N0, � + 3

4
N0

]

, while v̂ is

symmetric about " in the interval
[

"− 1
4
N0, "+

1
4
N0

]

and about "+ 1
2
N0

in the interval
[

"+ 1
4
N0, "+

3
4
N0

]

. In addition, for the case of an even
polynomial nonlinearity shown in (b), v and v̂ have two additional points
of symmetry, specifically, v is symmetric about � + 1

4
N0 in the interval

[

�, � + 1
2
N0

]

and about �+ 3
4
N0 in the interval

[

� + 1
2
N0, � +N0

]

, and

v̂ is symmetric about " + 1
4
N0 in the interval

[

", "+ 1
2
N0

]

and about

"+ 3
4
N0 in the interval

[

"+ 1
2
N0, "+N0

]

.

the harmonic steady state begins at k = 0. Consider the
signal v̂ shown in Figure 5, and let n ≥ 6m denote the

width of the data window so that it includes at least one

and a half periods. To encompass a complete signal period,

we construct a sliding window with N0+1 data points. The
window is divided into quarters as shown in Figure 5.

−1

0

1

2

3

4

Time Index

v
h

a
t(k

)

K K+N
0
/4 K+N

0
/2 K+3N

0
/4 K+N

0

5. Illustration of the sym-
metry search algorithm.
The solid line box com-
prises the sliding window
of length N0 + 1 starting
at time k, while the dashed
lines indicate the win-
dowed points of symmetry.

Next, for k = 0, . . . , n−N0, define

�1(k)
△
=

2m−1
∑

i=1

∣v̂ (k + i− 1)− v̂ (k + 2m− i+ 1) ∣, (9)

which is the sum of the absolute difference in magnitude

for each pair of candidate symmetric points in the first and

second quarters about the point k + 1
4N0 for the sliding

window starting at time step k. Likewise, for k = 0, . . . , n−
N0, define

�2(k)
△
=

2m−1
∑

i=1

∣v̂ (k + 2m+ i− 1)− v̂ (k + 4m− i+ 1)∣,

(10)

for each pair of candidate symmetric points in the third and

fourth quarters about the point k+ 3
4N0. The values of �1 and

�2 quantify the symmetry error about the points k + 1
4N0

and k + 3
4N0, respectively, for each allowable value of k.

Thus, using (9) and (10), we define the symmetry error index

�(k)
△
= �1(k)+�2(k), corresponding to the sliding window
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starting at point k, for k = 0, . . . , n−N0.

For k = 0, . . . , n − N0, let k0 < N0 be the minimizer

of �(k). We use knowledge of k0 to determine the location

of the points of symmetry " and " + 1
2N0 for the sliding

window starting at point k0. In particular, since k0 is the

starting point of the window that minimizes � and since "
and " + 1

2N0 are, respectively, the quarter point and three

quarter point of the same window, it follows that

" = k0 +
1

4
N0, "+

1

2
N0 = k0 +

3

4
N0. (11)

To illustrate the symmetry search algorithm, we reconsider

the example considered in Figures 4a and 5, where v =
ℋ(u) = 0.6(u + 1)3 − 1. Note that ℋ is not even. Figure

6a shows the values of � calculated for v̂(k) on the interval
[k0, k0+2N0]. Since, in Figure 6a, the data window of v̂(k)
is selected to start at k0 = "− 1

4N0, the minimum values of

�(k) occur at k0 and k0 + N0, where k0 + N0 is the start

of the next period and, thus, need not be considered. Thus,

using the unique minimizer k0 of �(k), it follows that the
locations of the points of symmetry are given by (11).

Next, for the even nonlinearity v = ℋ(u) = u2 considered

in Figure 4b, Figure 6b shows the values of �(k) calculated
for v(k) on the interval [k0, k0 + 2N0]. In this case, the

minimum values of �(k) occur at k0, k0+
1
2N0, and k0+N0,

where k0 + N0 is the start of the next period and, thus,

need not be considered. Thus, using k0, it follows that the
locations of the points of symmetry are given by (11). Also,

using k0+
1
2N0, we obtain two additional points of symmetry

given by

"+
1

4
N0 = k0 +

1

2
N0, "+

3

4
N0 = k0 +N0. (12)

This ambiguity is due to the fact that " and "+ 1
2N0 are the

midpoints of two identical symmetric portions of v̂. Thus,
the start of the data window within which the function has

the symmetry properties illustrated in Figure 5 can be taken

as either k0 or k0 +
1
2N0. Note that the second minimizer

k0 +
1
2N0 appears only for even nonlinearities.
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Fig. 6. Illustration of the symmetry error index �(k) given by (9). The
values of �(k) are shown for two static nonlinearities, namely, (a) a non-
even polynomial and (b) an even polynomial.

D. Nonparametric Approximation of the Static Nonlinearity

Using �, which is assumed to be known from the

harmonic input u, and the estimate of " obtained from v̂

in Section IV-C, we now determine an estimate �̂ of the

nonharmonic phase shift of v̂ relative to u by �̂
△
= Ω0("−�),

which is an estimate of d − l. Moreover, define the virtual

signal

ṽ(k)
△
= v̂

(

k +
�̂

Ω0

)

, (13)

which is an approximation of the intermediate signal v.
Note that the amplitude of ṽ(k) is irrelevant due to the

scaling factor � shown in Figure 1b. Using ṽ and u, the
nonparametric estimate of ℋ is given by

ℋ̂
△
= {(u(k0), ṽ(k0)), (u(k0 + 1), ṽ(k0 + 1)), . . . , (u(n), ṽ(n))}, (14)

where each pair (u(k), ṽ(k), ), for k = 0, . . . , n, determines
a value of the nonparametric estimate ℋ̂ of ℋ.

Figure 6 shows that, depending on the type of nonlinearity,

�(k) has either one or two minima within each period. For

a non-even polynomial nonlinearity, �(k) has one minimum
within each period. Therefore, the estimate of the nonhar-

monic phase shift has two candidate values, namely, �̂ and

�̂+�. For an even nonlinearity, �(k) has two minima within
each period. Therefore, the estimate of the nonharmonic

phase shift has four candidate values, namely, �̂, �̂ + �
2 ,

�̂+�, and �̂+ 3�
2 . However, for the even case, �̂ and �̂+�

yield the same nonparametric model ℋ̂, while �̂ + �
2 and

�̂+ 3�
2 yield the same ℋ̂.

Therefore, in both the non-even and even cases, there

are two candidate nonparametric estimates of ℋ, both of

which are constructed using (13) and (14). In practice q is

small compared to N0, therefore, it is reasonable to assume

that � is the correct nonharmonic phase shift candidate for

estimating ℋ.

V. SIMULATED EXAMPLES

To demonstrate semiparametric Hammerstein model

identification, we consider two static nonlinearities, namely,

a non-even case and an even case. For both examples,

we choose G to have poles 0.34 ± 0.87|,−0.3141 ±
0.9|, 0.05±0.3122|,−0.6875 and zeros 0.14±0.97|,−0.12±
0.62|,−0.89 with monic numerator and denominator. Also,

u(k) is chosen to be a realization of zero-mean Gaussian

white noise with standard deviation �u = 3.5.

Example 5.1: (Non-even Polynomial) Consider ℋ defined

by

v = ℋ(u) = u3 + 4u+ 7. (15)

The parameters for nonparametric identification of ℋ are

m = 500 and A0 = 5. Figure 7a shows the frequency

response of the true dynamic model G and the identified

model using RCO. The RCO parameters used to identify the

linear dynamic system are set as nc = 9, p = 1, and � = 1.
Figure 7b compares the true nonlinearity with the identified

nonlinearity estimated using input reconstruction.

Example 5.2: (Even Polynomial) Consider ℋ defined by

v = ℋ(u) = 7u4 + u2. (16)
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Fig. 7. (a) Frequency response comparison of the true G and the identified
LTI system, where k is the number of data points used to determine the
identified model. For k = 5000, the traces for the true and identified models
almost coincide. (b) Identified nonlinearity versus true nonlinearity, where
m = 500 and A0 = 5. The argument of the identified nonlinearity is scaled
by 1

∣G(e|Ω0 )∣
to facilitate comparison with the true nonlinearity (15)

The parameters for nonparametric identification of ℋ are

m = 500 and A0 = 5. Figure 8a shows the frequency

response of the true dynamic model G and the identified

model using RCO. The RCO parameters used to identify the

linear dynamic system are set as nc = 9, p = 1, and � = 1.
Figure 8b compares the true nonlinearity (blue line) with the

identified nonlinearity estimated using input reconstruction

(red crosses).

To illustrate the ambiguity discussed in Section IV-D, we

select the incorrect nonharmonic phase shift, specifically, �̂+
�
2 , which is represented by the black circles in Figure 8b.

Note that the incorrect nonharmonic phase shift produces an

erroneous nonparametric model of the nonlinearity.
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Fig. 8. (a) Frequency response comparison of the true G and the identified
LTI system, where k is the number of data points used to determine the
identified model. (b) Identified nonlinearities versus true nonlinearity, where
m = 500 and A0 = 5. The argument of the identified nonlinearity is scaled
by 1

∣G(e|Ω0 )∣
to facilitate comparison with the true nonlinearity (16). The

red crosses represent the identified nonlinearity, the black circles, represent
the identified nonlinearity using the incorrect nonharmonic phase shift.

VI. EXPERIMENTAL EXAMPLES

We now present experimental examples using a resistor-

inductor-capacitor (RLC) circuit. The true parametric model

of the RLC circuit is generated from first principles, where

R = 250 Ω. L = 55 mH, C = 23.5 �F, and

ẋ =

[

0 1
−1
LC

−R
L

]

x+

[

0
1
L

]

v, (17)

y =
[

0 R
]

x, (18)

where x ∈ ℝ
2 is the state vector, which is the circuit charge

and current. For the following examples, G is a discrete time

transfer function representation of (17)–(18), with a sampling

rate of Ts = 0.0001. Figure 9a shows the RLC circuit, where

the nonlinearity is a saturation in the actuation voltage.

(a) (b)

Fig. 9. (a) Block diagram representation of the series RLC circuit, where
the input voltage is modified by ℋ. For this example, ℋ is a saturation
function. (b)A series RLC circuit in parallel with a diode. The resulting
system is a Hammerstein system where the diode can be represented as a
static nonlinearity and the series RLC circuit is the linear model.

Example 6.1: (Saturation) Consider ℋ defined by

v = ℋ(u) =

⎧

⎨

⎩

u, if −1 < u < 1;
1, if u ≥ 1;
−1, if u ≤ 1.

(19)

The parameters for nonparametric identification of ℋ are

m = 500 and A0 = 5. Figure 10a shows the frequency

response of the true dynamic model G, and the identified

model using RCO. The RCO parameters used to identify the

linear dynamic system are set as nc = 9, p = 1, and � = 1.
Figure 10b compares the true nonlinearity with the identified

nonlinearity estimated using input reconstruction.
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Fig. 10. (a) Frequency response comparison of the true G and the identified
LTI system, where k is the number of data points used to determine the
identified model. For k = 5000, the traces for the true and identified models
almost coincide. (b) Identified nonlinearity versus true nonlinearity, where
m = 500 and A0 = 5. The argument of the identified nonlinearity is scaled
by 1

∣G(e|Ω0 )∣
to facilitate comparison with the true nonlinearity (19).

We now reconsider the RLC circuit in Figure 9b, where

a diode is presented in parallel with the circuit. The diode

modifies the input voltage according to a nonlinear function

ℋ. We first determine ℋ experimentally, using a circuit

where the diode is the sole component.ℋ is approximatively

given by

v = ℋ(u) =

{

u, if u < 0.07;
0.07, if u ≥ 0.07.

(20)

We view (20) as the truth model of ℋ.
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Example 6.2: (Diode in Parallel with RLC Circuit) Con-

sider ℋ which is given by (20), which is in parallel with

the linear dynamic system given by (17) and (18). In this

example, the diode is assumed to be inaccesible, namely,

it can not be directly measured. The RCO parameters used

to identify the linear dynamic system are set as nc = 3,
p = 1, and � = 1. Figure 11a shows the frequency

response of the true dynamic model G, and the identified

model using RCO. For nonparametric identification of ℋ,

m = 500 and A0 = 0.919. Figure 11b compares with true

nonlinearity and the identified nonlinearity estimated using

input reconstruction.
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Fig. 11. (a) Frequency response comparison of the true G and the identified
LTI system the lines for the true and identified models almost coincide. (b)
Identified nonlinearity versus true nonlinearity, where m = 500 and A0 =
0.919. The argument of the identified nonlinearity is scaled by 1

∣G(e|Ω0 )∣
to facilitate comparison with the true nonlinearity (20)

Example 6.3: (Diode in Parallel with RLC Circuit) We

now revisit the diode problem without using RCO, by fitting

an output error model (OEM) of the form

y(k) =
B(z)

F (z)
u(k) + e(k), (21)

where B(z) and F (z) are polynomials. The coefficients of
B(z), and F (z) are determined by minimizing the error term
e(k), using a maximum likelihood method.

Figure 12a shows the frequency response of the true

dynamic model G and the identified model using the OEM

fit. The identified nonlinearity using input reconstruction and

the actual nonlinearity are shown in Figure 12b.
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Fig. 12. (a) Frequency response comparison of the true G and the identified
LTI system, where the identified linear system is an output error model
(OEM) fit (b) Identified nonlinearity versus true nonlinearity, where m =
500 and A0 = 5. The argument of the identified nonlinearity is scaled by

1

∣G(e|Ω0 )∣
to facilitate comparison with the true nonlinearity (20)

VII. CONCLUSION

In this paper we develop a two-step method to identify

semiparametric models for SISO discrete-time Hammer-

stein systems. We assume that the linear dynamic block is

asymptotically stable, and the static nonlinearity is piecewise

continuous.

First, we identify a parametric model of the linear dy-

namic system using a sufficiently rich input. We identify the

parametric model using retrospective cost optimization and,

in one example, using an output error model.

Second, we choose a single harmonic input and measure

the system output when the state trajectory is in harmonic

steady state. Using the system output and input reconstruc-

tion we estimate the intermediate signal, which may be

shifted compared to the true intermediate signal, since the

relative degree of the linear system is unknown. We exploit

symmetry properties of the estimated intermediate signal

compared to the input, which we use to approximate the

nonharmonic phase shift and, therefore, estimate the delay

between the estimate and true intermediate signal. Using the

estimate of the intermediate signal, a nonparametric model

of the static nonlinearity is obtained.

This method is effectively demonstrated on two simulated

examples. Furthermore, two experimental examples are pre-

sented, namely, an RLC circuit with saturation at the input,

and an RLC circuit containing a diode.
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