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An approximate input reconstruction algorithm is used to reconstruct unknown inputs,
which are then used for fault detection. The approximate input reconstruction algorithm is
a least squares algorithm that estimates both the unknown initial state and input history.
The estimated inputs are then compared to the commanded values and sensor values to
assess the health of actuators and sensors. This approach is applied to the longitudinal
and lateral dynamics of NASA’s Generic Transport Model. The input reconstruction algo-
rithm can be used for systems with minimum-phase or nonminimum-phase zeros; however,
minimum-phase zeros entail an additional delay in reconstructing inputs, while zeros on the
unit circle yield persistent estimation errors and thus poor input reconstruction regardless
of the delay.

I. Introduction

Fault diagnosis or fault detection [1–5] refers to the ability to determine the presence of hardware failures.
One approach to detecting hardware failures is to use input observers to reconstruct inputs to the system
based on a dynamic model and measurements. The estimated inputs are then compared to the commanded
inputs to assess the health of sensors and actuators. This approach is based on system inversion techniques
developed for either input observers (left inversion) or preview control (right inversion) [6–17].

One difficulty that arises in system inversion is the presence of zeros. If the system has no zeros, then
input reconstruction is possible even if the initial state is unknown and nonzero [17]. However, if the system
has zeros, then there exists an initial state such that, for some nonzero input, the output is identically zero.
Therefore, exact input reconstruction is impossible if the system has at least one zero. For a minimum-phase
zero, the unobservable input decays, and thus input observation is asymptotically possible, which means that
more recent inputs can be reconstructed more accurately than earlier inputs. Alternatively, minimum-phase
zeros can be cancelled through filtering. On the other hand, for a nonminimum-phase zero, the unobservable
input increases without bound, and thus input observation is possible asymptotically backward in time,
that is, noncausally for large data sets. The increased delay in input reconstruction is thus an unavoidable
impediment due to nonminimum-phase zeros. Finally, if the zero lies on the unit disk, then the unobservable
input is persistent (non-decaying in both forward and backward time) and thus input reconstruction is not
feasible.

In recent work [18], we applied the input reconstruction approach developed in [17] to aircraft longitudinal
dynamics. The results of [17,18] assume that input reconstruction occurs after a single measurement delay,
that is, 1-step input reconstruction. The contribution of the present paper is to develop input reconstruction
techniques for l-step input reconstruction, where the increase in the delay needed for input reconstruction
takes into account the relative degree of the system. This issue is nontrivial since, for multi-input, multi-
output systems, the relative degree may be different for different input channels. As in [18], we estimate
the input by using a least squares solution of the input-output relation. The resulting estimate is unable to
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estimate input components in the null space of the coefficient matrix, which corresponds to the unobservable
input component due to the presence of invariant zeros. We apply this algorithm to the linearized longitudinal
and lateral dynamics of NASA’s GTM [20–22] in order to estimate control-surface deflections. These estimates
can be used to detect faults in the actuator or linkage sensor associated with the control surface.

The present paper goes beyond [18] in the way that the least squares method is applied. First, unlike
[18], we do not assume that an estimate of the observability matrix is available, but rather we use the
eigensystem realization algorithm (ERA) [19] to construct this matrix based on Markov parameters. This
approach is more realistic in practice when only Markov parameters are available and has the additional
benefit of reducing the condition number of the observability matrix in the least squares procedure.

II. Faults in an Aircraft Dynamic System

We consider the aircraft elevator and engine subsystems, which can potentially undergo various faults.
The elevator is assumed to have a local sensor, called the linkage sensor, which provides a measurement
of the deflection of the linkage that drives the elevator. Consequently, the elevator subsystem can undergo
various faults; for example, the control surface may be damaged, the linkage may be damaged, or the linkage
sensor may malfunction.

With notation defined in Table 1, Figure 1 shows the various signals that are used for fault diagnosis.
Specifically, δek,com is the command to the elevator, δêk is the reconstructed (estimated) value of the elevator
deflection, and lk,msmt is the signal from the linkage sensor.

Notation Description
δek,com commanded elevator input
δek,act actual elevator output
lk,act actual linkage output

lk,msmt linkage sensor measurement
δêk estimated elevator input

δTk,com commanded engine input
δTk,act actual engine output

δTk,msmt actual RPM sensor output
δT̂k estimated engine input

Table 1: Notation for signals used to identify faults

Discrepancies between these signals suggest the possibility of various types of failures. Figure 2 shows
the analogous signals for engine fault diagnosis.

We consider the possibility that the linkage can fail in various ways. In particular, we consider linkage
faults that include saturation, rate saturation, deadzone, and stuck. In addition, linkage sensor faults include
bias, drift, stuck, and calibration error. These faults are listed in Table 2, where b is a constant and c is a
positive number.

Linkage Sensor Fault Description
Bias lk,msmt = lk,act + b

Drift lk,msmt = lk,act + kc

Stuck lk,msmt = b

Scale Factor Error lk,msmt = lk,actb

Table 2: Linkage sensor faults, where b and c are constants.

The elevator control surface can fail in various ways. For example, the elevator may become stuck in a
single, fixed deflection. Alternatively, the elevator may become deformed or damaged, resulting in a loss of
control effectiveness. Detection of these faults is relevant to health monitoring to mitigate loss of control
system performance.

For the elevator, we detect faults during flight by comparing the commanded input δek,com, the measured
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Figure 1: Signals used for elevator fault detection

input lk,msmt from the linkage sensor, and the estimated input δêk from input reconstruction. Table 3 shows
the logic by which these signals are compared. For example, if the linkage measurement differs from both the
commanded elevator deflection and the estimated elevator deflection, then we can conclude that the linkage
sensor is faulty but that the linkage and elevator are both operational. In practice, all of these signals are
noisy, and thus error criteria are needed. For conceptual simplicity, Table 3 is stated in terms of equality
and inequality of signals. A similar fault analysis can be applied to other control surfaces and the engine.

III. l-Delay Input Reconstruction with Known Initial State

Consider the linear discrete-time system

xk+1 = Axk + Buk, (1)
yk = Cxk + Duk, (2)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. We assume that
(A,B,C) is minimal. The p×m transfer function of (1), (2) is G(z) = C(zIn−A)−1B+D. For each nonneg-
ative integer r, we define the output sequence Y[k:k+r] ∈ Rp(r+1) and the input sequence U[k:k+r] ∈ Rm(r+1) by

Y[k:k+r]
4
=




yk

yk+1

...
yk+r




, U[k:k+r]
4
=




uk

uk+1

...
uk+r




. (3)

3 of 31

American Institute of Aeronautics and Astronautics



Figure 2: Signals used for engine fault detection

Case Condition
Linkage

Sensor
Linkage Elevator

1 δek,com = δêk = lk,msmt X X X
2 δek,com = δêk 6= lk,msmt Faulty X X
3 δek,com 6= δêk = lk,msmt X Faulty X
4 δek,com = lk,msmt 6= δêk X X Faulty

5
δek,com 6= δêk and

δek,com 6= lk,msmt

Combination of Cases 2, 3, 4

Table 3: Fault detection analysis for the elevator

The objective is to use measurements of the output vector Y[0:r1] to determine the initial state x0 and the
input vector U[0:r2], where r1 > r2 ≥ 0. Note that Y[0:r], U[0:r], and x0 are related by

Y[0:r] = Γrx0 + Mr,rU[0:r] = Ψr,r

[
x0

U[0:r]

]
, (4)

where, for r1 > r2 ≥ 0, that matrices Γr1 ∈ Rp(r1+1)×n, Mr1,r2 ∈ Rp(r1+1)×m(r2+1), and Ψr1,r2 ∈ Rp(r1+1)×[n+m(r2+1)]

are defined by

Γr1

4
=




C

CA

CA2

...
CAr1




, Mr1,r2

4
=




H0 0 . . . 0

H1 H0
. . .

...

H2 H1
. . . 0

...
...

. . . H0

...
...

...
...

Hr1 Hr1−1 . . . Hr1−r2




,
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and

Ψr1,r2

4
=

[
Γr1 Mr1,r2

]
,

and where

Hk
4
=

{
D, k = 0,

CAk−1B, k ≥ 1,
(5)

denotes the Markov parameters of the system. Throughout this paper, d ≥ 0 denotes the relative degree of
G(z), that is, the smallest nonnegative integer i such that Hi 6= 0.

Definition 1. Let l be a nonnegative integer. Then G(z) is l-delay left invertible and the m× p proper
transfer function Gl(z) is an l-delay left inverse of G(z) if Gl(z)G(z) = z−lIm for almost all z ∈ C. In this
case, the smallest nonnegative integer l0 for which G(z) is l0-delay left invertible is the minimal delay of G.
Finally, G is left invertible if there exists a nonnegative integer q such that G is q-delay left invertible.

Note that if G(z) is l-delay left invertible, then G(z) is r-delay left invertible for all r ≥ l.
Theorem 1. The following statements are equivalent:

(i) G(z) is left invertible.

(ii) The normal rank of G(z) is m.

(iii) The normal rank of

[
zI −A −B

C D

]
is n + m.

Theorem 1 shows that if G(z) is l-delay left invertible, then Gl(z)G(z) = z−lIm holds for all z ∈ C except
the poles of G(z) and Gl(z) and, if l ≥ 1, z = 0.

Now, for r ≥ l ≥ 0, partition Mr,r as

Mr,r =
[
Mr,r−l M̃r,l

]
, (6)

where M̃r,l ∈ Rp(r+1)×ml. Noting that

Ψr,r =
[
Γr Mr,r

]
=

[
Γ Mr,r−l M̃r,l

]
=

[
Ψr,r−l M̃r,l

]
, (7)

it follows that

Y[0:r] = Γrx0 + Mr,r−l U[0:r−l] + M̃r,l U[r−l+1:r] (8)

= Ψr,r−l

[
x0

U[0:r−l]

]
+ M̃r,l U[r−l+1:r]. (9)

where

M̃r,l =





0p(r+1)×0, l = 0,
 0p(r−l+1)×ml

Ml−1,l−1


 , l ≥ 1.

(10)

and thus, for all l ≥ 1,

rank(M̃r ,l) = rank(Ml−1 ,l−1 ). (11)

Let R denote range.
Theorem 2. Let l be a nonnegative integer. Then the following statements are equivalent:

(i) G(z) is l-delay left invertible.
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(ii) There exists a matrix K ∈ Rm×p(l+1) such that

KMl,l =
[

Im 0 · · · 0
]
. (12)

(iii) u0 is uniquely determined by Y[0:l] and x0.

(iv) N(Ml,l) ⊆ R

([
0m×ml

Iml

])
.

(v) Ml,0 has full column rank, and

R(Ml,0) ∩ R(M̃l,l) = {0}. (13)

(vi) m =

{
rank (M0,0), l = 0,

rank (Ml,l)− rank (Ml−1,l−1), l ≥ 1.

Theorem 2 implies that G(z) is l-delay left invertible if and only if each of the first m columns of Ml,l is
linearly independent of the remaining columns of Ml,l.

Note that if G(z) is SISO, then z−dG−1(z) is exactly proper, and thus l0 = d. The following result gives
a necessary and sufficient condition for l0 = d.

Proposition 1. Assume that G(z) is l-delay left invertible, and let l0 denote the minimal delay of G(z).
Then,

rank
[

H0 · · · Hl

]
≥ m, (14)

rank




H0

H1

...
Hl




= m, (15)

and l0 ≤ n. Furthermore, l0 ≥ d with equality if and only if rank (Hd) = m.
Proposition 1 shows that if G(z) is l-delay left invertible, then both (14) and (15) are satisfied. However,

the converse does not hold.
Theorems 1 and 2 provides necessary and sufficient conditions under which the identity transfer function

can be attained by a left inverse after l steps. However, this noncausal left inverse has limited value for input
reconstruction for two reasons. First, the transfer function formulation of a dynamical system does not
account for the initial condition of the state of a corresponding state space realization. Therefore, we must
consider a state space formulation in order to have a more complete picture of the free response of the system,
which is present in practice. Furthermore, within a state space formulation, if G(z) has a transmission zero,
then G(z) can have a nonzero input such that, for some nonzero initial condition of a corresponding state
space model, the output is identically zero. We explore these issues in the following sections.

Theorem 3. Assume that G(z) is l-delay left invertible. Then for all r ≥ l, U[0:r−l] is uniquely determined
by x0 and Y[0:r]. Furthermore, the unique solution with reconstruction delay l is

U[0:r−l] = row[1:(r−l+1)m][M†
r,r(Y[0:r] − Γrx0)]. (16)

Theorem 3 shows that if G(z) is l-delay left invertible then we can achieve input reconstruction with an
l-step delay from known initial condition x0 and output measurements Y[0:r].

IV. l-Delay Input and Initial State Reconstruction with Unknown Initial State

In this section we take into account the unknown and possibly nonzero initial condition of (1), (2) in
order to achieve input and state reconstruction.
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Definition 2. Let l be a nonnegative integer. The system (1), (2) is l-delay input and state observable
if there exists r ≥ l such that

N(Ψr,r) ⊆ R

[
0[n+m(r−l+1)]×lm

Ilm

]
. (17)

In this case, the smallest nonnegative integer l′0 for which (1), (2) is l′0-delay input and state observable
is the minimal ISO delay. Furthermore, (1), (2) is input and state observable if there exists a nonnegative
integer q such that (1), (2) is q-delay input and state observable.

In Definition 2, r + 1 is the length of the data window required to reconstruct the initial state and

input. Specifically, condition (17) implies that in (4) if Y[0:r] = 0, that is,

[
x0

U[0:r]

]
∈ N(Ψr,r), then

[
x0

U[0:r−l]

]
= 0, and thus x0 and U[0:r] can be uniquely reconstructed from Y[0:r].

The following result provides necessary and sufficient conditions for l-delay input and state observability.
Proposition 2. Let l be a nonnegative integer. The system (1), (2) is l-delay input and state observable

if and only if there exists r ≥ l such that both of the following statements hold:

(i) rank (Ψr,r) = rank (Ψr,r−l) + rank (M̃r,l).

(ii) Ψr,r−l has full column rank.

Proposition 3. Assume that (1), (2) is l-delay input and state observable. Then G(z) is l-delay left
invertible. Furthermore,

l0 ≤ l′0. (18)

Proposition 4. The following statements are equivalent:

(i) G(z) is left invertible and, for all r ≥ n, R(Γr) ∩ R(Mr,r) = {0}.

(ii) For all ζ ∈ C, rank

[
ζI −A −B

C D

]
= n + m.

Proposition 5. The following statements are equivalent:

(i) (1), (2) is l-delay input and state observable.

(ii) G(z) is l-delay left invertible and (1), (2) has no invariant zeros.

Corollary 1. Assume that G(z) left invertible and has no invariant zeros. Then

l0 = l′0 ≤ n. (19)

If, in addition, m = p = 1, then l0 = l′0 = n and, for all r ≥ n− 1, def(Ψr,r) = n.
The following result provides necessary conditions for l-delay input and state observability.
Proposition 6. Let l be a nonnegative integer, and assume that (1), (2) is l-delay input and state

observable. Then the following statements hold:

(i) (1), (2) is k-delay input and state observable for all k ≥ l.

(ii) rank (Ψr,r−l) = rank (Ψr,r−l−1) + m for all r ≥ n.

(iii) m ≤ p.

(iv) If m = p, then n ≤ ml.

(v) rank (Γn−1) = n.
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Proposition 7. Assume that (1), (2) is l-delay input and state observable and (17) holds for some q ≥ l.
Then, for all r ≥ q, x0 and U[0:r−l] are uniquely determined by Y[0:r]. Furthermore, the unique solution of
(8) with reconstruction delay l is given by

[
x0

U[0:r−l]

]
= (QTΨr,r−l)†QTY[0:r], (20)

where † represents the Moore-Penrose generalized inverse, k
4
= rank (M̃r,l), and the columns of Q ∈

Rp(r+1)×[p(r+1)−k] are an orthonormal basis of N(M̃T
r,l).

If the linear system (1), (2) has invariant zeros, then it follows from Proposition 6 that (1), (2) is not
l-delay input and state observable, that is, for r ≥ l, x0 and U[0:r−l] cannot be uniquely reconstructed from
Y[0:r] alone. Approximate noncausal reconstruction must account for the locations of invariant zeros in the
complex plane relative to the unit disk, as shown in Figure 3. If all of the invariant zeros are contained in the
open unit disk, then approximate causal reconstruction is possible for sufficiently large data sets and large
times k. On the other hand, if all of the invariant zeros are contained in the complement of the closed unit
disk, then approximate noncausal reconstruction is possible for sufficiently large data sets and small times k.
Consequently, if all of the invariant zeros are contained in either the open unit disk or the complement of the
closed unit disk, then approximate noncausal reconstruction is possible for sufficiently large data sets and
small times k. Finally, if at least one invariant zero lies on the unit circle, then approximate reconstruction
is not possible since a persistent reconstruction error will corrupt the reconstructed inputs.

Figure 3: Regions of invariant zeros and their effect on approximate input reconstruction

V. Approximate Input Reconstruction for SISO Systems with Invariant Zeros

Definition 3. The l-delay input and state estimate of the system (1), (2) is given by
[

x̂0

Û[0:r−l]

]
4
= (QTΨr,r−l)†QTY[0:r], (21)

where † represents the Moore-Penrose generalized inverse, k
4
= rank (M̃r,l), and the columns of Q ∈

Rp(r+1)×[p(r+1)−k] are an orthonormal basis of N(M̃T
r,l).

In this section, we consider the effect of zeros on the reconstruction algorithm given by the estimate
(21). Note that, none of the examples in this section are l-delay input and state observable. We consider a
realization of the type of (1), (2), where A, B are given by

A =




0.6 −0.22 0.096
0.5 0 0
0 0.125 0


 , B =




4
0
0


 , (22)
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and where various matrices C are used to vary the invariant zeros relative to the unit circle. Note that
x0 =

[
2 0.1 −1

]
is used for simulation in examples 1,2,4 and x0 =

[
10 5 15

]
is used for simulation

in example 3, but knowledge of x0 is not assumed to be available for input reconstruction.
Example 1. Consider the minimum-phase transfer function

G(z) =
z − 0.5

(z − 0.1)(z − 0.2)(z − 0.3)
, (23)

which has C =
[

0 0.5 −2
]
. Figure 4 compares the 2-delay reconstructed input sequence with the actual

input sequence. Note that the input reconstruction error is largest for small values of k, which corresponds
to the fact that the system has a minimum-phase zero.

0 5 10 15 20 25 30 35
0.9

0.95

1

1.05

1.1

Time

U

Actual Input
Reconstructed Input

Figure 4: Comparison between the actual input sequence and 2-delay reconstructed input of the system given by
Example 1, with the minimum-phase zero 0.5. In this case, the input reconstruction error is monotonically decaying.

Example 2. Consider the transfer function

G(z) =
z − 1

(z − 0.1)(z − 0.2)(z − 0.3)
, (24)

which has C =
[

0 0.5 −4
]
. Figure 5 compares the 2-delay reconstructed input sequence with the

actual input sequence. Note that the input reconstruction error is persistent over the interval, which is a
consequence of the fact that the zero is located on the unit circle. In addition, the sign of the error is constant
due to the fact that the zero is located at 1.

Example 3. Consider the transfer function

G(z) =
z + 1

(z − 0.1)(z − 0.2)(z − 0.3)
, (25)

which has C =
[

0 0.5 4
]
. Figure 6 compares the 2-delay reconstructed input sequence with the actual

input sequence. Note that the input reconstruction error is persistent over the interval, which is a consequence
of the fact that the zero is located on the unit circle. In addition, the sign of the error alternates at each
time step due to the fact that the zero is located at −1.

Example 4. Consider the nonminimum-phase transfer function

G(z) =
z − 3

(z − 0.1)(z − 0.2)(z − 0.3)
, (26)

which has C =
[

0 0.25 −6
]
. Figure 7 compares the 2-delay reconstructed input sequence with the

actual input sequence. Note that the input reconstruction error is monotonically increasing due to the real
nonminimum-phase zero.
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0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

1.5

2

Time

U

Actual Input
Reconstructed Input

Figure 5: Comparison between the actual input sequence and 2-delay reconstructed input of the system given by
Example 2, with zero 1. In this case the input reconstruction error is persistent, in fact, it is constant over the
interval.

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

2.5

Time

U

 

 
Actual Input
Reconstructed Input

Figure 6: Comparison between the actual input sequence and 2-delay reconstructed input of the system given by
Example 3, with zero −1. In this case the input reconstruction error is persistent and has alternating sign over the
interval.
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0 5 10 15 20 25 30 35
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

U

Actual Input
Reconstructed Input

Figure 7: Comparison between the actual input sequence and 2-delay reconstructed input of the system given by
Example 4, with nonminimum-phase zero 3. The input reconstruction error is monotonically increasing due to the
real nonminimum-phase zero.

VI. Application to GTM

In this section we use the approximate noncausal input reconstruction algorithm to estimate the input
signals for the Generic Transport Model (GTM). In particular, we estimate the aileron, rudder, and elevator
deflections using measurements of forward and lateral velocity, as well as roll and yaw rate, which are assumed
to be available from flight sensors. The linearized GTM provides the state-space matrices A, B, C, and D
for flight dynamics once the trimmed flight conditions are specified.

In this case, the state-space form of GTM is

Ẋ = AX + BU, (27)

Y = CX + DU, (28)

where X
4
=

[
u v w p q r Lat Lon Alt φ θ ψ

]T

, U
4
=

[
δa δe δr

]T

, and Y
4
=

[
u v p r

]T

. The states are x-direction velocity (ft/s), y-direction velocity (ft/s), z-direction velocity
(ft/s), roll rate p (rad/s), pitch rate q (rad/s), yaw rate r (rad/s), latitude Lat (ft), longitude Lon (ft),
altitude Atl (ft), roll angle φ (rad), pitch angle θ (rad), and yaw angle psi (rad). The inputs are aileron
deflection δa, elevator deflection δe from trim and rudder deflection δr, while the available measurements
are u, v, p, and r.

Next we compute the Markov parameters H0 = D, Hi = CAi−1B, i ≥ 1. We use these matrices to
estimate the observability matrix Γr based on the eigensystem realization algorithm (ERA).19 The compu-
tational steps of ERA are summarized as follows:

1. Construct the p(r + 1)×m(s + 1) block-Hankel matrix Hrs(0)

Hrs(0)
4
=




H1 H2 H3 . . . Hs+1

H2 H3 H4 . . . Hs+2

...
...

...
. . .

...
Hr+1 Hr+2 Hr+3 . . . Hr+s+1




. (29)

2. Decompose Hrs(0) using singular value decomposition.

Hrs(0) = PΣQ, (30)
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where P ∈ Rp(r+1)×p(r+1) and Q ∈ Rm(s+1)×m(s+1) are both orthogonal matrices, Σ ∈ Rp(r+1)×m(s+1),
and

Σ =

[
Σ1 0
0 0

]
, (31)

where Σ1 ∈ Rn×n is a diagonal matrix with positive diagonal entries.

3. Factor Hrs(0) further as

Hrs(0) = P

[
Σ1/2

1

0

] [
Σ1/2

1 0
]
Q. (32)

Define

Lr
4
= P

[
Σ1/2

1

0

]
∈ Rp(r+1)×n, (33)

which is an estimate of Γr. The matrix Lr is used to form matrix Ψr,r−l in the following simulations
to perform input reconstruction.

The state-space basis of the ERA realization has no physical meaning but is relevant for input reconstruc-
tion. We obtain the state-space matrices for the trim condition using an altitude of 625.48 ft, an x-direction
velocity of 95 ft/s, and a pitch angle of 2.52 deg. For the system (27)–(28), we apply the approximate non-
causal input reconstruction method. The relative degree of the system is d = 1, and we take l = 2, r = 20.
The aileron deflection angle δa is chosen to be sinusoidal, and the elevator deflection command δe and the
rudder deflection command δr are chosen to be sawtooth signals. The unknown commands are estimated
using (21).

Using Table 3, fault detection is conducted for various fault scenarios. We use the same initial state,
and commanded inputs to compare the reconstruction process in each scenarios. Figures 8-17 show the
commanded inputs and their 2-delay reconstructed inputs.

Next, we generate erroneous Markov parameter estimates by adding an independent Gaussian random
variable to each Markov parameter Hi with standard deviation equal to Hi

40 . We then perform the input
reconstruction using (21) and these perturbed Markov parameters. Figures 18-25 show the commanded
inputs and their 2-delay reconstructed inputs.

VII. Conclusion

As an extension of approximate causal input reconstruction, we considered an approximate noncausal
input reconstruction method where a least squares solution is used in the presence of zeros. For plants
with minimum-phase zeros, the input-reconstruction error decays; for nonminimum-phase zeros it grows;
and for zeros on the unit circle, it is persistent. We applied this technique to aircraft fault detection, where
the objective is to compare the estimated input with the commanded input and the linkage sensor. This
comparison provides a technique for online fault detection. We demonstrated the technique for both lateral
and longitudinal dynamics. Future work will focus on the effect of model errors and sensor noise on the
fault-detection accuracy.
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Figure 8: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model.

13 of 31

American Institute of Aeronautics and Astronautics



0 5 10 15 20 25 30
−4

−2

0

2

4

Time

δ 
a 

(d
eg

)

 

 

Commanded Input
Measured Input
Estimated Input

0 5 10 15 20 25 30
−4

−2

0

2

4

Time

δ 
e 

(d
eg

)

0 5 10 15 20 25 30
−4

−2

0

2

4

Time

δ 
r 

(d
eg

)

Figure 9: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons become
stuck at k = 16.
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Figure 10: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons and elevator
both become stuck at k = 16.
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Figure 11: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons, elevator
and, rudder become stuck at k = 16.
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Figure 12: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons become
stuck at k = 16, elevator becomes stuck at k = 12 and the rudder becomes stuck at k = 18.
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Figure 13: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons become
subject to saturation at k = 16.
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Figure 14: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons become
subject to saturation at k = 16 and the rudder becomes stuck at k = 16.
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Figure 15: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons become
subject to a scale factor error at k = 16 by a factor of 2.
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Figure 16: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons become
subject to saturation at k = 16, and rudder becomes subject to a scale factor error at k = 16 by a factor of 2.
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Figure 17: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model. In this example, the ailerons become
stuck at k = 16, the elevator becomes subject to saturation at k = 16, and rudder becomes subject to a scale factor
error at k = 16 by a factor of 2.
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Figure 18: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model, assuming erroneous Markov parameters.
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Figure 19: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model, assuming erroneous Markov parameters.
In this example, the ailerons become stuck at k = 16.
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Figure 20: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model, assuming erroneous Markov parameters.
In this example, the ailerons and elevator both become stuck at k = 16.
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Figure 21: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model, assuming erroneous Markov parameters.
In this example, the ailerons, elevator and, rudder become stuck at k = 16.
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Figure 22: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model, assuming erroneous Markov parameters.
In this example, the ailerons become stuck at k = 16, elevator becomes stuck at k = 12 and the rudder becomes
stuck at k = 18.
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Figure 23: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model, assuming erroneous Markov parameters.
In this example, the ailerons become subject to saturation at k = 16.
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Figure 24: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model, assuming erroneous Markov parameters.
In this example, the ailerons become subject to saturation at k = 16 and the rudder becomes stuck at k = 16.
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Figure 25: 2-step delay input reconstruction for GTM. Estimates of the unknown inputs δa, δe, δr are obtained by
using measurements of the outputs u, v, p, r in the linearized flight model, assuming erroneous Markov parameters.
In this example, the ailerons become subject to a scale factor error at k = 16 by a factor of 2.
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