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In the present paper we revisit the active structural and acoustic vibration problem in
terms of adaptive control. For active structural and acoustic vibration problem we consider
retrospective cost adaptive control (RCAC). RCAC is a direct adaptive control technique,
that requires minimal modeling, specifically, a limited number of Markov parameters from
the control input to the performance variable. No modeling information is needed concern-
ing the disturbance and command spectra, disturbance path, and measurement feedback
path. This study is aimed at assessing in detail the level of modeling accuracy required by
RCAC for disturbance rejection in lightly damped structures, with uncertain modal fre-
quencies, damping, and mode shapes, unmodeled dynamics, uncertain disturbance spectra,
sensor noise, sensor/actuator dynamics, and without the benefit of disturbance measure-
ments, sensor/actuator passivity due to colocation and velocity sensing, in both SISO and
MIMO applications.

I. Introduction

Active control of structural and acoustic vibration is a research problem that has enjoyed extensive
attention for several decades. Applications of this technology include noise control in aircraft and buildings,
active sway control in buildings and bridges, active suspension control in ground vehicles, active isolation
for materials processing, and active control of flexible space structures. This paper revisits the “hopes” and
“dreams” expressed in [1] on the 30th anniversary of its publication in 1982.

Some applications of active control of vibration have seen considerable success. The most successful are
acoustic applications such as active headsets, where sensor and actuator hardware are relatively inexpensive,
and the performance requirements can be met by modest real-time computation. These applications typically
depend on direct measurements of the disturbance and rely on digital signal processing techniques and
architectures that avoid feedback loops [2, 3]. A successful area of structural vibration control includes
applications where semi-active actuators are used. These devices can be controlled to modulate the damping
in the structure, and thus are inherently incapable of destabilizing the structure [4–6]. Finally, active
dampers for applications such as building sway are also successful due to colocated sensing and actuation,
which facilitates closed-loop stability [7].

Apart from these special cases, application of structural vibration control remains a challenging prob-
lem for several reasons. First, despite considerable progress in hardware development including smart ma-
terials, vibration-control actuators tend to be expensive and require high-voltage or high-power amplifiers.
Next, applications that involve unmeasured disturbances require feedback controllers and all of the difficulties
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inherent in closing a feedback loop. Although colocated rate sensing and force actuation can help guarantee
stability, these configurations cannot always be achieved due to hardware constraints, for example, due to
sensor dynamics and the need to measure acceleration or position. When damping augmentation cannot
easily be achieved, the controller must account for the rapid and substantial phase shift that occurs at the
frequency of each lightly damped mode. Uncertainty in modal frequencies, damping, and mode shapes—not
to mention unmodeled dynamics and spillover as a manifestation of the Bode log-sensitivity constraint—can
lead to unmodeled Nyquist encirclements and thus destabilize the closed-loop system. For applications that
involve a large number of flexible modes and potential changes to the system during operation due to changes
in loading and other effects, robust controllers based on small-gain analysis may not be able to roll off the
loop gain while maintaining adequate phase margins [8]. Passivity technique are often the method of choice,
but these entail difficulties due to sensor and actuator dynamics [9].

In the present paper we revisit the active structural and acoustic vibration problem in terms of
adaptive control. Although there is no precise definition of adaptive control, it suffices to view an adaptive
controller as a highly robust controller that tunes itself to the actual plant during operation and thus, unlike
robust controller, avoids sacrificing performance for prior uncertainty. For active structural and acoustic
vibration control we consider retrospective cost adaptive control (RCAC), which was originally developed
in [16], developed in [17–21], and has subsequently been applied to diverse applications, including flight
control [22].

RCAC is a direct adaptive control technique, that requires minimal modeling, specifically, a limited
number of Markov parameters from the control input to the performance variable. No modeling information
is needed concerning the disturbance and command spectra, disturbance path, and measurement feedback
path.

The goal of this paper is to apply the latest developments in RCAC [17–22,24] to the active vibration
control problem. This study is aimed at assessing in detail the level of modeling accuracy required by RCAC
for disturbance rejection in lightly damped structures with uncertain modal frequencies, damping, and
mode shapes, unmodeled dynamics, uncertain disturbance spectra, sensor noise, sensor/actuator dynamics,
and without the benefit of disturbance measurements, and sensor/actuator passivity due to colocation and
velocity sensing, in both SISO and MIMO applications.

II. Problem Formulation

We consider the generic structural model

Mq̈ + Cdq̇ +Kq = B0f +Dww̄, (1)

where q ∈ R
r is a vector of generalized displacements, and M, Cd, and K are the mass, damping, and

stiffness matrices, respectively. Throughout this paper we assume that M is positive definite, and Cd and K
are positive semidefinite. Positive-definite and positive-semidefinite matrices are assumed to be symmetric.
The control input to this system is the force f ∈ R

m, and the disturbance force is given by w̄ ∈ R
lw .

Measurements are given by

ȳ =
[

C0 C1 C2

]







q

q̇

q̈






+ D̄2v̄, (2)

z̄ =
[

Ep Ev Ea

]







q

q̇

q̈






+ Ē3v̄, (3)
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where v̄ denotes sensor noise. The measurements z̄ are the performance variables. We assume that w̄ and v̄
are uncorrelated. We can write (1), (2), (3) in state space form as

ξ̇(t) = Āξ(t) + B̄ū(t) + D̄1w̄(t), (4)

ȳ(t) = C̄ξ(t) + D̄ū(t) + D̄2v̄(t) + D̄3w̄(t), (5)

z̄(t) = Ē1ξ(t) + Ē2ū(t) + Ē3v̄(t) + Ē0w̄(t) (6)

where

Ā
△
=

[

0 Ir

−M−1K −M−1Cd

]

, B̄
△
=

[

0r×m

M−1B0

]

, D̄1
△
=

[

0r×lw

M−1Dw

]

, (7)

C̄
△
=

[

C0 − C2M−1K C1 − C2M−1Cd

]

, D̄
△
= C2M

−1B0, D̄3
△
= C2M

−1Dw, (8)

Ē1
△
=

[

Ep − EaM
−1K Ev − EaM

−1Cd

]

, Ē2
△
= EaM

−1B0, Ē0
△
= EaM

−1Dw, (9)

ξ(t)
△
=

[

q(t)

q̇(t)

]

∈ R
2r, ū(t)

△
= f(t). (10)

We consider four special cases of (1) when it is unforced, namely,

Mq̈ + Cdq̇ +Kq = 0. (11)

These cases are distinguished by the stability of (11). For details, see [15].

In state space form, (11) can be written as

ξ̇ = Āξ. (12)

II.A. Case 1: Lyapunov-Stable Case

The unforced structure (12) is Lyapunov stable if every eigenvalue of Ā lies in the closed left-half plane
and is semisimple on the imaginary axis. In this case the response of (12) is bounded for all initial conditions.

Fact II.1. (12) is Lyapunov stable if and only if

rank

[

K

Cd

]

= r. (13)

II.B. Case 2: Semistable Case

The unforced structure (12) is semistable if every eigenvalue of Ā lies in the open left-half plane or is
zero and the zero eigenvalue (if present) is semisimple. In this case, The free response of such a structure is
bounded and the state q converges, but not necessarily to q = 0.

Fact II.2. (12) is semistable if and only if (M−1K,Cd) is observable.

The observability condition in Fact II.2 is known as pervasive damping.

The presence of a semisimple eigenvalue at zero signifies the presence of a damped rigid body mode.
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II.C. Case 3: Asymptotically Stable Case

The unforced structure (12) is asymptotically stable if every eigenvalue of Ā lies in the open left-half
plane. In this case the free response of (12) converges to q = 0, q̇ = 0 for all initial conditions.

Fact II.3. (12) is asymptotically stable if and only if A is semistable and K is positive definite.

II.D. Case 4: Unstable Case

If (12) is not Lyapunov stable, then we say that (12) is unstable. The following result shows that
an unstable structure must have at least one rigid body mode and that this is precisely the nature of the
instability.

Fact II.4. Assume that (12) is not Lyapunov stable. Then Ā has a repeated zero eigenvalue that
appears in a 2× 2 block in the Jordan canonical form of Ā, and no zero eigenvalue of Ā appears in a Jordan
block of size greater than 2× 2.

III. Retrospective Cost Adaptive Control Algorithm

III.A. Discrete-time Control Problem and Useful Definitions

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (14)

y(k) = Cx(k) +D2w(k) +D3v(k), (15)

z(k) = E1x(k) + E0w(k) + E3v(k), (16)

where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu , w(k) ∈ R
lw , v(k) ∈ R

lv , and k ≥ 0. The system
(14)–(16) can represent a sampled-data application arising from a continuous-time system with state ξ(t) and
sample and hold operations with sample interval Ts, where x(k), y(k), z(k), u(k), w(k) and v(k) represent
ξ(kTs), ȳ(kTs), z̄(kTs), ū(kTs), w̄(kTs) and v̄(kTs) respectively.

We can represent (14), (16) as the time-series model

z(k) =

n
∑

i=1

−αiz(k − i) +

n
∑

i=d

βiu(k − i) +

n
∑

i=0

γiw(k − i) + E3v(k), (17)

where d is the smallest integer such that βd is not zero. The plant (14),(16) is represented by the transfer
matrices

Gzu(q)
△
= E1(qI −A)−1B,

Gzw(q)
△
= E1(qI −A)−1D1 + E0, (18)

where q is the forward shift operator and, unlike the z-transform, (18) accounts for possibly nonzero initial
conditions. For each positive integer i,

Hi
△
= E1A

i−1B (19)

is the ith Markov parameter of Gzu.
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Now, consider the nth
c -order strictly proper LTI output feedback controller

xc(k + 1) = Acxc(k) +Bcy(k), (20)

u(k) = Ccxc(k), (21)

where xc(k) ∈ R
nc . The feedback control (20)–(21) is described by u = Gc(q)y, where

Gc(q) = Cc(zI −Ac)
−1Bc.

The closed-loop system with output feedback (20)–(21) is thus given by

x̃(k + 1) = Ãx̃(k) + D̃1w(k) + F̃ v(k), (22)

y(k) = C̃x̃(k) +D2w(k) +D3v(k), (23)

z(k) = Ẽ1x̃(k) + E0w(k) + E3v(k), (24)

where

Ã
△
=

[

A BCc

BcC Ac

]

, D̃1
△
=

[

D1

BcD2

]

, F̃
△
=

[

0n×lv

BcD3

]

,

C̃ =
[

C 0ly×nc

]

, Ẽ1 =
[

E1 0lz×nc

]

, (25)

and x̃(k) =
[

xT(k) xT
c (k)

]T

∈ R
n+nc .

The goal is to develop an adaptive output feedback controller that minimizes the performance variable
z in the presence of the exogenous signal w with limited modeling information about the dynamics and the
exogenous signal. We assume that the measurements y(k) and z(k) are available for feedback.

III.B. Control Law

We use a linear, strictly proper time-series controller of order nc such that the control u(k) is given
by

u(k) = θT(k)φ(k − 1), (26)

where

θ(k) =
[

NT
1 (k) · · · NT

nc
(k) MT

1 (k) · · · MT
nc
(k)

]T

∈ R
nc(lu+ly)×lu , (27)

φ(k − 1) =
[

yT(k − 1) · · · yT(k − nc) uT(k − 1) · · · uT(k − nc)
]T

∈ R
nc(lu+ly). (28)

The control law (26) can be reformulated as

u(k) = Φ(k − 1)Θ(k), (29)

where

Φ(k − 1)
△
= Ilu ⊗ φT(k − 1) ∈ R

lu×lunc(lu+ly), (30)

Θ(k)
△
= vec(θ(k)) ∈ R

lunc(lu+ly), (31)

“⊗” denotes the Kronecker product, and “vec” is the column stacking operator.
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III.C. Retrospective Performance

For positive integer r, we define

Gf(q
−1)

△
= K1q

−1 + · · ·+Krq
−r, (32)

which is a finite-impulse-response (FIR) transfer matrix constructed using the filter coefficients Ki ∈ R
lz×lu

for 1 ≤ i ≤ r. Next, using Gf , we define the retrospective performance variable

ẑ(k)
△
= z(k) + Φf(k − 1)Θ̂− uf(k), (33)

where

Φf(k − 1)
△
= Gf(q

−1)Φ(k − 1) ∈ R
lz×lunc(lu+ly), (34)

uf(k)
△
= Gf(q

−1)u(k) ∈ R
lz , (35)

and Θ̂ ∈ R
lunc(lu+ly) is an optimization variable. The retrospective performance variable (33) can be

rewritten in the form

ẑ(k)
△
= z(k) +Kzu

















Φ(k − 2)
...

Φ(k − r − 1)









Θ̂−









u(k − 1)
...

u(k − r)

















∈ R
lz , (36)

where Kzu =
[

K1 · · · Kr

]

∈ R
lz×rlu .

III.D. Cumulative Update Law

For k > 0, we define the cumulative cost function

Jcum(Θ̂, k)
△
=

k
∑

i=1

λk−i(ẑT(i)ẑ(i) + η(i)Θ̂TΦT
f (i− 1)Φf(i − 1)Θ̂)

+ λk(Θ̂−Θ(0))TP−1
0 (Θ̂−Θ(0)), (37)

where λ ∈ (0, 1], and P0 ∈ R
lunc(lu+ly)×lunc(lu+ly) is positive definite.

Fact III.1. Define P (k) ∈ R
lunc(lu+ly) with P (0) = P0 = βIlunc(lu+ly), where β > 0 is a scalar. Then,

for all k > 0, the cumulative cost function (37) has the unique global minimizer

Θ(k) = [I −K(k)Φf (k − 1)]Θ(k − 1)− P (k)ΦT
f (k − 1) [z(k)− uf(k)] , (38)

where

P (k) =
1

λ
[P (k − 1)−K(k)Φf (k − 1)P (k − 1)] , (39)

and

K(k)
△
= P (k − 1)ΦT

f (k − 1)

[

λ

1 + η(k)
Ilz +Φf (k − 1)P (k − 1)ΦT

f (k − 1)

]−1

(40)

Proof. The result is an application of the recursive least squares theory [13, 14]. For a complete proof,
see [24].
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III.E. Phase Matching Condition

Let Gzu,ij denote the transfer function from the jth input uj to the ith output zi, and let Gf,ij denote
the ijth entry of Gf . Then, For θ ∈ [0, π], the phase mismatch ∆ij(θ) between Gf,ij and Gzu,ij is defined as

∆ij(θ)
△
= cos−1

Re
[

Gzu,ij(e
θ)Gf,ij(eθ)

]

|Gzu,ij(eθ)| |Gf,ij(eθ)|
∈ [0, 180]. (41)

Note that ∆ij(θ) represents the angle between Gzu,ij(e
θ) and Gf,ij(e

θ) in the complex plane. The role of
phase mismatch in closed-loop performance of RCAC for SISO plants is investigated in [21]. Furthermore,
frequency domain methods are presented for approximating IIR plants with FIR transfer functions in [23]

IV. Numerical Examples

We now apply RCAC to structural models. We consider disturbance rejection problems for both SISO
and MIMO plants. In all cases, the adaptive controller gain matrix is initialized to be zero, that is, Θ(0) = 0,
and the forgetting factor λ = 1 in all examples.

Each example is constructed using the multiple degrees-of-freedom (MDOF) lumped parameter struc-
ture shown in Figure 1, and the output measurement is sampled with zero-order hold. The equations of
motion for this system can be written in the form (1) with M = diag(m1, . . . ,mr),

Cd =

















c1 + c2 −c2 0 · · · 0

−c2 c2 + c3 −c3 0 · · · 0
. . .

. . .
. . .

. . .
...

0 · · · −cr−1 cr−1 + cr −cr 0

0 · · · 0 −cr cr + cr+1

















K =

















k1 + k2 −k2 0 · · · 0

−k2 k2 + k3 −k3 0 · · · 0
. . .

. . .
. . .

. . .
...

0 · · · −kr−1 kr−1 + kr −kr 0

0 · · · 0 −kr kr + kr+1

















.

Figure 1. An r-mass lumped parameter structure.
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IV.A. SISO Examples

In this section, we apply RCAC to SISO structures. The simulation results corresponding to the
examples in this section are given in Appendix A.

Example IV.1 (Adaptive control of a 2DOF asymptotically stable lumped parameter structure).
Consider a two-mass lumped parameter structure with the masses m1 = 1, m2 = 1; the spring constants
k1 = 5 kg/sec2, k2 = 0 kg/sec2, k3 = 2 kg/sec2; and the damping coefficients c1 = 2 kg/sec, c2 = 1 kg/sec,
and c3 = 0 kg/sec. With these parameters, every eigenvalue of Ā lies in the open left-half plane, thus the
structure is asymptotically stable. The continuous-time plant Tzu(s) = Ē1(sI− Ā)−1B̄ is sampled at 4 Hz so
that Ts = 0.25 sec/sample. The sampled-data system Gzu(q) has the sampling zeros −0.211 and −2.8758,
one of which is nonminimum-phase.

The control objective is to keep q2 near zero in the presence of the disturbance forces w̄1 and w̄2,
using the control force f1. Therefore, we consider a SISO disturbance rejection problem with z = q2,

B0 =
[

1 0
]T

, Dw = I2. We assume that q2 is the only measurement, therefore, y = z. Furthermore, we

assume that the measurements are noise-free.

We first consider an unknown sinusoidal disturbance w̄2(t) with frequency ω2 = 1
7 Hz, that is, w(k) =

[

0 100 sinΘ2k
]T

N, where Θ2 = 2πω2Ts = 2π/28 rad/sample. The open-loop system is given the initial

conditions q(0) =
[

4 −1
]T

m, and q̇(0) =
[

−2 −0.5
]T

m/sec. The plant is simulated in open-loop

for 25 seconds, and at t = 25 sec, RCAC is turned on with tuning parameters nc = 10, η0 = 0.5, P0 = 10I,
pc = 1, and Kzu = H1 = 0.002. The performance converges to zero, the asymptotic closed-loop system is
stable, and RCAC converges to an internal model controller with high-gain at the disturbance frequency Θ2

as shown in Figure 13.

We now consider the unknown sinusoidal disturbances w̄1(t) and w̄2(t) with frequencies ω1 = 0.5 Hz

and ω2 = 2
9 Hz, that is, w(k) =

[

w1(k) w2(k)
]T

=
[

100 sinΘ1k 10 sinΘ2k
]T

N, where Θ1 = 2π/8

rad/sample and Θ2 = 2π/18 rad/sample. We choose

Kzu =
[

K1 · · · K7

]

= 10−3
[

−2.1 0.3 1.4 1.6 1.2 0.2 −0.7 −1.8
]

, (42)

so that ∆(θ) < 90 for all θ ∈ [0, π] rad/sample. Note that the NMP sampling zero −2.8758 is not a zero of
Gf . The open-loop system is given the same initial conditions as above. The plant is simulated in open-loop
for 100 seconds, and at t = 100 sec, RCAC is turned on with tuning parameters nc = 15, η0 = 0.1, P0 = 0.1I,
and pc = 5. The closed-loop response is shown in Figure 14. After convergence, the disturbance frequencies
π/9 rad/sample and π/4 rad/sample are attenuated as shown in Figure 2. �

0 pi/4 pi/2 3pi/4 pi
−100

−50

0

50

frequency (rad/sample)

m
ag

ni
tu

de
 (

dB
)

 

 

Gzw1

open loop
closed loop

0 pi/4 pi/2 3pi/4 pi
−100

−80

−60

−40

−20

0

20

frequency (rad/sample)

m
ag

ni
tu

de
 (

dB
)

 

 

Gzw2

open loop
closed loop

Figure 2. Example IV.1: 2DOF asymptotically stable structure with nonminimum-phase sampling zeros, two-tone
disturbance rejection problem. The bode plots show the attenuation at the disturbance frequencies π/9 and π/4
rad/sample after controller convergence.

Example IV.2 (Adaptive control of a 3DOF asymptotically stable lumped parameter structure).
Consider a 3DOF lumped parameter structure with the masses m1 = 1.1 kg, m2 = 0.7 kg, m3 = 1 kg; the

8 of 23

American Institute of Aeronautics and Astronautics



spring constants k1 = 0.5 kg/sec2, k2 = 0.01 kg/sec2, k3 = 8 kg/sec2, k4 = 4 kg/sec2; and the damping
coefficients c1 = 1.5 kg/sec, c2 = 0.5 kg/sec, c3 = 0.8 kg/sec, and c4 = 0 kg/sec. With these parameters,
every eigenvalue of Ā lies in the open left-half plane, and thus the structure is asymptotically stable. The
continuous-time plant Tzu(s) is sampled at 5 Hz so that Ts = 0.2 sec/sample. The sampled-data system
Gzu(z) has the minimum-phase sampling zero −0.8779.

The control objective is to keep q2 near zero in the presence of the disturbance forces w̄1(t), w̄2(t) and
w̄3(t), using the control force f2. Therefore, we consider a SISO disturbance rejection problem with z = q2,

B0 =
[

0 1 0
]T

, Dw = I3. We assume that q2 is the only measurement, therefore, y = z. Furthermore,

we assume that the measurements are noise-free.

We consider unknown sinusoidal disturbances w̄1, w̄2 and w̄3 with frequencies ω1 = 5
14 Hz, ω2 = 5

36 Hz,

ω3 = 5
3 Hz, that is, w =

[

w1 w2 w3

]T

=
[

10 sinΘ1k 2 sinΘ2k 15 sinΘ3k
]T

N, where Θ1 = 2π/14

rad/sample, Θ2 = 2π/36 rad/sample, and Θ3 = 2π/3 rad/sample. The open-loop system is given the initial

conditions q(0) =
[

5 −1.5 −3
]T

m, and q̇ =
[

−0.5 −7 −3.5
]T

m/sec. The plant is simulated in

open-loop for 15 seconds, and at t = 15 sec, RCAC is turned on with tuning parameters nc = 15, η0 = 0,
P0 = 1010I, and Kzu = H1 = 0.0246. The closed-loop response is shown in Figure 15. After convergence,
the disturbance frequencies π/7 rad/sample, π/18 rad/sample and 2π/3 rad/sample are attenuated as shown
in Figure 2. �

0 pi/4 pi/2 3pi/4 pi
−100

−50

0

50

frequency (rad/sample)

m
ag

ni
tu

de
 (

dB
)

 

 

Gzw1

open loop
closed loop

0 pi/4 pi/2 3pi/4 pi
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−50

0

50
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m
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)
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m
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tu
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dB
)

 

 

Gzw3

open loop
closed loop

Figure 3. Example IV.2: 3DOF asymptotically stable structure, three-tone disturbance rejection problem. The bode
plots show the attenuation at the disturbance frequencies π/7, π/18 and 2π/3 rad/sample after controller convergence.

Example IV.3 (Broadband disturbance rejection in a 3DOF asymptotically stable structure). Con-
sider a 3DOF lumped parameter structure with the masses m1 = 1.8 kg, m2 = 0.7 kg, m3 = 1.11 kg; the
spring constants k1 = 7.5 kg/sec2, k2 = 4.9 kg/sec2, k3 = 7 kg/sec2, k4 = 7.5 kg/sec2; and the damping
coefficients c1 = 0.8 kg/sec, c2 = 0.6 kg/sec, c3 = 0.2 kg/sec, and c4 = 0.45 kg/sec. With these parameters,
every eigenvalue of Ā lies in the open left-half plane, and thus the structure is asymptotically stable. The
continuous-time plant Tzu(s) is sampled at 6.667 Hz so that Ts = 0.15 sec/sample. The sampled-data system
Gzu(z) has the minimum-phase sampling zero −0.9424.

The control objective is to keep q2 near zero in the presence of the bandlimited white disturbances
w1(k), w2(k) and w3(k), using the control force f2. The disturbances are assumed to be uncorrelated with
each other, have the standard deviations σw1

= 157.29N , σw2
= 99.81 N, σw3

= 153.97 N, and the correlation
time of each bandlimited disturbance is equal to 0.2Ts = 0.03 sec. We assume that the measurements are
noise-free, and q2 is the only measurement, therefore, y = z = q2. The open-loop system is given the

initial conditions q(0) =
[

−0.05 0.3 0.15
]T

m, and q̇(0) =
[

−0.4 0.4 0.25
]T

m/sec. The plant is

simulated in open-loop for 300 seconds, and at t = 300 sec, RCAC is turned on with tuning parameters
nc = 6, η0 = 0, P0 = 100I, and Kzu = H1 = 0.0147. The performance variable is brought below open-loop
level as shown in Figure 16. After convergence, the lightly-damped mode is suppressed as shown in Figure
4.

Example IV.4 (Adaptive control of a 2DOF semistable lumped parameter structure with sensor
noise). Consider a 2DOF lumped parameter structure with the masses m1 = 2 kg, m2 = 0.6 kg; the spring
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Figure 4. Example IV.3: 3DOF asymptotically stable structure, broadband disturbance rejection problem. The bode
plots show the suppression of the lightly-damped mode in each path, after controller convergence.

constants k1 = 10 kg/sec2, k2 = 0 kg/sec2, k3 = 0 kg/sec2; and the damping coefficients c1 = 0.5 kg/sec,
c2 = 0.4 kg/sec, and c3 = 0.4 kg/sec. With these parameters, the structure has a damped rigid-body mode,
which results in Ā having an eigenvalue at the origin. The remaining eigenvalues lie in the open left-half
plane, therefore, the structure is semistable. The continuous-time plant Tzu(s) is sampled at 2 Hz so that
Ts = 0.5 sec/sample. The sampled-data system Gzu(z) has one minimum-phase sampling zero.

The control objective is to keep q2 near zero in the presence of the disturbance forces w̄1 and w̄2,
using the control force f2. We first assume that the measurements are noise-free, and q2 is the only measure-

ment, therefore, y = z = q2. We consider the unknown disturbance vector w(k) =
[

w1(k) w2(k)
]T

=
[

100 sin2πω1Tsk 1 + 10 sin 2πω2Tsk
]T

, where ω1 = 2
3 Hz and ω2 = 2

5 Hz. Note that w2 has a nonzero

DC component that excites the damped rigid-body mode of the structure. The open-loop system is given

the initial conditions q(0) =
[

2.5 −3.5
]T

m, and q̇ =
[

−2.5 −5
]T

m/sec. The plant is simulated in

open-loop for 10 seconds, and at t = 10 sec, RCAC is turned on with tuning parameters nc = 10, η0 = 0,
P0 = I, and Kzu = H1 = 0.1692. The closed-loop response is shown in Figure 17. After convergence, the
disturbance frequencies 2π/3 rad/sample, 2π/5 rad/sample and the DC component are attenuated as shown
in Figure 5.

We now add measurement noise to y and z, therefore, y(k) = z(k) = q2(kTs) + v(k), where v is a
zero-mean gaussian white-noise with standard deviation σv = 0.44 m. We consider the same disturbance
forces w1 and w2 with the same initial conditions q(0) and q̇(0). The plant is simulated in open-loop for
10 seconds, and at t = 10 sec, RCAC is turned on with tuning parameters nc = 10, η0 = 0, P0 = I, and
Kzu = H1 = 0.1692. The closed-loop response is shown in Figure 18. After convergence, the disturbance
frequencies 2π/3 rad/sample, 2π/5 rad/sample and the DC component are attenuated as shown in Figure
5. �
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Figure 5. Example IV.4: 2DOF semistable structure. The bode plots show the attenuation at the disturbance frequen-
cies 2π/3, 2π/5 rad/sample as well as the DC component after controller convergence. Sensor noise does not hinder
attenuation of the disturbance frequencies.
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Example IV.5 (3DOF asymptotically stable lumped parameter structure with measurement noise).
Consider a 3DOF lumped parameter structure with the masses m1 = 5.1 kg, m2 = 3.9 kg, m3 = 6.4
kg; the spring constants k1 = 11 kg/sec2, k2 = 6 kg/sec2, k3 = 7 kg/sec2, k4 = 11 kg/sec; and the
damping coefficients c1 = 3 kg/sec, c2 = 2.9 kg/sec, c3 = 2.92 kg/sec, and c4 = 2.99 kg/sec. With these
parameters, every eigenvalue of Ā lies in the open left-half plane, therefore, the structure is asymptotically
stable. Numerical values of M , Cd and K are

M =







5.1 0 0

0 3.9 0

0 0 6.4






, Cd =







5.9 −2.9 0

−2.9 5.82 −2.92

0 −2.92 5.91






, K =







17 −6 0

−6 13 −7

0 −7 18






. (43)

The continuous-time plant Tzu(s) is sampled at 2.5 Hz so that Ts = 0.4 sec/sample.

The control objective is to keep q2 near zero in the presence of the disturbance forces w̄1, w̄2 and
w̄3 using the control force f2. Throughout the example, we assume that the measurements y and z
are corrupted by a zero-mean gaussian white noise v(k) with standard deviation σv = 0.24 m, so that
y(k) = z(k) = q2(kTs) + v(k). We consider the unknown sinusoidal disturbances w̄1, w̄2 and w̄3 with fre-

quencies ω1 = 0.625 Hz, ω2 = 0.1786 Hz, ω3 = 0.4167 Hz, that is, w(k) =
[

w1(k) w2(k) w3(k)
]T

=
[

80 sinΘ1k 15 sinΘ2k 70 sinΘ3k
]T

N, where Θ1 = π/2 rad/sample, Θ2 = π/7 rad/sample, and Θ3 =

π/3 rad/sample. The open-loop system is given the initial conditions q(0) =
[

−0.1 −0.6 −0.75
]T

m,

and q̇ =
[

0.4 0.1 0
]T

m/sec. The plant is simulated in open-loop for 40 seconds, and at t = 40 sec,

RCAC is turned on with tuning parameters nc = 15, η0 = 0, P0 = 103I, and Kzu = H1 = 0.0165. The
closed-loop response is shown in Figure 19. After convergence, the disturbance frequencies π/2 rad/sample,
π/3 rad/sample and π/7 are attenuated as shown in Figure 6. �
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Figure 6. Example IV.5: 3DOF asymptotically stable structure. The bode plots show the attenuation at the disturbance
frequencies π/2, π/3 and π/7 rad/sample after controller convergence.

Example IV.6 (3DOF asymptotically stable lumped parameter structure with uncertain dynamics
and measurement noise). We now consider the same structure as in Example IV.5, but introduce the random
uncertainties SM , SCd

, SK ∈ R
3×3 so that

M̃ = M + SMST
M , C̃d = Cd + SCd

ST
Cd

K̃ =
[

K
]

+ SKST
K , (44)

where M , C, K have the same values as introduced in (43). The uncertainties are normalized so that
‖SMST

M‖2 = ‖M‖2, ‖SCd
ST
Cd

‖2 = ‖Cd‖2, and ‖SKST
K‖2 = ‖K‖2. We therefore consider the uncertain

structure (1) where the mass, damping and stiffness matrices are M̃ , C̃d, and K̃ respectively. The numerical
values of M̃ , C̃d and K̃ are

M̃ =







10.047 0.191 −2.431

0.191 4.724 −0.605

−2.431 −0.605 8.579






, C̃d =







11.305 −1.270 −4.402

−1.270 7.247 −4.493

−4.402 −4.493 10.413






, K̃ =







24.795 −15.775 2.379

−15.775 31.308 −9.982

2.379 −9.982 21.086






.

(45)
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The additive uncertainties change the frequency response of Tzu(s) as shown in Figure 7.
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Figure 7. Example IV.6: 3DOF asymptotically stable structure with uncertain dynamics. Blue represents the frequency
response of the original plant Tzu(s) given in Example IV.5, and red illustrates the frequency response of the plant with
the unknown additive uncertainties SM , SC

d
and SK .

We consider the same disturbances w̄1, w̄2 and w̄3 with the same initial conditions q(0), q̇(0) as in
Example IV.5. We use the same Kzu = K1 = 0.0165, which is not equal to the first Markov parameter
H1 = 0.0133 of the uncertain system. The plant is simulated in open-loop for 40 seconds, and at t = 40 sec,
RCAC is turned on with tuning parameters nc = 15, η0 = 0, and P0 = 103I. The closed-loop response is
shown in Figure 20. After convergence, the disturbance frequencies π/2 rad/sample, π/3 rad/sample and
π/7 are attenuated as shown in Figure 8. �
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Figure 8. Example IV.6: 3DOF asymptotically stable structure with unknown additive uncertainties. The bode plots
show the attenuation at the disturbance frequencies π/2, π/3 and π/7 rad/sample after controller convergence.

Example IV.7 (3DOF asymptotically stable lumped parameter structure with uncertain dynamics
and measurement noise). Consider a 3DOF lumped parameter structure with the masses m1 = 4.6 kg,
m2 = 4.7 kg, m3 = 5.2 kg; the spring constants k1 = 9.9 kg/sec2, k2 = 5.8 kg/sec2, k3 = 8 kg/sec2, k4 = 8.5
kg/sec; and the damping coefficients c1 = 2.8 kg/sec, c2 = 2.7 kg/sec, c3 = 2.42 kg/sec, and c4 = 2.65
kg/sec. With these parameters, every eigenvalue of Ā lies in the open left-half plane, therefore, the structure
is asymptotically stable. The continuous-time plant Tzu(s) is sampled at 1 Hz so that Ts = 1 sec/sample.
The sampled-data system Gzu(z) has two sampling zeros, one of which is nonminimum-phase.

In this example, we assume that the structure parameters, including the Markov parameters, are
completely unknown, that is, no prior modeling information is available. Therefore, we first apply an off-line
frequency-domain identification to construct Kzu. In particular, with the unknown nonzero initial conditions

q(0) =
[

0.04 0.1 −0.02
]T

m and q̇(0) =
[

0.02 −0.03 0.01
]T

m/sec, we excite the uncertain plant

with a white noise sequence and collect output measurements for 1500 time steps. We then take the ratio of
the fast fourier transforms of the output and input signals to obtain frequency response estimates Ĝzu(e

θ)
of Gzu in 750 equally spaced points in θ ∈ [0, π] rad/sample. The bode plot of the estimated frequency
response is shown in Figure 9. Next, using the frequency response estimates, we apply a constrained linear
least squares method to fit Ĝzu(e

θ) with an FIR plant using a uniform phase mismatch bound ∆(θ) ≤ 80
deg. The resulting FIR fit is

Gf(q
−1) = 0.041q−1 + 0.0709q−2,
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hence, we choose Kzu =
[

0.041 0.0709
]

. Note that the entries of Kzu are not the Markov parameters

H1 = 0.0155 and H2 = 0.0578 of Gzu.
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Figure 9. Example IV.7: Frequency response estimate of Gzu, obtained through frequency domain system identification
using a gaussian white noise sequence.

The control objective is to keep q2 near zero in the presence of the disturbance forces w̄1, w̄2 and w̄3

using the control force f3. Furthermore, we assume that the measurements y and z are corrupted by a zero-
mean gaussian white noise v(k) with standard deviation σv = 0.32 m, so that y(k) = z(k) = q2(kTs) + v(k).
We consider the unknown sinusoidal disturbances w̄1, w̄2 and w̄3 with frequencies ω1 = 0.1429 Hz, ω2 = 1

3

Hz, ω3 = 0.0588 Hz, that is, w(k) =
[

w1(k) w2(k) w3(k)
]T

=
[

75 sinΘ1k 30 sinΘ2k 70 sinΘ3k
]T

N, where Θ1 = 2π/7 rad/sample, Θ2 = 2π/3 rad/sample, and Θ3 = 2π/17 rad/sample. The open-loop

system is given the initial conditions q(0) =
[

−0.7 0.65 −0.35
]T

m, and q̇ =
[

0.5 0.1 0.3
]T

m/sec.

The plant is simulated in open-loop for 100 seconds, and at t = 100 sec, RCAC is turned on with tuning
parameters nc = 15, η0 = 0.005, pc = 1, P0 = I, and Kzu as given above. The closed-loop response is shown
in Figure 21. After convergence, the disturbance frequencies π/7 rad/sample, 2π/3 rad/sample and 2π/17
are attenuated as shown in Figure 10. �
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Figure 10. Example IV.7: 3DOF asymptotically stable uncertain structure. The bode plots show the attenuation at
the disturbance frequencies 2π/7, 2π/3 and 2π/17 rad/sample after controller convergence.

IV.B. MIMO Examples

In this section, we apply RCAC to MIMO flexible structures. The simulation results corresponding
to the examples in this section are given in Appendix B.

Example IV.8 (Adaptive MIMO control of a 2DOF Lyapunov-stable lumped parameter structure).
Consider a 2DOF lumped parameter structure with the masses m1 = m2 = 2 kg; the spring constants
k1 = k3 = 7 kg/sec2, k2 = 0 kg/sec2; and the damping coefficients c1 = c3 = 0 kg/sec, c2 = 3.5 kg/sec.
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With these parameters, for certain initial conditions, the two masses can oscillate at the same frequency
with equal amplitudes and phases, so that the relative motion q̇1 − q̇2 is equal to zero, and c2 dissipates no
energy. Therefore, Ā has two non-repeated eigenvalues on the imaginary axis, and the remaining eigenvalues
lie in the open left-half plane, thus the structure is Lyapunov-stable. The continuous-time plant Tzu(s) =
Ē1(sI − Ā)−1B̄ is sampled at 2 Hz so that Ts = 0.5 sec/sample. The sampled-data system Gzu(z) has two
nonminimum-phase channels, as shown in Figure 11. However, the transmission zeros −1 and −0.5559 of
the MIMO transfer matrix Gzu(z) are on or inside the unit circle.
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Figure 11. Example IV.8: Channel poles and zeros of Gzu.

The control objective is to keep q1 and q2 near zero in the presence of the disturbance forces
w̄1 and w̄2, using the control forces f1 and f2. We assume the measurements of q1 and q2 are cor-
rupted by mutually uncorrelated white noise sequences v1(k) and v2(k) having standard deviations 0.46
m and 0.43 m respectively. Therefore, we consider a MIMO disturbance rejection problem with y = z =
[

q1(kTs) q2(kTs)
]T

+
[

v1 v2

]T

. We consider the unknown sinusoidal disturbances w̄1, w̄2 with fre-

quencies ω1 = 0.2857 Hz, ω2 = 0.087 Hz, that is, w(k) =
[

w1(k) w2(k)
]T

=
[

15 sinΘ1k 10 sinΘ2k
]T

N, where Θ1 = 2π/7 rad/sample and Θ2 = 2π/23 rad/sample. The open-loop system is given the initial

conditions q(0) =
[

−0.05 0.3
]T

m and q̇ =
[

0.15 −0.4
]T

m/sec. The plant is simulated in open-loop

for 50 seconds, and at t = 50 sec, RCAC is turned on with tuning parameters nc = 15, η0 = 0, P0 = I, and
Kzu = H1. The masses oscillate until t = 50 sec, and then are brought back near zero as shown in Figure
22. �

Example IV.9 (Adaptive MIMO control of a 4DOF asymptotically stable lumped parameter struc-
ture). Consider a 4DOF lumped parameter structure with the masses m1 = 3 kg, m2 = 4 kg, m3 = 5 kg,
m4 = 6 kg; the spring constants k1 = 7 kg/sec2, k2 = 6 kg/sec2, k3 = 7 kg/sec2, k4 = 8 kg/sec2, k5 = 6
kg/sec2; and the damping coefficients c1 = 1.5 kg/sec, c2 = 1.3 kg/sec, c3 = 1.9 kg/sec, c4 = 2 kg/sec,
and c5 = 1.9 kg/sec. With these parameters, every eigenvalue of Ā lies in the open left-half plane, thus the
structure is asymptotically stable. The continuous-time plant Tzu(s) = Ē1(sI − Ā)−1B̄ is sampled at 2 Hz
so that Ts = 0.5 sec/sample. The sampled-data system Gzu(z) has three nonminimum-phase channels, as
shown in Figure 12, and, the MIMO transfer matrix Gzu(z) has a nonminimum-phase sampling zero near
−4.03.

The control objective is to keep q3 and q4 near zero in the presence of the disturbance forces w̄1,
w̄2 and w̄4, using the control forces f2 and f4. We assume that the measurements of q3 and q4 are avail-

able, thus y = z =
[

q3 q4

]T

. We consider the unknown sinusoidal disturbances w̄1, w̄2 and w̄4 with

frequencies ω1 = 0.8 Hz, ω2 = 0.069 Hz, ω4 = 0.1176 Hz, that is, w(k) =
[

w1(k) w2(k) w4(k)
]T

=
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Figure 12. Example IV.9: Channel poles and zeros of Gzu.

[

20 sinΘ1k 20 sinΘ2k 20 sinΘ4k
]T

N, where Θ1 = 4π/5 rad/sample, Θ2 = 2π/29 rad/sample, and

Θ4 = 2π/17 rad/sample. The open-loop system is given the initial conditions q(0) =
[

0.25 0.45 −0.25 −0.4
]T

m and q̇ =
[

0.05 0.3 −0.2 −0.05
]T

m/sec. The plant is simulated in open-loop for 50 seconds, and at

t = 50 sec, RCAC is turned on with tuning parameters nc = 20, η0 = 0.1, pc = 5, P0 = 0.1I, and Kzu = H1.
The closed-loop response is shown in Figure 23. �

V. Conclusions

In this paper we applied the latest developments in RCAC to the active vibration control problem. We
demonstrated disturbance rejection in lightly damped structures with uncertain modal frequencies, damping,
and mode shapes, uncertain disturbance spectra, sensor noise, and without the benefit of disturbance mea-
surements, and sensor/actuator passivity due to colocation and velocity sensing, in both SISO and MIMO
applications. We considered physical lumped parameter structure models which may exhibit nonminimum-
phase behavior due to sample and hold operations. In these cases, we demonstrated that satisfying a
phase-matching condition is sufficient for asymptotic suppression of exogenous disturbance forces.
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A. Simulation Results for Section IV.A

In this appendix, we present simulation results corresponding to SISO numerical examples considered
in Section IV.A. Each figure contains 8 subplots arranged in four rows and two columns. In each figure,
first row shows the time history of the performance variable z which may consist of displacements qi(t) or
velocities q̇i(t), and the control signal u, which may consist of control forces fi(t); second row shows the
time traces of the controller gain vector Θ(k) and the spectral radius spr(Ã) of the closed-loop state matrix;
third row shows the pole-zero maps of the continuous-time plant Tzu(s) and the corresponding sampled-data
system Gzu(z); finally, fourth row shows the phase mismatch ∆(θ) and the bode magnitude plot of the
controller transfer function after convergence, plotted for all θ ∈ [0, π] rad/sample, where 0 corresponds to
the DC-frequency and π corresponds to the Nyquist frequency.
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Figure 13. Example IV.1: 2DOF, asymptotically stable structure, sampled with Ts = 0.25 sec/sample. The sampled-data
system has a NMP sampling zero. The control objective is to keep q2(t) near zero in the presence of the disturbance
force w̄2(t) = 100 sin(2πt/7) N using the control force f1. RCAC is turned on at t = 25 sec with the tuning parameters
nc = 10, η0 = 0.5, P0 = 10I, pc = 1, and Kzu = H1 = 0.002. With this choice of Kzu, the phase mismatch is smaller than
90 deg at the disturbance frequency Θ1 = π/14 rad/sample. The controller gain vector Θ(k) converges, and q2 converges
to zero in about 70 seconds (280 time steps). RCAC converges to an internal model controller with high-gain at the

disturbance frequency. After convergence, the spectral radius spr(Ã) of the closed-loop system is 0.94.

B. Simulation Results for Section IV.B

In this appendix, we present simulation results corresponding to the MIMO numerical examples
considered in Section IV.B. Each figure contains 6 subplots arranged in three rows and two columns. In
each figure, first row shows the time history of the performance variable z, which may consist of displacements
qi(t) or velocities q̇i(t), and the control signal u, which may consist of control forces fi(t); second row shows
the time traces of the controller gain vector Θ(k) and the spectral radius spr(Ã) of the closed-loop state
matrix; third row shows the poles and transmission zeros of the continuous-time MIMO transfer function
Tzu(s) and the corresponding sampled-data system Gzu(z).
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Figure 14. Example IV.1: 2DOF, asymptotically stable structure sampled with Ts = 0.25 sec/sample. The sampled-data
system has a NMP sampling zero. The control objective is to keep q2(t) near zero in the presence of the disturbance
forces w̄1(t) = 100 sin(2πt/2) N and w̄2(t) = 10 sin(2π 2

9
t) N using the control force f1. RCAC is turned on at t = 100 sec

with the tuning parameters nc = 15, η0 = 0.1, P0 = 0.1I, and pc = 5. Kzu is constructed so that ∆(θ) ≤ 45 deg for all
θ ∈ [0, π] rad/sample. The controller gain vector Θ(k) converges, and q2 converges to zero in about 400 seconds (2000
time steps). The performance variable does not exceed the open-loop during the transient period. After convergence,

the spectral radius spr(Ã) of the closed-loop system is 0.99.
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Figure 15. Example IV.2: 3DOF, asymptotically stable structure, sampled with Ts = 0.2 sec/sample. The control
objective is to keep q2(t) near zero in the presence of the disturbance forces w̄1(t) = 10 sin(2π 5

14
t) N, w̄2(t) = 2 sin(2π 5

36
t)

N and w̄3(t) = 15 sin(2π 5

3
t) N, using the control force f2. RCAC is turned on at t = 15 sec with the tuning parameters

nc = 15, η0 = 0, P0 = 1010I, and Kzu = H1. The controller gain vector Θ(k) converges, and q2 converges to zero in about
5 seconds (25 time steps). The performance variable does not exceed the open-loop during the transient period. After

convergence, the spectral radius spr(Ã) of the closed-loop system is 0.94.
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Figure 16. Example IV.3: 3DOF, asymptotically stable structure, sampled with Ts = 0.15 sec/sample. The control
objective is to keep q2(t) near zero in the presence of the bandlimited white disturbance forces w̄1(k), w̄2(k) and w̄3(k)
with standard deviations σw1

= 157.29 N, σw2
= 99.81 N, σw3

= 153.97 N, using the control force f2. The disturbances
are uncorrelated with each other, and the correlation time for each disturbance is 0.03 sec. RCAC is turned on at t = 40
sec with the tuning parameters nc = 6, η0 = 0, P0 = 100I, and Kzu = H1. The performance variable q2 is brought below
the open-loop level, and at t = 1500 sec, the spectral radius spr(Ã) of the closed-loop system is 0.95.

0 20 40 60 80
−20

0

20

time (sec)

q 2(t
) 

(m
)

0 20 40 60 80
−200

0

200

time (sec)

f 2(t
) 

(N
)

0 20 40 60 80
−5

0

5

time (sec)

Θ
(k

)

0 20 40 60 80
0

1

2

time (sec)

s
p
r
(Ã
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Figure 17. Example IV.4: 2DOF, semistable structure, sampled with Ts = 0.5 sec/sample. The control objective is to
keep z = q2(t) near zero in the presence of the disturbance forces w̄1(t) = 100 sin(2π 2

3
t) N and w̄2(t) = 1 + 10 sin(2π 2

5
t) N,

using the control force f2. Note that w̄2 has a DC component that excites the damped rigid-body mode. RCAC is
turned on at t = 10 sec with the tuning parameters nc = 10, η0 = 0, P0 = I, and Kzu = H1. The controller gain vector
Θ(k) converges, and q2 converges to zero in about 20 seconds (40 time steps). After convergence, the spectral radius

spr(Ã) of the closed-loop system is 0.88.

18 of 23

American Institute of Aeronautics and Astronautics



0 20 40 60 80
−20

0

20

time (sec)

q 2(t
) 

(m
)

0 20 40 60 80
−500

0

500

time (sec)

f 2(t
) 

(m
)

0 20 40 60 80
−5

0

5

time (sec)

Θ
(k

)

0 20 40 60 80
0

1

2

time (sec)

s
p
r
(Ã
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Figure 18. Example IV.4: 2DOF, semistable structure, sampled with Ts = 0.5 sec/sample. The control objective is the
same as in Figure 17, but now the measurements are corrupted by a gaussian white-noise with standard deviation 0.44
m. RCAC is turned on at t = 10 sec with the same tuning parameters as in Figure 17. The performance q2 is driven
near zero in about 20 seconds (40 time steps). The performance does not fully converge to zero due to the presence of

measurement noise. The spectral radius spr(Ã) of the closed-loop system is 0.88 at t = 80 sec.
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Figure 19. Example IV.5: 3DOF, asymptotically stable structure, sampled with Ts = 0.4 sec/sample. The control
objective is to keep q2 near zero in the presence of the disturbance forces w̄1(t) = 80 sin(2π0.625t) N, w̄2(t) = 15 sin(2π0.1786t)
and w̄3(t) = 70 sin(2π0.4167t), using the control force f2. Furthermore, the measurements are corrupted by a gaussian
white-noise with standard deviation 0.24 m. RCAC is turned on at t = 40 sec with the tuning parameters nc = 15, η0 = 0,
P0 = 103I, and Kzu = H1 = 0.0165. The controller gain vector Θ(k) converges, and q2 is driven near zero in about 20
seconds (50 time steps). The performance does not fully converge to zero due to the presence of measurement noise.

The spectral radius spr(Ã) of the closed-loop system is 0.94 at t = 200 sec.
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Figure 20. Example IV.6: 3DOF, asymptotically stable structure, sampled with Ts = 0.4 sec/sample. The control
objective is the same as in Figure 19, but now the mass, spring and damping matrices have uncertain components
having equal norms to the corresponding known components. Furthermore, because of the uncertainties, the mass
matrix M̃ is not diagonal. RCAC is turned on at t = 40 sec with the same tuning parameters as in Figure 19, thus,
Kzu = K1 = 0.0165 is not equal to the first Markov parameter H1 = 0.0133 of the actual uncertain system. The
performance q2 is driven near zero in about 30 seconds (75 time steps). The performance does not fully converge to

zero due to the presence of measurement noise. The spectral radius spr(Ã) of the closed-loop system is 0.95 at t = 200
sec.
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(Ã

)

−3 −2 −1 0 1
−1

0

1

Gzu(z)

real axis

im
ag

in
ar

y 
ax

is

−4 −2 0

−2

0

2 Tzu(s)

real axis

im
ag

in
ar

y 
ax

is

0 pi/4 pi/2 3pi/4 pi
0

90

180

θ (rad/sample)

∆(
θ)

 (
de

g)

0 pi/4 pi/2 3pi/4 pi
0

50

100

θ (rad/sample)

|G
c
|

Figure 21. Example IV.7: 3DOF, asymptotically stable structure, sampled with Ts = 1 sec/sample. The sampled-
data system has a NMP sampling zero. The plant parameters are assumed to be completely unknown, and Kzu is
constructed using a constrained least squares method that fits the frequency response estimates of Gzu with an FIR
plant. The frequency response estimates are obtained with frequency domain system identification using a white-noise
input sequence. The control objective is to keep q2 near zero in the presence of the disturbance forces w̄1(t) = 75 sin(2πt/7)
N, w̄2(t) = 30 sin(2πt/3) N and w̄3(t) = 70 sin(2πt/17) N, using the control force f3. Furthermore, the measurements are
corrupted by a gaussian white-noise with standard deviation 0.32 m. RCAC is turned on at t = 100 sec with the tuning
parameters nc = 15, η0 = 0.005, pc = 1 and P0 = I. The performance variable q2 converges near zero in about 100 seconds
(100 time steps), and the transient performance does not exceed the open-loop performance. The spectral radius spr(Ã)
of the closed-loop system is 0.96 at t = 1000 sec.
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Figure 22. Example IV.8: 2DOF, Lyapunov-stable structure, sampled with Ts = 0.5 sec/sample. The sampled-data
system has a sampling zero at −1. The control objective is to keep q1 and q2 near zero in the presence of the disturbance
forces w̄1 = 15 sin(2π0.2857t), w̄2 = 10 sin(2π0.087t) using the control forces f1 and f2. The measurements of q1 and q2 are
corrupted by mutually uncorrelated white noise sequences with standard deviations 0.46 m and 0.43 m respectively.
RCAC is turned on at t = 50 sec with nc = 15, η0 = 0, P0 = I, and Kzu = H1. The displacements q1 and q2 are driven near
zero in about 50 seconds (100 time steps), and the transient performance does not exceed the open-loop performance.

The spectral radius spr(Ã) of the closed-loop system is 0.98 at t = 250 sec.
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Figure 23. Example IV.9: 2DOF, Lyapunov-stable structure, sampled with Ts = 0.5 sec/sample. The sampled-data
system has a nonminimum-phase sampling zero near −4.03. The control objective is to keep q3 and q4 near zero in
the presence of the disturbance forces w̄1 = 20 sin(2π0.8t) N, w̄2 = 20 sin(2π0.069t) N, and w̄4 = 20 sin(2π0.1176t), using the
control forces f2 and f4. RCAC is turned on at t = 50 sec with nc = 20, η0 = 0.1, pc = 5, P0 = 0.1I, and Kzu = H1. The
displacements q3 and q4 are driven near zero in about 1000 seconds (2000 time steps. The spectral radius spr(Ã) of the
closed-loop system is 0.997 at t = 250 sec.
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