
Faux-Riccati Synthesis of Nonlinear Observer-Based Compensators for
Discrete-Time Nonlinear Systems

Anna Prach1, Ozan Tekinalp 1 and Dennis S. Bernstein2

Abstract— Pseudo-linear models of nonlinear systems use
either a state-dependent coefficient or the Jacobian of the
vector field to facilitate the use of Riccati techniques. In this
paper we use the state-dependent Riccati equation (SDRE)
and the forward propagating Riccati equation (FPRE) with
pseudo-linear models to construct nonlinear observer-based
compensators for output-feedback control of nonlinear discrete-
time systems. While attractive due to their simplicity and
potentially wide applicability, these techniques remain largely
heuristic. The goal of this paper is thus to present numerical
experiments to assess the performance of these “faux” Riccati
techniques on representative nonlinear systems. The goal is to
compare the performance of SDRE and FPRE when used with
either a state-dependent coefficient or the Jacobian of the vector
field. Stabilization and performance are considered, along with
integral control for step command following.

I. INTRODUCTION

Nonlinear control has seen extensive progress during the
last several decades through the development of a wide
range of techniques, such as HJB methods, backstepping,
nested saturations, and feedback linearization. While these
techniques are generally confined to full-state feedback,
under some conditions, such as passivity, output feedback
control of nonlinear systems is feasible. In many applica-
tions, however, control of nonlinear systems without benefit
of the full state remains a serious challenge. In particular,
difficulties arise in constructing nonlinear observers that can
be used in conjunction with a nonlinear separation principle.

In the present paper we consider nonlinear output-
feedback compensation of nonlinear systems by taking ad-
vantage of the confluence of several ideas and techniques, all
of which are, to varying degrees, heuristic. The first idea is to
focus on nonlinear systems with state-dependent coefficients
(SDC), which have the pseudo-linear form ẋ = A(x)x +
B(x)u. These systems have been widely studied using the
state-dependent Riccati equation formulation (SDRE), where
an algebraic Riccati equation (ARE) is solved at each time
instant [1], [2], [3]. Implementation of SDRE requires that
stabilizability and detectability conditions be satisfied at
each time instant, and global guarantees of stability and
performance are not available. The dual case of estimation
for nonlinear systems can also be addressed [4], [5]. If A
and B are also time varying, that is, A(x, t) and B(x, t),
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then ARE can also be solved at each time step, leading to a
frozen-time Riccati equation (FTRE) formulation [6].

An alternative approach to SDRE is to solve a forward
propagating Riccati equation (FPRE). This approach is an-
tithetical to the classical optimality conditions, where the
differential Riccati equation (DRE) is solved backward in
time [7]. However, as shown in [8], [9], solving DRE forward
in time is often stabilizing and close to optimal. In addition,
unlike SDRE, stabilizability and detectability conditions need
not be satisfied at each instant of time. FPRE is a natural
dual to the Kalman filter error-covariance update, which also
propagates forward in time.

While state-dependent coefficients provide a heuristic
technique that can be used to apply linear control techniques
to nonlinear control problems, there is another approach that
is more established, at least within the context of estimation.
Here we are referring to the extended Kalman filter (EKF),
which uses the Jacobian (linearization along the trajectory)
of the vector field for the error covariance update [10],
[11]. While the Jacobian is routinely used for the EKF, it
apparently has not been used for control, although there is
nothing that prevents its use within the context of either
SDRE or FPRE. By the same token, although SDC has been
used for SDRE-based estimation, SDC does not appear to
have been studied within the context of the Kalman filter with
differential error-covariance update. Of course, the Jacobian
cannot be used if the vector field is not differentiable, just as
the SDC cannot be used if the vector field cannot be factored.
Together, SDRE and FPRE with either SDC or Jacobian
pseudo-linear models constitute “faux Riccati” techniques.

Whether the SDC or Jacobian is used for control and
estimation within either the FPRE or SDRE, the resulting
regulator and estimator can be combined to form an observer-
based compensator. This “forced separation” is, of course, ad
hoc, and there is no guarantee that the resulting closed-loop
system is asymptotically stable, either locally or globally.
Note that, within the context of output feedback, the SDC
and Jacobian must be evaluated at the state estimate, which
introduces additional error.

Having laid out the various elements of faux Riccati
control techniques, the goal of this paper is to illustrate
several variations of this technique for output feedback
compensation and provide numerical experiments that are
intended to motivate further investigation of this approach.
To do this, we adopt a discrete-time setting in order to avoid
clouding the numerics with issues of integration accuracy.
This is for convenience only since all of the techniques can
be formulated for continuous-time systems. To do this, we
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discretize continuous-time examples using Euler integration
with a fixed step size. Each resulting discrete-time model is
adopted as the truth model for the purposes of the subsequent
numerical investigation. The accuracy of the discrete-time
model relative to the underlying continuous-time system does
not concern us here since that aspect is irrelevant to the
objective of the investigation.

The examples we consider are the Van der Pol oscillator
(VDP) and the rotational-translational actuator (RTAC) [12],
[13]. For each system, we first consider full-state feedback
in order to compare the performance of SDC and Jacobian
pseudo-linear models. We then consider output feedback,
and, finally, we use the same techniques to design controllers
with integrators in order to follow step commands and
reject constant disturbances. Note that effectiveness of an
integrator in following step commands and rejecting constant
disturbances is not assured due to the fact that the plants are
nonlinear.

One of the basic questions that these numerical experi-
ments are aimed at concerns the relative accuracy of SDRE
and FPRE. In addition, we are interested in comparing the
accuracy of the SDC and Jacobian for both SDRE and FPRE.
These findings are discussed in the Conclusions section.

II. PSEUDO-LINEAR MODELS

Consider the discrete-time nonlinear system

xk+1 = f(xk) +B(xk)uk, x(0) = x0, (1)
yk = C(xk)xk, (2)

where xk ∈ Rn is the state vector, uk ∈ Rm is the control
input, yk ∈ Rp is the output, and, for all xk ∈ Rn, f(xk) ∈
Rn, B(xk) ∈ Rn×m, and C(xk) ∈ Rp×n.

We consider two pseudo-linear versions of (1). The state-
dependent coefficient (SDC) form is given by an exact
factorization of f(xk) of the form

f(xk) = A(xk)xk. (3)

Note that the SDC matrix A(xk) satisfying (3) is not unique.
For example, if N(xk) ∈ Rn×n satisfies N(xk)xk = 0, then
A(xk) in (1) can replaced by A(xk) +N(xk).

Motivated by the extended Kalman filter, we consider the
approximation

f(xk) ≈ AJ(xk)xk, AJ(xk)
4
= f ′(xk). (4)

Note that the Jacobian AJ(xk) of f(xk) is not defined at an
equilibrium, but rather is updated along the state trajectory.

For full-state feedback with perfect measurements of the
state, both A(xk) and AJ(xk) can be used to update the
feedback gain. If the state is not measured, then A(xk) and
AJ(xk) must be evaluated at an estimate x̂k of xk.

We define the pseudo-linear dynamics

xk+1 = Akxk +Bkuk, (5)
yk = Ckxk, (6)

where Bk
4
= B(xk), Ck

4
= C(xk) and Ak represents either

the SDC A(xk) or the Jacobian AJ(xk).

III. FULL STATE FEEDBACK

Full-state feedback concerns the case where C(xk) = In.
In this case we consider the full-state-feedback control law

uk = Kkxk, (7)

where Kk is given by

Kk = −(BT
k PkBk +R2)−1BT

k PkAk (8)

and Pk ∈ Rn is the solution of either an algebraic Riccati
equation (ARE) in the case of SDRE or a difference Riccati
equation (DRE) in the case of FPRE. In particular, let
R1 ∈ Rn×n be positive semidefinite and let R2 ∈ Rm×m be
positive definite. For SDRE, the ARE has the form

Pk = AT
k PkAk −AT

k PkBk(BT
k PkBk +R2)−1BT

k PkAk

+R1, (9)

whereas, for FPRE, the DRE has the form

Pk+1 = AT
k PkAk −AT

k PkBk(BT
k PkBk +R2)−1BT

k PkAk

+R1. (10)

For both ARE and DRE, the matrix Ak in (8), (9), (10)
represents either the SDC or the Jacobian. Note that, since
xk is measured in the case of full-state feedback, both the
SDC and the Jacobian are evaluated at the true state xk. In
both cases, the closed-loop system is given by

xk+1 = (Ak +BkKk)xk. (11)

For SDRE, where Ak is not unique, solvability of ARE
requires that Ak be chosen such that (Ak, Bk) is stabilizable.
This restriction does not apply to FPRE, however.

IV. OUTPUT FEEDBACK

For output feedback, the measurement is given by (2). In
this case we consider the observer-based compensator

xc,k+1 = (Ak +BkKk − FkCk)xc,k + Fkyk, (12)
uk = Kkxc,k. (13)

The regulator gain Kk is the full-state-feedback gain (8),
and the observer gain Fk is given by

Fk = AkQkC
T
k (CT

k QkCk + V2)−1, (14)

where Qk in (14) is a solution to either the SDRE ARE

Qk = AkQkA
T
k −AkQkC

T
k (CkQkC

T
k + V2)−1CkQkA

T
k

+ V1, (15)

or the FPRE DRE

Qk+1 = AkQkA
T
k −AkQkC

T
k (CkQkC

T
k + V2)−1CkQkA

T
k

+ V1. (16)

The matrix Ak in the equations for the regulator and observer
optimal gains, (8) and (14), and also in the corresponding
equations for the covariances Pk and Qk, (9), (10) (15),
and (16), is given by either SDC form (3) as A(xc,k) or
as the Jacobian (4) as AJ(xc,k), which are evaluated at the
estimated state.
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Note that (15) and (16) are the duals of (9) and (10),
respectively. Furthermore, note that (16) is the Kalman
filter covariance update Riccati equation applied to a time-
varying trajectory.The structure of the observer-based com-
pensator (12), (13) represents a regulator/observer structure.
Of course, the use of this “forced separation” structure is
heuristic in the sense that stability is not guaranteed.

The closed-loop system with the observer-based dynamic
compensator (12) is given by

xk+1 = f(xk) +BkKkxc,k,

xc,k+1 = (Ak +BkKk − FkCk)xc,k + Fkyk. (17)

As in the case of full-state feedback, we consider output
feedback using SDRE and FPRE.

V. DISCRETE-TIME MODELS

The examples we consider are based on continuous-time
systems. We apply Euler integration to obtain discrete-time
models, which are used as the basis of all numerical exam-
ples. These discretized models are viewed as “truth” models,
and the performance of the control laws is considered only
within the context of the discretized models.

Consider the continuous-time system

ẋ(t) = fcont(x(t)) +Bcont(x(t))u(t), (18)
y(t) = Ccont(x(t))x(t). (19)

Using Euler integration, we obtain a discrete-time version of
the continuous-time system (18), (19) given by

xk+1 = xk + Ts[fcont(xk) +Bcont(xk)uk], (20)
yk = Ccont(xk)xk, (21)

where Ts is the sampling time, which is chosen to be 0.01
sec for all subsequent examples, and xk denotes x(kTs). In
terms of the notation of (1), (2), it follows that

f(xk) = xk + Tsfcont(x(kTs)), (22)
B(xk) = Bcont(x(kTs)), (23)
C(xk) = C(x(kTs)). (24)

VI. NUMERICAL EXAMPLE: VAN DER POL OSCILLATOR

Consider the Van der Pol oscillator[
ẋ1
ẋ2

]
=

[
x2

−x1 + µ(1− x21)x2)

]
+

[
0
1

]
u, (25)

with the SDC parametrization

A(x) =

[
0 1
−1 µ(1− x21)

]
, (26)

and the Jacobian

AJ(x) =

[
0 1

−(1 + 2µx1x2) µ(1− x21)

]
. (27)

The discrete-time model of VDP is obtained according to
(20), (21).

Let µ = 1.5, R1 = V1 = [10 0]T[10 0], and R2 =
V2 = 0.01. For full-state and output-feedback control we test
two sets of initial conditions for the state vector. The initial

condition [1 1]T is inside the open-loop limit cycle, whereas
the initial condition [3 2]T is outside the limit cycle. The
numerical simulation results for the SDRE and FPRE full-
state feedback controllers are shown in Figs. 1 and 2.
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Fig. 1. State trajectories and control input for the full-state SDRE and
FPRE feedback compensators for VDP with the initial condition [1 1]T.
The phase portrait of the uncontrolled system is plotted along with the
phase portraits of the closed-loop system.
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Fig. 2. State trajectories and control input for the full-state SDRE and
FPRE feedback compensators for VDP with the initial condition [3 2]T. (d)
shows that the controllers with the Jacobian AJ(x) require larger control
input than the controllers with the SDC A(x).

For output feedback, we assume that y = x1, and thus C =
[1 0]. For the observer-based controller, A and AJ must be
evaluated at the estimate xc of x. The weights R1, R2, V1, V2
are chosen as in the full-state feedback case. We use zero
initial conditions for the state estimates xc. Responses for
the output-feedback case are shown in Figs. 3 and 4.

Additionally, within the framework of output feedback, we
want the output to follow a step command. This is achieved
by aserting an integrator into the loop and thus, we obtain
a tracking output-feedback controller. The responses of the
tracking output-feedback controller for VDP are shown in
Figs. 5 and 6.
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(b) State trajectory x2

Fig. 3. State trajectories for the output-feedback SDRE and FPRE
compensators for VDP with the initial condition [1 1]T.
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Fig. 4. State trajectories for the output feedback SDRE and FPRE
compensators for VDP with the initial condition [3 2]T.
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Fig. 5. State trajectories and control input for the tracking output feedback
SDRE and FPRE compensators for VDP with the initial condition [1 1]T.
This figure shows that SDRE with Jacobian yields poor performance,
whereas, SDRE with SDC and FPRE controllers are able to follow the
given command.

VII. NUMERICAL EXAMPLE: RTAC

We consider the translational oscillator with rotational
proof-mass actuator [12], [13]. The equations of motion of
RTAC are given by

(M +m)q̈ + kq = −me(θ̈ cos θ − θ̇2 sin θ) + F,

(I +me2)θ̈ = −meq̈ cos θ +N, (28)

where q and q̇ are the translational position and velocity of
the cart, θ and θ̇ are the angular position and velocity of
the rotational proof-mass, respectively. M is the mass of the
cart, k is the spring stiffness, m is the mass of the proof-mass
actuator, I is the moment of inertia, e is the distance from
the point about which the proof mass rotates to the center
of mass, N is the control torque applied to the proof mass,
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Fig. 6. State trajectories and control input for the tracking output feedback
SDRE and FPRE compensators for the VDP with the initial condition
[3 2]T. This figure shows that all tracking controllers ensure that the output
successfully attains the given command.

and F is the disturbance force on the cart. The normalized
equations of motion of RTAC are

ξ̈ + ξ = ε(θ̇2 sin θ − θ̈ cos θ) + w,

θ̈ = −εξ̈ cos θ + u, (29)

where ξ is the normalized cart position, w is the non-
dimensionalized disturbance, u is the non-dimensionalized
control torque, and ε is the coupling parameter.

For the state vector x = [x1 x2 x3 x4]T = [ξ ξ̇ θ θ̇]T, the
non-dimensional equations of motion in first-order form are

ẋ = f(x) + g(x)u+ d(x)w (30)

where

f(x) =


x2

(−x1 + εx24 sinx3)/∆
x4

ε cosx3(x1 − εx24 sinx3)/∆

 ,

g(x) =


0

−ε cosx3/∆
0

1/∆

 , d(x) =


0

1/∆
0

−ε cosx3/∆

 ,
where ∆ , 1− ε2 cos2 x3. SDC matrices for RTAC are

A(x) =


0 1 0 0

−1/∆ 0 0 εx4 sinx3/∆
0 0 0 1

ε cosx3/∆ 0 0 −ε2x4 cosx3 sinx3/∆

 ,
and B(x) = g(x). The expression for AJ(x) is lengthy,
and thus is not shown. A discrete-time model is obtained
according to (20), (21). We adopt the RTAC parameters
given in [12]. For the numerical simulations we consider
the initial conditions [0.5 0.1 0.5 0.1]T and [1 0.5 0.3 0.3]T.
The weights R1 and R2 are selected for SDRE and FPRE
separately for each controller and may not be equal. Figures
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7 and 8 show the simulation results for the full-state
feedback controllers.
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Fig. 7. State trajectories and control input for the full-state SDRE and
FPRE feedback compensators for the RTAC with the initial condition
[0.5 0.1 0.5 0.1]T. This figure shows that all four control methods provide
stabilizing performance. FPRE with the Jacobian yields poor performance
and requires larger control input than the other controllers.

For output feedback we assume that the measurement
of the angular position θ of the rotational proof-mass be
available, thus C = [0 0 1 0]. Let V2 = 0.01 and
V1 = αI +D(xk)D(xk)T, where D(xk) = d(x(kTs)). The
state trajectories and control inputs for the output-feedback
are given in Figs. 9 and 10. In the tracking output-feedback
compensator, the command is given to the angular position
of the rotational proof-mass, θ. The state trajectories and the
control input of the tracking output-feedback controller for
RTAC are given in Fig. 11.

VIII. CONCLUSIONS

We compared four heuristic techniques for output-
feedback compensation of nonlinear systems. These tech-
niques use either a forward-propagating Riccati equation
or an algebraic Riccati equation in conjunction with ei-
ther a state-dependent coefficient or the Jacobian of the
vector field. The nonlinear output-feedback compensator is
an observer-based compensator with a separation structure.
These methods are not equally applicable for various reasons.
For example, for systems with a nondifferentiable vector
field, a state-dependent coefficient may exist but the Jacobian
may not. Furthermore, while the algebraic Riccati equation
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Fig. 8. State trajectories and control input for the full-state SDRE and
FPRE feedback compensators for the RTAC with the initial condition
[1 0.5 0.3 0.3]T. This figure shows that all compensators are stabilizing
when utilizing both SDC and Jacobian as pseudo-linear models.

requires stabilizability at each step, the forward-propagating
Riccati equation does not. In this paper we considered
nonlinear examples of orders two and four. All four methods
successfully controlled both plants with differences in speed
of response and control effort.
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Fig. 10. State trajectories and control input for the output feedback
SDRE and FPRE compensators for the RTAC with the initial condition
[1 0.5 0.3 0.3]T. This figure shows that SDRE provides slightly faster
stabilization with less control effort than FPRE.
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Fig. 11. State trajectories of the tracking output feedback compensator for
the RTAC for the initial condition [0.5 0.1 0.5 0.1]T. For this case, SDRE
and FPRE with both SDC and Jacobian yield fast stabilization.
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