
FIR-Based Phase Matching for Robust Retrospective-Cost Adaptive

Control

E. Dogan Sumer, Matt H. Holzel, Anthony M. D’Amato, and Dennis S. Bernstein

Abstract— In this paper we develop frequency-domain meth-
ods for approximating IIR plants with FIR transfer functions.
The underlying goal is to increase the performance and robust-
ness of Retrospective-Cost Adaptive Control (RCAC), which is
applicable to MIMO possibly nonminimum-phase (NMP) plants
without the need to know the locations of the NMP zeros. The
only required modeling information is an FIR approximation of
the plant, which may be based on a limited number of Markov
parameters, or possibly noisy frequency response data. In this
paper we investigate the resulting phase mismatch between
the true plant and the FIR approximation obtained through
linear and nonlinear approximation methods. We consider
degradation in the phase mismatch due to uncertainty in the
frequency response data.

I. INTRODUCTION

Although there is no precise definition of adaptive control,

it is generally understood to be a form of highly robust

nonlinear control that does not a priori sacrifice performance

for uncertainty. Adaptive controllers have been developed in

continuous time and discrete time. Although most plants are

naturally modeled in continuous time, the modeling data used

by an adaptive controller is typically based on sampled data.

In addition, most control applications are confined to a fixed,

bounded sample rate, while controllers developed in discrete

time can be directly transformed into embedded code. For

these reasons, we consider direct digital adaptive control for

sampled-data systems.

The direct digital adaptive control approach that we con-

sider is retrospective-cost adaptive control (RCAC). This

approach was developed in [1–5], where it was shown that

RCAC requires a limited number of Markov parameters

and knowledge of the nonminimum-phase (NMP) zeros, if

any. This information is used to construct a finite-impulse-

response (FIR) approximation of the plant. With this limited

modeling information, RCAC is applicable to stabilization,

command following, and disturbance rejection for SISO and

MIMO plants with arbitrary poles and zeros. In addition,

RCAC requires limited plant modeling information and does

not require knowledge of the poles, positive real or almost

positive real assumptions, constraints on the allowable rela-

tive degree, persistent excitation, knowledge of the spectrum

of the exogenous signal, or matching conditions on either

the plant uncertainty or the exogenous disturbances.

The present paper focuses on the extension of RCAC given

in [6–8], which removes the need to know the locations of

the plant’s NMP zeros. As shown in [6], the price paid for

this relaxed modeling requirement is the need to ensure that
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the Markov parameters used in RCAC provide a suitable

approximation of the plant’s frequency response. This in-

sight suggests that an improved FIR approximation may be

possible by directly approximating the frequency response

rather than using Markov parameters. This possibility was

explored in [8], where it was shown that, for a fixed FIR

order, the Markov parameters may not provide the optimal

FIR approximation of the plant’s frequency response.

FIR approximation of IIR plants is studied in [9, 10],

where an accurate state space realization is assumed to

be available. In the present paper we focus on a related

problem for SISO IIR plants where the available modeling

information is possibly noisy frequency response data.

The goal of the present paper is to extend the results of

[8] by constructing FIR approximations of the plant’s fre-

quency response subject to the given uncertainty. With these

approximations, we can assess the transient and asymptotic

performance of RCAC as a function of the accuracy of the

approximation. This assessment allows us to relate the accu-

racy of the FIR approximation to the performance of RCAC,

which in turn determines the modeling and identification

accuracy needed to implement RCAC.

The contents of the paper are as follows. In Section 2, we

present the adaptive control problem, and then summarize the

RCAC algorithm. In Section 3, we present motivation for FIR

approximation of IIR plants by illustrating the role of phase

mismatch in performance properties of RCAC. In Sections 4

and 5, we develop linear and nonlinear parameterizations in

order to fit the plant with an FIR model. Finally, in Section 6,

we present numerical examples illustrating the use of the fit

methods developed in Sections 4 and 5. The effect of noise

in fit accuracy is also discussed.

II. RCAC ADAPTIVE CONTROL PROBLEM

A. Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k) +D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where k ≥ 0, x(k) ∈ R
n, z(k) ∈ R

lz is the measured

performance, y(k) ∈ R
ly contains additional measurements

that are available for control, u(k) ∈ R
lu is the input signal,

w(k) ∈ R
lw is the exogenous signal.
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The plant (1), (3) is represented by the transfer matrices

Gzu(z)
△
= E1(zI −A)−1B, (4)

Gzw(z)
△
= E1(zI −A)−1D1 + E0. (5)

Furthermore, for a positive integer i,

Hi
△
= E1A

i−1B

is the ith Markov parameter of Gzu.

The goal is to develop an adaptive output feedback con-

troller that minimizes the performance variable z in the

presence of the exogenous signal w with limited modeling

information about (1)–(3). The components of the signal

w can represent either command signals to be followed,

external disturbances to be rejected, or both, depending on

the configurations of D1 and E0.

B. Control Law

We use the strictly proper time-series control law

u(k) = θT(k)φ(k − 1), (6)

where

θ(k) = [NT

1
(k) ··· NT

nc
(k) MT

1
(k) ··· MT

nc
(k) ]T , (7)

φ(k − 1) = [ yT(k−1) ··· yT(k−nc) uT(k−1) ··· uT(k−nc) ]
T
,
(8)

and, for all 1 ≤ i ≤ nc, Ni(k) ∈ R
ly×lu , Mi(k) ∈ R

lu×lu .

The control law (6) can be reformulated as

u(k) = Φ(k − 1)Θ(k), (9)

where

Φ(k − 1)
△
= Ilu ⊗ φT(k − 1) ∈ R

lu×lunc(lu+ly), (10)

Θ(k)
△
= vec(θ(k)) ∈ R

lunc(lu+ly), (11)

“⊗” denotes the Kronecker product, and “vec” is the column-

stacking operator.

C. Retrospective Performance

For a positive integer nf , we define

Gf(q)
△
= D−1

f (q)Nf(q), (12)

where

Nf(q)
△
= K1q

nf−1 +K2q
nf−2 + · · ·+Knf

,

Df(q)
△
= Ilzq

nf +A1q
nf−1 +A2q

nf−2 + · · ·+Anf
, (13)

Ki ∈ R
lz×lu for 1 ≤ i ≤ r, Aj ∈ R

lz×lz for 1 ≤ j ≤ r,

nf ≥ 1 is the order of Gf , and each polynomial entry of

Df(q) is asymptotically stable. Next, for k ≥ 1, we define

the retrospective performance variable

ẑ(Θ̂(k), k)
△
= z(k) + Φf(k − 1)Θ̂(k)− uf(k), (14)

with

Φf(k − 1)
△
= Gf(q)Φ(k − 1) ∈ R

lz×lunc(lu+ly), (15)

uf(k)
△
= Gf(q)u(k) ∈ R

lz , (16)

where Θ̂(k) is determined by optimization below.

In this paper, Gf is chosen to be a finite-impulse-response

(FIR) filter, that is, Aj = 0, for 1 ≤ j ≤ nf , as discussed in

Section II-E. The role of Gf is discussed in Section III.

D. Cumulative Cost and RCAC Update Law

For k > 0, we define the cumulative cost function

J(Θ̂(k), k)
△
=

k
∑

i=1

λk−iẑT(Θ̂(k), i)ẑ(Θ̂(k), i)

+

k
∑

i=1

λk−iη(i)Θ̂T(k)ΦT
f (i − 1)Φf(i− 1)Θ̂(k)

+ λk(Θ̂(k)−Θ0)
TP−1

0 (Θ̂(k)−Θ0), (17)

where λ ∈ (0, 1], P0 ∈ R
lunc(lu+ly)×lunc(lu+ly) is positive

definite, η(k)
△
= η0z

T(k)z(k) ≥ 0, and Θ0 ∈ R
lunc(lu+ly).

The following result follows from the RLS theory [11].

Proposition 2.1: Let P (0) = P0 and Θ(0) = Θ0. Then,

for all k ≥ 1, the cumulative cost function (17) has a unique

global minimizer Θ(k). Furthermore, Θ(k) is given by

Θ(k) = [I −K(k)Φf(k − 1)]Θ(k − 1)

− P (k)ΦT
f (k − 1) [z(k)− uf(k)] , (18)

where P (k) satisfies

P (k) =
1

λ
[P (k − 1)−K(k)Φf(k − 1)P (k − 1)] , (19)

and

K(k)
△
=P (k − 1)ΦT

f (k − 1)

·

[

λ

1 + η(k)
Ilz +Φf(k − 1)P (k − 1)ΦT

f (k − 1)

]−1

.

(20)

E. Phase-Matching-Based Construction of Gf

For Ω ∈ [0, π] rad/sample, the phase mismatch ∆(Ω)
between Gf and Gzu is defined by

∆(Ω)
△
= cos−1

Re
[

Gzu(e
Ω)Gf(eΩ)

]

|Gzu(eΩ)| |Gf(eΩ)|
∈ [0, 180]. (21)

Note that ∆(Ω) represents the angle between Gzu(e
Ω) and

Gf(e
Ω) in the complex plane. For the phase-matching-based

construction, Gf is chosen to satisfy

∆(Ω) ≤ 90 deg, for all Ω ∈ [0, π] rad/sample. (22)

A weaker condition is sufficient when Gzu is asymptotically

stable, and the exogenous signal w(k) is harmonic. In this

case, the phase-matching-based construction requires

∆(Ω) ≤ 90 deg,Ω ∈ spec(w), (23)
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where “spec(w)” is the frequency spectrum of w. Opti-

mization methods for minimizing the phase mismatch are

presented in Sections IV, V for SISO plants.

III. MOTIVATING EXAMPLE

In this section, we present an example that illustrates the

role of phase matching ∆(θ) on the performance of RCAC.

In particular, numerical examples in [8] suggest that ∆(θ) ≤
90 deg in the exogenous signal frequencies is a sufficient

condition for convergence of z to zero.

Example 3.1: Consider the NMP plant Gzu with d = 1,

H1 = 1, poles 0.9, 0.5 ± 0.5, and NMP zeros 1.3, 1.4.

We consider the sinusoidal command w(k) = 2 sin θ1k,

where θ1 = 0.285 rad/sample. We take Gf(q) = H1q
−1 +

H2q
−2 + H3q

−3, and thus the phase mismatch at the

command frequency is ∆(θ1) = 62 deg. We let nc = 5,

P0 = 0.1I , and η0 = 1. The performance z(k) converges to

zero as shown in Figure 1(a).

Keeping Gf the same, we now consider the step command

w(k) = 2step(k). The phase mismatch at DC is ∆(0) = 180
deg. We let nc = 5, P0 = 0.1I , and η0 = 1. The performance

z(k) is driven in the opposite direction because of the 180-

deg phase mismatch, and thus does not converge to zero, as

shown in Figure 1(b).

We now choose Gf(q) = 0.34q−1 − 0.11q−2 +0.85q−3,

and consider the step command w(k) = 2step(k). Note that

Gf is not constructed using the Markov parameters. The

phase mismatch at DC is now ∆(0) = 0 deg. We let nc = 5,

P0 = 0.1I , and η0 = 1. The performance now converges to

zero as shown in Figure 1(c).

Next, we keep Gf the same, but consider the sinusoidal

command w(k) = 2 sin θ1k, where θ1 = 0.285 rad/sample.

We now have ∆(θ1) = 144 deg. We let nc = 5, P0 = 0.1I ,

and η0 = 1. The performance z(k) does not converge to zero

as shown in Figure 1(d). �

IV. LINEAR FIR FITTING METHOD

In this section, we formulate a constrained linear least

squares method that fits the frequency response of Gzu with

an FIR transfer function Gf . We assume that an estimate of

the frequency response of the plant Gzu(e
θ) is available at a

finite number of frequencies. This knowledge can be obtained

through either modeling or frequency-domain identification.

We constrain the least squares solution to bound the phase

mismatch ∆(θ) over a chosen frequency interval [θl, θh],
where 0 ≤ θl < θh ≤ π. The phase mismatch bound

does not need to be uniform over [θl, θh]. Furthermore, the

largest bound that we allow is 90 deg. This is consistent with

the numerical results of [8], which suggests that a sufficient

condition for RCAC to drive the performance to zero is to

have ∆(θ) ≤ 90 deg for all θ ∈ [0, π]. Finally, we show

that the numerator coefficients of Gf obtained by using the

unconstrained least squares solution are Markov parameters

of Gzu. However, this is not the case when phase constraints

are imposed.
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Fig. 1. Example 3.1. (a) shows the closed-loop response to the sinusoidal
command w(k) = 2 sin 0.285k with ∆(0.285) = 62 deg, (b) shows the
closed-loop response to the step command w(k) = 2 with ∆(0) = 180
deg, (c) shows the closed-loop response to the step command w(k) = 2(k)
with ∆(0) = 0 deg, and finally, (d) shows the closed-loop response to
the step command w(k) = 2 sin(0.285k) with ∆(0) = 144 deg. The
performance converges to zero for the cases where ∆(θ) < 90 deg.

A. Linear Least Squares Parametric Model

For 1 ≤ i ≤ N , consider the frequency response estimates

Ĝzu(e
θi) = αi + βi, (24)

at the frequencies θi, where αi ∈ R, βi ∈ R. We want to fit

the above estimates with the FIR transfer function

Gf(z)
△
=

κ1z
s−1 + · · ·+ κs−1z + κs

zs
, (25)

where s is the order of the FIR model, and κi ∈ R are the

corresponding numerator coefficients that will be determined.

We now expand (25) into the Laurent series

Gf(z) = κ1z
−1 + · · ·+ κsz

s, (26)

which is finite since Gf is an FIR model. We now evaluate

(26) at eθi for i = 1, . . . , N , and separate the unknown

parameters κi to obtain the linear parametric model

Gf(z)|eθi = κ1e
−θi + · · ·+ κse

−sθi

=
[

κ1 · · · κs

]

(

[

cos θi · · · cos(sθi)
]T

+ 
[

− sin θi · · · − sin(sθi)
]T

)

. (27)

Then, the linear least squares fit of (24) with the FIR

parametric model (27) is obtained by minimizing

min
X

‖Y − ΦTX‖, (28)
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where

Y =
[

α1 · · · αN β1 · · · βN

]T
, (29)

Φ =

[

cos θ1 ··· cos θN − sin θ1 ··· − sin θN
..
.

..

.
..
.

..

.
cos(sθ1) ··· cos(sθN ) − sin(sθ1) ··· − sin(sθN )

]

, (30)

X =
[

κ1 · · · κs

]T
. (31)

B. Phase Mismatch Constraints

To impose phase mismatch bounds on the solution X
of (28), we consider the constrained linear least squares

problem

min
X

‖Y − ΦTX‖, subject to CX ≤ 0, (32)

where C is constructed based on the phase information of

each Ĝzu(e
θi) and the desired phase mismatch bounds at

each frequency.

For example, consider the frequency-response estimate

Ĝzu(e
θm) = αm + βm, and the phase mismatch bound

∆̄m ∈ (0, 90) deg imposed on ∆(θ) at the frequency θm.

Then, the linear phase mismatch bounds Im(x) = umRe(x)
and Im(x) = lmRe(x) are determined by ∆̄m as shown in

Figure 2. The slopes um and lm are given by

um
△
= tan(∠(αm + βm) + ∆̄m), (33)

lm
△
= tan(∠(αm + βm)− ∆̄m). (34)

Since um ≥ βm

αm
≥ lm, and αm > 0, we have the inequality

constraints βm−umαm ≤ 0 and lmαm−βm ≤ 0. Then, the

linear constraint that needs to be imposed on X to bound

∆(θm) by ∆̄m is given by

CmX ≤ 0, Cm =

[

lmΦT(m, :)− ΦT(N +m, :)
ΦT(N +m, :)− umΦT(m, :)

]

,

and ΦT(m, :) represents the mth row of ΦT.

Fig. 2. Ĝzu(eθm ), the linear upper bound um and the linear lower bound
lm. Note that um and lm are the slopes of the dashed black lines, and are
given by (33), (34) respectively.

The above procedure is carried out for each frequency

θ1, . . . , θN to construct the constraint matrix

C =
[

C1 · · · CN
]T

∈ R
2N×s.

Note that there are 4 possible constraint inequality conditions

corresponding to 12 possible configurations of um and lm,

all of which are illustrated in Figure 3.
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Fig. 3. Possible bound configurations and associated linear constraints.

C. Special Case: Unconstrained Least Squares Solution

We now illustrate the unconstrained least squares

solution of (28) with exact frequency response

estimates (24) of Gzu. Consider Gzu(z) =

12 (z−1.4)(z−0.6)(z−0.4)
(z−0.85)(z−0.5)(z−0.3+0.8)(z−0.3−0.8) . We apply

unconstrained least squares fitting using exact frequency

response estimates Ĝzu(e
θi) = Gzu(e

θi), where θi
are equally placed between 0 and π. We let the order

of Gf be s = 10. Figure 4 shows that the estimated

coefficients κ1, . . . , κ10 converge to the Markov parameters

H1, . . . , H10 as the number of data points used in the

estimation is increased.
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0
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(H

i
−

κ
i
)2

Fig. 4. Unconstrained linear least squares solution converges to Markov
parameters of Gzu.

V. NONLINEAR FIR FITTING METHOD

We now develop a nonlinear parameterization to fit the

phase plot of Gzu with the phase of an FIR transfer function.

This nonlinear formulation requires only an estimate of

the phase plot of Gzu in [θl, θh], and thus it requires less

modeling information than the linear method presented in

the previous section.

For 1 ≤ i ≤ N , let

φ(θi)
△
= ∠Ĝzu(e

θi) ∈ [0, 360), (35)

be the estimates of the phase of Gzu at frequencies 0 ≤ θ1 ≤
. . . ≤ θN ≤ π. We want to fit the above phase estimates

using the phase plot of the FIR model (25). Let g(θi) denote

the phase ∠GFIR(e
θ) of the FIR model evaluated at the
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frequency θi. Then, it follows from (27) that

g(θi) = ∠
(

κ1e
−θi + · · ·+ κse

sθi
)

= ∠σi + ωi

= atan2(ωi, σi)

where

σi =
s

∑

l=1

κl cos(lθi), ωi = −
s

∑

l=1

κl sin(lθi),

and atan2 is the four-quadrant inverse of the tangent function

mapped to [0, 360). Then, the phase mismatch ∆(θi) is

∆(θi) = min (φ(θi)− g(θi) mod 360,

360− (φ(θi)− g(θi) mod 360)) . (36)

Now, solving the minimization problem

min
κi

N
∑

l=1

‖∆(θl)‖ (37)

yields the numerator coefficients κi of the FIR approxima-

tion GFIR that provides the best phase matching with the

estimated phase plot (35) of Gzu.

VI. FIR FITTING EXAMPLES

We now present numerical examples illustrating the use

of linear and nonlinear fitting methods for minimizing ∆(θ).
We use numerical optimization tools for both linear and

nonlinear fitting; we use the Matlab functions lsqlin for

minimizing (32), and lsqnonlin for minimizing (37).

The constrained minimization problem (32) may not have

a solution if the chosen order of the FIR fit is too small

to satisfy the constraints. If that is the case, we increase

the order of the FIR fit until the minimization problem is

feasible.

Since we are using only the phase information (35) in the

nonlinear method, scaling each coefficient κi by a positive

constant γ results in the same cost value (37). In order to

avoid numerical problems that can arise, we first fix κ1 = 1,

and solve for κi, 2 ≤ i ≤ s. Next, we fix κ1 = −1, and

repeat the process. Finally, we compare the residuals and

take the solution with the smaller residual norm.

Example 6.1: Consider the plant Gzu(z) with H1 = 1,

poles 0.1, 0.5± 0.3, 0.85, 0, minimum-phase zero 0.45, and

NMP zeros 1.5, 1.2±0.5. We first assume we have the exact

knowledge of the frequency response Gzu(e
θi) at 1001

equally spaced frequencies in [0, π]. With this knowledge, we

apply linear fitting to uniformly bound the phase mismatch

∆(θ) by ∆̄1 = 80 deg, ∆̄2 = 40 deg, and ∆̄3 = 10
deg. Figure 5 shows the phase mismatch functions of the

resulting FIR approximations. Note that the order of the FIR

fit increases as the phase mismatch bound becomes tighter.

We now assume that we do not have complete frequency

response information of Gzu, but we do have exact knowl-

edge of the phase plot at the above specified frequencies.

With this knowledge, we apply nonlinear fitting to minimize

∆(θ) over [0, π]. Figure 6 shows the phase mismatch func-

tions of the resulting FIR approximations with orders s = 4,

5, and 7.

We now assume we have no frequency domain knowledge

of Gzu, but we have exact knowledge of Markov parameters.

With this knowledge, we construct 4th, 5th and 7th-order FIR

plants, the phase mismatch functions of which are illustrated

in Figure 7. Note that ∆(0) = 180 deg in each case. �
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Example 6.2: Consider the same plant Gzu as in Ex-

ample 6.1, and assume we have the exact knowledge of

the frequency response Gzu(e
θi) at 1001 equally spaced

frequencies in [0, π]. Suppose we are interested in track-

ing sinusoids at a particular frequency range with RCAC.

Therefore, the objective is to impose nonuniform bounds that

are tighter at the frequencies of interest. In particular, we

consider three cases: smaller mismatch at low frequencies,

smaller mismatch at high frequencies, and smaller mismatch

at intermediate frequencies. Furthermore, to have robustness

at all frequencies, we want ∆(θ) < 90 deg for all θ ∈ [0, π].
We apply linear fitting with nonuniform bounds to obtain the

phase mismatch functions illustrated in Figure 8. The order

of the FIR fit is s = 5 in each case, which is smaller than

the order s = 7 we obtain when we impose a uniform 10
deg bound at every frequency. �
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Fig. 8. Ex2: Lin Fit.
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Example 6.3: Consider the same plant Gzu as above.

We now assume that the plant model is unknown. With

the plant realized in controllable canonical form, we

excite the unknown plant with a white noise sequence

and collect output measurements for 2500 time steps

with the unknown nonzero initial condition x(0) =
[

0.8644 0.0942 −0.8519 0.8735 −0.4380
]T

. We

then take the ratio of the fast fourier transforms of the output

and input signals to obtain frequency response estimates

Ĝzu(e
θ) over θ ∈ [0, π]. The bode plot of Gzu and the

estimated frequency response are shown in Figure 9.
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Fig. 9. Ex2: Lin Fit.

Using the noisy frequency response estimates, we first

apply the linear fitting method with a uniform phase mis-

match bound ∆̄ = 80 deg. Figure 10 shows the phase

plot of the resulting FIR transfer function Gf and the phase

mismatch function ∆(θ) between the actual plant Gzu and

Gf . Although the phase of Gf is within a ±80 deg envelope

of the estimated phase plot ∠Ĝzu, the phase mismatch with

Gzu gets above 80 deg near θ = 1 rad/sample. Furthermore,

the order of GFIR is now s = 11, which is larger than the

order s = 4 we obtain if the frequency response estimates

are exact.
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Fig. 10. Ex2: Lin Fit.

Using the estimated phase plot, we now apply the nonlin-

ear fitting method to minimize ∆̄. Figure 11 shows the phase

plot of the resulting FIR transfer function GFIR and the phase

mismatch function ∆(θ) between the actual plant Gzu and

GFIR. Since the nonlinear method directly minimizes the

phase difference between the estimated phase plot and the

GFIR model in a least squares sense, the effect of noise is

less significant than the linear method, and GFIR matches

the actual plant with less than 30-deg phase mismatch for

all θ ∈ [0, π]. Furthermore, the order of GFIR s = 8 is lower

than the order s = 11 we obtain with the linear method. �.

VII. CONCLUSIONS

We provided frequency-domain fitting methods for ap-

proximating IIR plants with FIR transfer functions. In par-

ticular, we developed a linear parameterization that fits the

frequency response estimates of the IIR plant with an FIR

transfer function, as well as a nonlinear parameterization
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Fig. 11. Ex: NonLin Fit.

that fits the phase plot of the IIR plant with the phase of

an FIR transfer function. We showed that in the absence of

phase constraints, the solution of the linear fitting method

converges to Markov parameters of the plant. We provided a

motivating example illustrating the role of phase matching in

on the performance of RCAC. We compared the linear and

nonlinear methods in terms of phase matching performance,

and investigated the degradation in phase matching when the

frequency response estimates are noisy.
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