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1 Introduction

Modern optimal control techniques such as H2 and
H1 control rely on the solution of algebraic Riccati
equations for controller synthesis. Reliable numerical
techniques for numerical computation of the solution of
these equations have been proposed using eigenvector
or Schur decompositions of Hamiltonian matrices for
continuous-time algebraic Riccati equations (CARE),
or symplectic matrices for discrete-time (Z-transform)
algebraic Riccati equations (DARE) [12, 6]. An im-
proved solution method for the DARE was proposed in
[9] in terms of a generalized eigenvalue problem which is
equivalent to the symplectic decomposition and which
does not require that the state dynamics matrix be in-
vertible. This approach provides a computationally ef-
�cient algorithm for singular and ill-conditioned prob-
lems.

The generalized eigenvalue problem technique was fur-
ther improved in [2, 1] where extended Hamiltonian and
symplectic pencils were proposed for the CARE and
DARE, respectively. This result extends the advantages
of the generalized eigenvalue technique one step further
in the sense that it eliminates the need to invert any of

the matrices involved in the equation, making it ideal
for numerically ill-conditioned systems.

The present paper is concerned with delta operator (or
di�erence operator) descriptions of discrete-time sys-
tems. The di�erence operator formulation has been
shown [8, 3] to provide a framework that is less nu-
merically sensitive than the equivalent shift operator
framework in analyzing discrete-time problems with
high sampling frequencies relative to the bandwidth of
the underlying system. In particular, computed solu-
tions of di�erence operator Riccati equations have been
shown to be more accurate than the corresponding com-
puted solution of the shift operator Riccati equation [8,
p. 511{515].

The purpose of the present work is to derive an extended
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matrix pencil generalized eigenvalue problem for the dif-
ference operator Riccati equation. This eigenvalue prob-
lem thus exploits the superior numerical properties of
both the di�erence operator formulation and the gener-
alized eigenvalue technique.

The paper is organized as follows. Section 2 introduces
the concept of �-Hamiltonian matrices for di�erential,
di�erence, and shift operator systems and then reviews
the properties of these matrices. Section 3 reviews dif-
ferential, di�erence, and shift operator versions of the
algebraic Riccati equation and provides a �-Hamiltonian
matrix for each version. Section 4 discusses the general-
ized eigenvalue problems associated with the standard
eigenvalue problems of �-Hamiltonian matrices. Sec-
tion 5 then reviews the extended matrix pencil general-
ized eigenvalue problem and presents extended matrix
pencils associated with the algebraic Riccati equations
for all three operators.

2 �-Hamiltonian Matrices

We require the following notation and de�nitions. We
denote the set of eigenvalues of a square matrix A

by spec(A) (including multiplicities), and we denote
di�erential-, shift-, or di�erence-operator versions of
equations by � = s, q, or �, respectively. The corre-
sponding stability regions for these operators are given
by

S(�)
�
= f� 2 C : Re � < 0g; � = s; (1)

�
= f� 2 C : j�j < 1g; � = q; (2)

�
= f� 2 C :

h

2
j�j+ Re � < 0g; � = �; (3)

where h > 0 represents the sampling period for �-
domain systems. The associated stability boundary is
denoted by @S(�).

For the following de�nition, we de�ne the matrix

J
�
=

�
0n�n �In
In 0n�n

�
; (4)



and note that JT = J�1 = �J .

De�nition 1 A matrix H 2 R2n�2n is �-Hamiltonian
if

�JHTJ = �H; � = s; (5)

HTJH = J; � = q; (6)

�JHTJ(I + hH) = �H; � = �: (7)

De�nition 1 implies that if H is �-Hamiltonian then

� 6= 0 for all � 2 spec(H); � = q; (8)

� 6= �1=h for all � 2 spec(H); � = �: (9)

The following results summarize the properties of �-
Hamiltonian matrices.

Proposition 1 Let H 2 R2n�2n be �-Hamiltonian.
Then � 2 spec(H) if and only if

��� 2 spec(H); � = s; (10)

1=�� 2 spec(H); � = q; (11)

���

1 + h��
2 spec(H); � = �: (12)

Proof: See [14, p. 327, 538], [8, p. 317]. �

Figure 1 illustrates the symmetries described in Propo-
sition 1 for the spectra of �-Hamiltonian matrices.

3 Algebraic Riccati Equations

Let A 2 R
n�n , B 2 R

n�m , S 2 R
n�m , R =

RT sign de�nite 2 Rm�m , and Q = QT 2 Rn�n . A
matrix X = XT � 0 2 Rn�n is called a solution of the
�-domain algebraic Riccati equation if it satis�es

0 = ATX +XA � (BTX + ST)TR�1(BTX + ST)

+ Q; � = s; (13)

0 = ATXA �X � (BTXA + ST)T(R +BTXB)�1

� (BTXA + ST) +Q; � = q; (14)

0 = Q+ ATX +XA + hATXA

�
�
BTX (I + hA) + ST

�T �
R+ hBTXB

��1
�
�
BTX (I + hA) + ST

�
; � = �; (15)
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Figure 1: Reection Patterns for Spectra of (a) s-
Hamiltonian, (b) q-Hamiltonian, and (c) �-Hamiltonian
Matrices.

The following result de�nes the relationship between �-
Hamiltonian matrices and the algebraic Riccati equa-
tions (13), (14), and (15). De�ne the matrices

E
�
= A� BR�1ST;

G
�
= BR�1BT;

V
�
= Q� SR�1ST:

(16)

Proposition 2 Assume that

det(E) 6= 0; � = q; (17)

det(I + hE) 6= 0; � = �; (18)

hold. Then a matrix X = XT � 0 2 Rn�n satis�es
(13), (14), or (15) if and only if X satis�es

�
X �I

�
H

�
I

X

�
= 0; (19)

where H =

�
H11 H12

H21 H22

�
2 R2n�2n is de�ned by

H =

�
E �G

�V �ET

�
; � = s; (20)



H =

�
E +GE�TV �GE�T

�E�TV E�T

�
; � = q; (21)

H =

�
E + hG(I + hET)�1V �G(I + hET)�1

�(I + hET)�1V �(I + hET)�1ET

�
;

� = �: (22)

Proof: [14, p. 335, 541], [8, p. 317]. �

It can be veri�ed that H as given by (20), (21), (22) is
�-Hamiltonian.

De�nition 2 A matrix Y 2 Rn�n is �-stable if
spec(Y ) � S(�).

De�nition 3 A solution X of (13), (14), or (15) is �-
stabilizing solution if the matrixH11+H12X is �-stable.

Numerical techniques for computing stabilizing solu-
tions of the algebraic Riccati equations ( 13), ( 14),
and (15) are based on decomposing the associated �-
Hamiltonian matrix ( 20), ( 21), or ( 22), respectively.
These techniques require an invariant subspace corre-
sponding to the �-stable eigenvalues of H. Two such
sets of vectors are the eigenvectors of H [12] and the
Schur vectors of H [6]. These techniques can be sum-
marized as follows.

Proposition 3 Assume that spec(H) \ @S(�) = ;.
Let

H�(�)
�
= spec(H) \ S(�); (23)

and let � 2 Rn�n be a matrix satisfying spec(�) = H�.
Let X 2 R2n�n be any nonzero matrix satisfying

HX = X�: (24)

Let X be partitioned as X =
�
XT
1 X

T
2

�T
, with Xi 2

Rn�n ; i = 1; 2, and assume that that X1 is nonsingular.
Then X = X2X

�1

1 is the unique, �-stabilizing solution
of (19).

Proof: See [14, pp. 334, 539], [8, p. 319]. �

4 Matrix Pencils and General-

ized Eigenvalue Problems

In this section, we consider use of a generalized eigen-
value problem to compute solutions to the algebraic Ric-
cati equation. Generalized eigenvalue problems elimi-
nate the need to assume the invertibility of either E
(17) or I + hE (18).

We require the following de�nitions for later develop-
ments
De�nition 4 Let A;B 2 Rn�n , and let � 2 C . Then
the linear matrix polynomial �B�A is called a (linear)
matrix pencil, and is denoted by (A;B). If det(�B �

A) 6� 0, then (A;B) is said to be regular; otherwise,
(A;B) is said to be singular.

We now extend the notions of eigenvalues and eigenvec-
tors of a matrix to matrix pencils.

De�nition 5 Let (A;B) be a regular matrix pencil,
with A;B 2 Rn�n . If there exist � 2 C and nonzero
x 2 C n that satisfy

Ax = �Bx; (25)

then � is a generalized eigenvalue of (A;B) and x is
a generalized eigenvector of (A;B). The set of gener-
alized eigenvalues of (A;B) (including multiplicities) is
denoted by spec(A;B).

Remark 1 Note that in general spec(A;B) 6=
spec(B;A). If rank(B) = n, then spec(A;B) has n el-
ements; otherwise, spec(A;B) may be empty, �nite, or
in�nite [4].

De�nition 6 Let (A;B) be a regular matrix pencil.
The subspace X is a deating subspace of (A;B) if

dim(BX + AX ) � dim(X ): (26)

where \dim" denotes dimension.

Remark 2 For B = I, the de�nition of a deating sub-
space specializes to that of an invariant subspace of the
matrix A.

A numerically stable method for computing the eigen-
values and deating subspaces of matrix pencils is given
by the QZ-algorithm, which is based on the generalized
Schur decomposition.

Theorem 1 ([4], pp. 253) Let A;B 2 R2n�2n. Then
there exist unitary matrices Q;Z 2 C 2n�2n such that

Q�AZ = T; Q�BZ = S; (27)

where T; S 2 C n�n are both upper triangular. The
matrix pencil (A;B) is singular if and only if there exists
i 2 f1; 2; : : :; ng such that sii = tii = 0. In this case,
spec(A;B) = C . Otherwise,

spec(A;B) = f� : � = tii=sii; sii 6= 0g: (28)

Furthermore, the columns of Z span a deating sub-
space for (A;B).



Generalized eigenvalue problems corresponding to (13),
(14), or (15) are denoted by the matrix pencil (M;N ),
where M;N 2 R2n�2n are de�ned by

M =

�
E �G

�V �ET

�
; N =

�
I 0
0 I

�
; � = s; (29)

M =

�
E 0
�V I

�
; N =

�
I G

0 ET

�
; � = q; (30)

M =

�
E �G

�V �ET

�
; N =

�
I hG

0 I + hET

�
;

� = �; (31)

with E, G, and V as de�ned in ( 16). Note that in
the case of nonsingular E or nonsingular I + hE, the �-
HamiltonianmatrixH de�ned in Section 3 are recovered
as H = N�1M .

The algorithm for computing the stabilizing solution of
the algebraic Riccati equations (13), (14), or (15) from
the associated generalized eigenvalue problems can now
be summarized as follows.

Proposition 4 Let (M;N ) be given by (29), (30), or
(31), and assume that spec(M;N ) \ @S(�) = ;. De�ne

H�(�)
�
= spec(M;N ) \ S(�); (32)

H+(�)
�
= spec(M;N ) n H�(�): (33)

Then there exist orthogonal matrices Q;Z 2 R2n�2n

such that

Q�MZ = Q�NZ

�
�� 0
0 �+

�
; (34)

where �� 2 Rn�n satis�es spec(��) = H� and �+ 2

Rn�n satis�es spec(�+) = H+. Partition Z as

Z =

�
Z11 Z12
Z21 Z22

�
: (35)

where Zij 2 Rn�n , i; j = 1; 2. If Z11 is nonsingular,
then X = Z21Z

�1

11 is the unique stabilizing solution to
the corresponding algebraic Riccati equation.

Proof: The case � = s is simply a restatement of Pro-
postion 3. The proof for the case of � = q is found in
[9]. The proof for � = � is analogous.

5 Extended Matrix Pencils

While the generalized eigenvalue problems introduced
in Section 4 eliminate the need for assuming the invert-
ibility of either E (17) or I + hE (18), formation of
the matrix pencils (29), (30), and (31) still require in-
version of the matrix R. In [2], an algorithm based on
the concept of an extended matrix pencil was introduced
which, while still requiring that R be nonsingular, does
not explicitly require R�1.

In the present context, an extended matrix pencil is a
matrix pencil of dimension (2n + m) � (2n + m). An
orthogonal transformation is selected that reduces the
extended pencil to lower block-triangular form. This
transformation also has the property that the �rst
2n�2n block of the transformed extended pencil has the
same spectrum as the corresponding generalized eigen-
value problem (29), (30), or (31). The QZ-algorithm
can then be used as discussed in Section 4 to obtain
a basis for the deating subspace of this block which
corresponds to its �-stable generalized eigenvalues.

For each of the generalized eigenvalue/eigenvector prob-
lems described in Section 4, an associated extended ma-
trix pencil can be de�ned by ( �M; �N), where

�M =

2
4 A 0 B

�Q �AT �S

ST BT R

3
5 ;

�N =

2
4 I 0 0

0 I 0
0 0 0

3
5 ;

� = s; (36)

�M =

2
4 A 0 B

�Q I �S

ST 0 R

3
5 ;

�N =

2
4 I 0 0

0 AT 0
0 �BT 0

3
5 ;

� = q; (37)

�M =

2
4 A 0 B

�Q �AT �S

ST BT R

3
5 ;

�N =

2
4 I 0 0

0 I + hAT 0
0 �hBT 0

3
5 ;

� = �: (38)

The algorithm for �nding a basis for deating subspaces
of (29), (31), or (31) from (36), (37), or (38), respectively,
may now be summarized as follows.

Proposition 5 Let �M; �N be as de�ned in (36), (37),
or (38), and partitioned as

�M =

�
�M11

�M12

�M21
�M22

�
; �N =

�
�N11 �N12
�N21 �N22

�
:

(39)



where �M22; �N2;2 2 Rm�m . Let U =

�
U11 U12
U21 U22

�
be

an orthogonal matrix that satis�es

�
U11 U12

� � �M12

�M22

�
= 0: (40)

De�ne N̂
�
= U �N , M̂

�
= U �M , and let N̂ ; M̂ be parti-

tioned as

N̂ =

�
N̂11 0

N̂21 N̂22

�
; M̂ =

�
M̂11 0

M̂21 M̂22

�
: (41)

Then the deating subspaces of the matrix pencils
(M̂11; N̂11) and (M;N ) as de�ned by (29), (30), or (31)
are identical.

Proof: See [2] for the proofs of � = s and � = q. The
proof for � = � is analogous. �

From this point, the algorithm of Section 4 can be
applied to compute a basis for the deating subspace
of (M̂11; N̂11) corresponding to its �-stable generalized
eigenvalues. This can then be used to compute the sta-
bilizing solution of the Riccati equation (13), (14), or
(15) as shown in Proposition 4.

6 Discussion and Conclusions

This paper has introduced an extended matrix pen-
cil problem associated with the solution of the delta-
operator (di�erence operator) algebraic Riccati equa-
tion. The result is integrated into a systematic treat-
ment of solution algorithms for di�erential, shift, and
di�erence operator algebraic Riccati equations. These
algorithms included the standard eigenvalue problem for
�-Hamiltonian matrices, a generalized eigenvalue prob-
lems for an associated matrix pencil, and the extended
matrix pencil generalized eigenvalue problem. The rele-
vant numerical solution techniques for obtaining the sta-
bilizing solution of the corresponding algebraic Riccati
equation from each of these problems were presented,
along with a discussion of their relative advantages and
disadvantages.
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