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Figure 1: Experimental Configuration 

1 Experiment Description 

A dimenstioned diagram of the experimental configu- 
ration of the acoustic duct is shown in Figure 1. The 
duct is constructed of 4 inch diameter PVC plastic 
piping. Electret condenser microphones are used as 

sensors. These omnidirectional microphones measure 
acoustic pressure and have an approximately flat fre- 
quency response over a frequency range of 20 Hz-20 
kHz. Acoustic actuation for both disturbance and con- 
trol was provided by 4” woofer speakers, which have 

a flat response range of approximately 50 Hz-7 kHz. 

For control purposes, the inputs r and u are the input 

voltages to the disturbance and control speaker am- 
plifiers, respectively, while the measurement signals r 
and [ are the output voltages from the measurement 
and performance microphone amplifiers, respectively. 
In this way, the combined dynamic characteristics of 
the amplifiers, speakers, and microphones can be iden- 
tified directly from experimental data. Controllers are 
implemented using a dSPACE model DS1102 real-time 
control board. 

2 Model Identification 

A Scientific Atlanta SA 390 spectrum analyzer was 
used to produce averaged sampled frequency response 
estimates for the four transfer functions between the 
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Figure 2: Measured and Identified Frequency Response 
Functions, 24th-order Identified Model. 
Solid Line: Measured, Dashed Line: Iden- 
tified Model. 

inputs u and r to the outputs r and <. An approxi- 
mate impulse response sequence was then generated for 
each of the four averaged sampled frequency response 
estimates, and these were combined within the eigen- 
system realization algorithm (ERA) [3]. This discrete- 
time model was then converted to the continuous-time 

counterpart using the inverse impulse-invariant trans- 

formation. After several iterations on the model or- 

der, a 24th-order model was found to fit the measured 

frequency responses adequately. A comparison of the 

identified 24th-order model frequency response func- 
tions and their measured counterparts is shown in Fig- 

ure 2. 

3 Control Design Problem and Synthesis 

The sound pressure level (SPL) at a given location is 
related to the RMS acoustic pressure fluctuation at 

that location. A standard interpretation of the ?iz 

normis the RMS value of the output signal when the 

system is driven by a white noise process. Thus, X2- 
optimal control is well-suited to providing acoustic sup- 
pression of broad-band disturbances. Robust stability 
is enforced by incorporating an ‘H, constraint within 
the optimal control problem. We assume an addi- 
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4th-Order Xi 
bth-Order ‘I-f2 
8th-Order X9 

Table 1: Controller Properties 

tive uncertainty model of the form GTu,measured(p) = 

Gzu,nomiad(p) + A(p). To account for the frequency 
dependence of the uncertainty, a model error weighting 

function Wz(s) is chosen such that ]A(p)] 5 ]Wz(3w)], 

o<g < 1000. The resulting augmented system, de- 
noted G(s), is of 25th order. To minimize the effects 
of aliasing, a sampling frequency of f* = 4000 Hz was 
used for controller implementation. For discrete-time 
controller synthesis, the discrete-time difference opera- 

tor zero-order-hold equivalent of G(s) [4] is computed 

using this sampling frequency. 

Fixed-structure 7iz and mixed ‘HZ/~-&, controllers were 
obtained using the synthesis techniques developed in 
[l, 21 for 2nd-, 4th-, 6th-, and 8th-order controllers. 

The full-order (24th-order) Riccati-equation based X2- 
optimal controller for the nominal identified duct model 
was also synthesized for comparison. Table 1 lists the 
closed-loop properties acheived by these controllers. 

4 Experimental Results 

Figure 3 shows simulated and experimentally mea- 
sured open- and closed-loop frequency response func- 

tions from disturbance input r to performance micro- 
phone E for the and-order 7iz controller (top) and the 
2nd-order ‘Hz/‘H, controller (bottom). The simulated 
results were based on the nominal 24th-order identified 
model. Figure 4 presents the same data for the 8th- 
order 7iz and ‘Hz/%, controllers, respectively. The 
experimental results show that the simulated attenua- 

tion levels are not achieved, and that, for the &h-order 

controllers, the lack of robustness of the Y&-optimal 
controllers actually generates an amplification of the 
open-loop response at several frequencies within the 
control bandwidth of 20-1000 Hz. We note that the 
Snd-order 7-Lz controllers do not exhibit the amplifica- 
tion seen in the 8th-order 3-12 controller results, which 
suggests that the low complexity of this controller may 
provide some measure of inherent robustness. 
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Figure 3: Simulated (left) and Experimental (right) 
Open- and Closed-Loop Frequency Response 
Functions, Pnd-order Nz Controller (top) 
and and-order ‘Hz/%, Controller (bottom) 
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Figure 4: Simulated (left) and Experimental (right) 
Open- and Closed-Loop Frequency Response 
Functions, &h-order ‘Hz Controller (top) and 
8th-order Hz/‘&, Controller (bottom) 
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