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Discrete-Time H2/Ho, Control of an Acoustic Duct:
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Figure 1: Experimental Configuration

1 Experiment Description

A dimenstioned diagram of the experimental configu-
ration of the acoustic duct is shown in Figure 1. The
duct is constructed of 4 inch diameter PVC plastic
piping. Electret condenser microphones are used as
sensors. These omnidirectional microphones measure
acoustic pressure and have an approximately flat fre-
quency response over a frequency range of 20 Hz—-20
kHz. Acoustic actuation for both disturbance and con-
trol was provided by 4” woofer speakers, which have
a flat response range of approximately 50 Hz-7 kHa.
For control purposes, the inputs » and u are the input
voltages to the disturbance and control speaker am-
plifiers, respectively, while the measurement signals =
and £ are the output voltages from the measurement
and performance microphone amplifiers, respectively.
In this way, the combined dynamic characteristics of
the amplifiers, speakers, and microphones can be iden-
tified directly from experimental data. Controllers are
implemented using a dSPACE model DS1102 real-time
control board.

2 Model Identification

A Scientific Atlanta SA 390 spectrum analyzer was
used to produce averaged sampled frequency response
estimates for the four transfer functions between the
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Figure 2: Measured and Identified Frequency Response
Functions, 24th-order Identified Model.
Solid Line: Measured, Dashed Line: Iden-
tified Model.

inputs 4 and r to the outputs r and £. An approxi-
mate impulse response sequence was then generated for
each of the four averaged sampled frequency response
estimates, and these were combined within the eigen-
system realization algorithm (ERA) [3]. This discrete-
time model was then converted to the continuous-time
counterpart using the inverse impulse-invariant trans-
formation. After several iterations on the model or-
der, a 24th-order model was found to fit the measured
frequency responses adequately. A comparison of the
identified 24th-order model frequency response func-
tions and their measured counterparts is shown in Fig-
ure 2.

3 Control Design Problem and Synthesis

The sound pressure level (SPL) at a given location is
related to the RMS acoustic pressure fluctuation at
that location. A standard interpretation of the #,
normis the RMS value of the output signal when the
system is driven by a white noise process. Thus, Ha-
optimal control is well-suited to providing acoustic sup-
pression of broad-band disturbances. Robust stability
is enforced by incorporating an Hoo constraint within
the optimal control problem. We assume an addi-
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Open-Loop System 10.94 0

Full-order (24th-Order) H, | 1.536 3.416
2nd-Order H; 6.146 1.848
4th-Order H, 3.808 3.103
6th-Order H, 3.747 4124
8th-Order H» 2.906 3.777
2nd-Order Ha2/Hoo 6.193 1.000
4th-Order Ha/Heo 4.394--| 1.000
6th-Order Ha/Hoo 4.354 1.000
8th-Order Ho/Hoo 3.931 1.000

Table 1: Controller Properties

tive uncertainty model of the form G,y measured(jw) =
G'ru,nominal () + A(jw). To account for the frequency
dependence of the uncertainty, a model error weighting
function W(s) is chosen such that [A(jw)| < |[Wa(pw)],
0 < 3% < 1000. The resulting augmented system, de-
noted G(s), is of 25th order. To minimize the effects
of aliasing, a sampling frequency of f, = 4000 Hz was
used for controller implementation. For discrete-time
controller synthesis, the discrete-time difference opera-
tor zero-order-hold equivalent of G(s) [4] is computed
- using this sampling frequency.

Fixed-structure H2 and mixed Hz/H o controllers were
obtained using the synthesis techniques developed in
[1, 2] for 2nd-, 4th-, 6th-, and 8th-order controllers.
The full-order (24th-order) Riccati-equation based Hs-
optimal controller for the nominal identified duct model
was also synthesized for comparison. Table 1 lists the
closed-loop properties acheived by these controllers.

4 Experimental Results

Figure 3 shows simulated and experimentally mea-
sured open- and closed-loop frequency response func-
tions from disturbance input » to performance micro-
phone ¢ for the 2nd-order H, controller (top) and the
2nd-order Ha/Hoo controller (bottom). The simulated
results were based on the nominal 24th-order identified
model. Figure 4 presents the same data for the 8th-
order H2 and Hz/Ho controllers, respectively. The
experimental results show that the simulated attenua-
tion levels are not achieved, and that, for the 8th-order
controllers, the lack of robustness of the Hz-optimal
controllers actually generates an amplification of the
open-loop response at several frequencies within the
control bandwidth of 20-1000 Hz. We note that the
2nd-order M, controllers do not exhibit the amplifica-
tion seen in the 8th-order H, controller results, which
suggests that the low complexity of this controller may
provide some measure of inherent robustness.
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Figure 3: Simulated (left) and Experimental (right)
Open- and Closed-Loop Frequency Response
Functions, 2nd-order H; Controller (top)
and 2nd-order Hz/Ho Controller (bottom)
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Figure 4: Simulated (left) and Experimental (right)
Open- and Closed-Loop Frequency Response
Functions, 8th-order H2 Controller (top) and
8th-order Hz/Ho Controller (bottom)
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