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ABSTRACT
In this paper, we present a technique for estimating the in-

put nonlinearity of a Hammerstein system by using multiple or-
thogonal ersatz nonlinearities. Theoretical analysis shows that
by replacing the unknown input nonlinearity by an ersatz non-
linearity, the estimates of the Markov parameters of the plant
are correct up to a scalar factor, which is related to the inner
product of the true input nonlinearity and the ersatz nonlinear-
ity. These coefficients are used to construct and estimate the true
nonlinearity represented as an orthogonal basis expansion. We
demonstrate this technique by using a Fourier series expansion
as well as orthogonal polynomials. We show that the kernel of
the inner product associated with the orthogonal basis functions
must be chosen to be the density function of the input signal.

1 INTRODUCTION
Hammerstein systems represent a practically meaningful

class of nonlinear systems that directly generalize linear systems.
In a Hammerstein plant, the input to a linear model is distorted
by an input nonlinearity. The input nonlinearity may be one-to-
one and onto, as in the case of a cubic nonlinearity; it may be
one-to-one but not onto, as in the case of the arctangent nonlin-
earity; it may be onto but not one-to-one, as in the case of the
polynomial f (u) = u3 +u2; and it may be neither one-to-one nor
onto, as in the case of an on-off or saturation nonlinearity. A
bounded input nonlinearity is not onto, an even input nonlinear-
ity is not one-to-one, and a nonlinearity that is strictly increasing
or strictly decreasing is one-to-one. An odd nonlinearity may or
may not be one-to-one, but must be zero at zero.

Since all real control inputs are subject to saturation, all re-
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alistic input nonlinearities are bounded [1]. Consequently, the
literature on control of linear systems with saturation represents
a practical special case of control of Hammerstein systems [2].

Aside from control, identification of Hammerstein systems
represents a specialized nonlinear system identification problem.
The literature on identification of Hammerstein systems is ex-
tensive, and this problem has been considered under various as-
sumptions [3–6]. For example, the input nonlinearity may be
unknown, and the objective is to identify both the linear system
dynamics and the input nonlinearity. In other cases, partial infor-
mation about the input nonlinearity may be available; for exam-
ple, the input nonlinearity may be assumed to be odd or its value
at zero may be assumed to be known or zero.

In the present paper we revisit the approach to Hammerstein
system identification given in [7], where both the input nonlin-
earity and linear dynamics are assumed to be unknown. Least
squares techniques are used in [7] by preprocessing the input
through an ersatz nonlinearity, which takes the place of the true
nonlinearity. Although the ersatz nonlinearity may differ from
the true nonlinearity, it is shown in [7] that, in the presence of
output noise, the estimates of the Markov parameters of the lin-
ear dynamics are semiconsistent, that is, asymptotically unbiased
up to an unknown scale factor. The unknown scale factor is to be
expected due to the fact that the input nonlinearity and the plant
can be scaled by an arbitrary constant and its reciprocal with-
out affecting the input-output data. The eigensystem realization
algorithm [8] can be used to construct an estimate of the linear
dynamics up to an unknown scale factor. However, the approach
of [7] does not provide an estimate of the input nonlinearity.

In the present paper we extend the results of [7] by devel-
oping a technique for identifying Hammerstein systems that uses
ersatz nonlinearities to estimate both the input nonlinearity and
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the linear dynamics. The novel aspect of this method is the use
of multiple ersatz nonlinearities to estimate the coefficients of
an expansion of the true nonlinearity. More specifically, for a
given data set, we apply the technique of [7] with a collection
of orthogonal ersatz nonlinearities. Theoretical analysis shows
that the unknown scale factor in the estimates of the Markov pa-
rameters of the plant are related to the inner product of the true
input nonlinearity and the ersatz nonlinearity. These coefficients
can then be used to construct and estimate the true nonlinearity
represented as an orthogonal basis expansion. We show that the
kernel of the inner product associated with the orthogonal basis
functions must be chosen to be the density function of the input
signal.

In the present paper, we briefly review the approach of [7]
for identifying Hammerstein systems using ersatz nonlinearities.
We then present the technique for estimating the input nonlin-
earity by using multiple orthogonal ersatz nonlinearities, and we
demonstrate this technique by using a Fourier series expansion
as well as orthogonal polynomials. We demonstrate the effect of
both input and output noise in an errors-in-variables setting. We
consider examples in which the input nonlinearity is not neces-
sarily either one-to-one, onto, odd, even, monotonic, or zero at
zero.

2 Problem Formulation

Consider the Hammerstein structure shown in Figure 1,
where u0 is the input signal, N : R→R is the static nonlinearity,
N (u0) is the intermediate signal, y0 is the output signal, and G
is the asymptotically stable, SISO, causal, discrete-time system

A(q)y0(k) = B(q)N
(

u0(k)
)
, (1)

where q is the forward shift operator, and A and B are polyno-
mials in q. We assume that the nonlinearity N , and hence the
intermediate signal N (u0), is unknown. Furthermore, we as-
sume that the measurement of u0 is corrupted with additive white
noise, and the measurement of y0 is corrupted with additive white
or colored noise.

The ARX model of (1) is given by

y0(k) =
n

∑
j=0

b jN
(

u0(k− j)
)
−

n

∑
j=1

a jy0(k− j). (2)

N G
u0 N (u0) y0

Figure 1. Block-structured Hammerstein model where u0 is the input,

N
(

u0(k)
)

is the intermediate signal, and y0 is the output.

3 µ-Markov Model and Least Squares Estimates
For all k ≥ 0, nmod ≥ n, µ ≥ 1, the signals y0(k) and

N (u0(k)) satisfy the µ-Markov model

y0(k) =
µ−1

∑
j=0

H jN (u0(k− j))+
nmod+µ−1

∑
j=µ

b′jN (u0(k− j))

−
nmod+µ−1

∑
j=µ

a′jy0(k− j), (3)

where H0, . . . ,Hµ−1 are the first µ Markov parameters of G. Note
that the µ-Markov model is an overparameterization of the ARX
model (2), where µ Markov parameters are explicitly displayed
[9]. Furthermore, setting nmod = n and µ = 1 gives the ARX
model (2).

Next, let nmod ≥ n and µ≥ 1. Then the µ-Markov model (3)
of (1) can be expressed as

y0(k) = θµN (φµ0)(k)+θuN (φu0)(k)−θyφy0(k), (4)

where

θµ
4
=
[

H0 · · · Hµ−1
]
,

θu
4
=
[

bµ · · · bnmod+µ−1
]
,

θy
4
=
[

aµ · · · anmod+µ−1
]
,

N (φµ0)(k)
4
=
[

N (u0(k)) · · · N (u0(k−µ+1))
]T

,

N (φu0)(k)
4
=
[
N (u0(k−µ)) · · · N (u0(k−nmod−µ+1))

]T
,

φy0(k)
4
=
[

y0(k−µ) · · · y0(k−nmod−µ+1)
]T
.

Furthermore, the least squares estimate θ̂
N
µ,`, θ̂

N
u,`, θ̂

N
y,` of θµ, θu,

θy are given by

[
θ̂

N
µ,` θ̂

N
u,` θ̂

N
y,`

]
(5)

= argmin
[ θµ θu θy ]

∥∥Ψy0,`−θµN (Φµ0,`)−θuN (Φu0,`)+θyΦy0,`

∥∥
F ,
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where || . ||F denotes the Frobenius norm,

Ψy0,`
4
=
[

y0(nmod +µ−1) · · · y0(`)
]
,

Φy0,`
4
=
[

φy0(nmod +µ−1) · · · φy0(`)
]
,

N (Φµ0,`)
4
=
[

N (φµ0)(nmod +µ−1) · · · N (φµ0)(`)
]
,

N (Φu0,`)
4
=
[

N (φu0)(nmod +µ−1) · · · N (φu0)(`)
]
,

and ` is the number of samples. In this case, if N (u0) is persis-

tently exciting, then lim`→∞ θ̂
N
µ,`

wp1
= θµ.

4 Ersatz Nonlinearity
Since N is assumed to be unknown, we cannot construct

N (Φµ0,`) and N (Φu0,`). Hence, it is not possible to solve the
least squares problem (5) for the coefficients of the µ-Markov
model. We thus consider a least squares problem of the form (5)
in which we replace the unknown nonlinearity N by a nonlinear-
ity E : R→R. The identification architecture is shown in Figure
2. The ersatz nonlinearity E is not intended to be an approxima-
tion of N . Rather, E serves as a substitute for N that has the
ability to render the solution of the least squares problem useful
for estimating the coefficients of the µ-Markov model.

N G
N (u0)u0 y0

IDE w
v E(u)u y

Figure 2. Identification of a Hammerstein system using the ersatz non-
linearity E .

5 CONSISTENCY ANALYSIS
The consistency analysis for this problem is shown in [7].

For convenience we list the assumptions and the main result here.
We use the following assumptions.

Assumption 5.1. u0 and v are realizations of the station-
ary white processes U0 and V .

Assumption 5.2. w is a realization of the stationary white
or colored process W .

Assumption 5.3. U0, W , and V are mutually independent.

Assumption 5.4. U(k) =U0(k)+V (k).

Assumption 5.5. Y (k) = Y0(k)+W (k).

Assumption 5.6. θµ 6= 01×µ.

Assumption 5.7. For all k ≥ 0, E
[
E
(

U(k)
)]

= 0 and

E
[
N
(

U0(k)
)

E
(

U(k)
)]
6= 0.

Assumption 5.8. For all k ≥ 0 and p ≥ −k, N
(
U(k)

)
,

E
(
U(k)

)
, N

(
U(k)

)
E
(
U(k + p)

)
, E
(
U(k)

)
E
(
U(k + p)

)
, and

W (k) have finite mean and variance.

Under the above assumptions it is shown in [7] that by re-
placing N with the ersatz nonlinearity E , the vector of estimated
Markov parameters θ̂E

µ,` is a consistent estimator of θµ up to a
scalar factor, that is,

lim
`→∞

θ̂
E
µ,`

wp1
=

E
[
N
(

U0(k)
)

E
(

U(k)
)]

E
[
E
(

U(k)
)

E
(

U(k)
)] θµ. (6)

The result (6) was used in [7] to identify only the linear plant G.
Here we use (6) to also identify the nonlinearity N . Note that
the coefficient of θµ in (6) is unknown since it depends on N .

6 IDENTIFICATION OF THE HAMMERSTEIN SYSTEM
For the identification process of the Hammerstein system,

only one experiment is needed, where all the work related to the
ersatz nonlinearity is performed offline using computer simula-
tions. We perform the identification in two separate steps, first
identification of the linear plant G and second identification of
the Hammerstein nonlinearity N . For the rest of the paper we
assume that v(k) = 0 for all k ≥ 0.

6.1 Identification of the Linear Plant G
To identify the linear plant G we choose an ersatz nonlin-

earity E that satisfies Assumptions 5.7 and 5.8. The identified
Markov parameters are asymptotically correct up to a scalar fac-
tor as shown in (6). Examples are given in [7].

6.2 Identification of the Hammerstein Nonlinearity N
To identify the Hammerstein nonlinearity we represent N

by a series expansion of orthogonal basis functions, that is,

N (u) =
∞

∑
n=0

hn fn(u), (7)

where the basis functions fn(·), n= 0,1,2, . . . are orthogonal over
an interval with respect to some inner product, that is < fi, f j >=
0, if i 6= j. In the following we consider two different orthogonal
bases, namely, sines and cosines from the Fourier series and the
Laguerre polynomials.
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6.2.1 Fourier Series Expansion To identify the
Hammerstein nonlinearity we represent N by its Fourier series
expansion, that is,

N (u) = a0 +
∞

∑
n=1

an cos(
nπu
L

)+
∞

∑
n=1

bn sin(
nπu
L

). (8)

Note that using a stationary input uniformly distributed in
[−L,L], that is,

PU(k)(u) =

{
1

2L , if |u| ≤ L,
0, if |u|> L,

(9)

we obtain

a0
4
=

1
2L

∫ L

−L
N (u)du = E [N (U(k))] , (10)

and for n = 1,2, . . .

an
4
=

1
L

∫ L

−L
cos(

nπu
L

)N (u)du

= 2
∫ L

−L
cos(

nπu
L

)N (u)
1

2L
du

= 2E
[

cos(
nπU(k)

L
)N (U(k))

]
, (11)

and

bn
4
=

1
L

∫ L

−L
sin(

nπu
L

)N (u)du

= 2
∫ L

−L
sin(

nπu
L

)N (u)
1

2L
du

= 2E
[

sin(
nπU(k)

L
)N (U(k))

]
. (12)

Next, we truncate (8) to obtain an approximation N̂ of N , that
is,

N̂ (u) = a0 +
N

∑
n=1

an cos(
nπu
L

)+
N

∑
n=1

bn sin(
nπu
L

), (13)

where N is chosen large enough such that N̂ (u) is an acceptable
approximation of N (u). Since the coefficient in (6) is unknown,
it follows that the coefficients in (13) are not implementable,
however we show next that we can determine these coefficients
up to a scalar factor.

Let E(u) and Y (u) be different ersatz nonlinearities such
that E[N (U(k))Y (U(k))] 6= 0. Define

r(E ,Y )
4
=

lim`→∞ ĤE
i,`

lim`→∞ ĤY
i,`

, (14)

where, for i ∈ {0,1, . . . ,µ−1}, Hi 6= 0. It follows from (6) that

lim
`→∞

ĤE
i,`
4
=

E[N (U(k))E(U(k))]
E[E2(U(k))]

Hi, (15)

and

lim
`→∞

ĤY
i,`
4
=

E[N (U(k))Y (U(k))]
E[Y 2(U(k))]

Hi. (16)

Substituting (15) and (16) in (14) yields

r(E ,Y ) =
E[N (U(k))E(U(k))]E[Y 2(U(k))]
E[N (U(k))Y (U(k))]E[E2(U(k))]

. (17)

Define

R(E ,Y )
4
=

r(E ,Y )E[E2(U(k))]
E[Y 2(U(k))]

. (18)

Note that R(E ,Y ) is known since r(E ,Y ) can be obtained from
(14) and E[E2(U(k))] and E[Y 2(U(k))] can be calculated since
we choose E(u), Y (u), and the distribution of U(k). Therefore,
(17) can be rearranged as

E[N (U(k))E(U(k))] = R(E ,Y )E[N (U(k))Y (U(k))]. (19)

Note that the right hand side of (19) is unknown since it depends
on the unknown value of E[N (U(k))Y (U(k))].

Suppose now that we fix Y (u) and consider the ersatz non-
linearities E1(u) and E2(u). It follows from (19) that

E[N (U(k))E1(U(k))] = R(E1,Y )E[N (U(k))Y (U(k))],(20)
E[N (U(k))E2(U(k))] = R(E2,Y )E[N (U(k))Y (U(k))].(21)

Note that E[N (U(k))Y (U(k))] is the same for both E1(u)
and E2(u), i.e. for both ersatz nonlinearities E1 and E2,
E[N (U(k))Ei(U(k))] is known up to the same scalar factor.

Define

N̂ Y (u)
4
=

1
E[N (U(k))Y (U(k))]

N̂ (u)

= âY
0 +

N

∑
n=1

âY
n cos(

nπu
L

)+
N

∑
n=1

b̂Y
n sin(

nπu
L

), (22)
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where

âY
0
4
=

a0

E[N (U(k))Y (U(k))]
= R(1,Y (u)), (23)

and for n = 1,2, . . . ,

âY
n
4
=

an

E[N (U(k))Y (U(k))]
= 2R(cos(

nπu
L

),Y (u)), (24)

b̂Y
n
4
=

bn

E[N (U(k))Y (U(k))]
= 2R(sin(

nπu
L

),Y (u)). (25)

That is, N̂ Y (u) is an approximation of N (u) up to an unknown
scalar factor.

6.2.2 Laguerre Series Expansion We represent N
by its Laguerre series expansion, that is,

N (u) =
∞

∑
n=0

qnLn(u), (26)

where qn is defined as

qn
4
=

∫
∞

0
Ln(u)N (u)e−udu, (27)

and the Laguerre polynomial Ln(u) is defined as

Ln(u)
4
=

n

∑
i=0

(
n
i

)
(−1)i

i!
ui. (28)

Note that using a stationary and exponentially distributed input
U(k) with unity mean it follows from (27) that

qn = E[Ln(U(k))N (U(k))]. (29)

We truncate (26) to obtain an approximation N̂ of N , that is,

N̂ (u) =
N

∑
n=0

qnLn(u), (30)

where N is chosen large enough such that N̂ (u) is an acceptable
approximation of N (u). Since N is unknown, it follows that qn
is not implementable using (27). We apply the procedure dis-
cussed in the previous subsection to obtain qn for n = 0,1,2, . . .
up to a scalar factor, that is,

N̂ Y (u)
4
=

1
E[N (U(k))Y (U(k))]

N̂ (u)

=
n

∑
i=0

qY
n Ln(u), (31)

where

q̂Y
n
4
=

qn

E[N (U(k))Y (U(k))]
= R(Ln,Y ). (32)

It follows that N̂ Y (u) is a an approximation of N (u) up to an
unknown scalar factor.

For Gaussian U(k) Hermite polynomials are the appropriate
basis functions.

7 Numerical Examples
In this section we show examples with odd, even, neither

odd nor even, saturation, and deadzone nonlinearities. Define
M(eu) to be the mean of the realization of the random process
eU , and define M(|u|) to be the mean of the realization of the
random process |U |. Moreover, define the normalized Markov
parameters of the transfer function G to be

Hn
i
4
=

Hi

Hd
,

where Hd is the first nonzero Markov parameter of G . The esti-
mated Markov parameters obtained by replacing N by the ersatz
nonlinearity Y , namely ĤY

i,`, are normalized by ĤY
d,` to obtain

ĤY ,n
i,` , where ĤY

d,` is the first nonzero estimated Markov param-
eter. The least squares estimates are computed for 200 indepen-
dent realizations of U . We also define the error metric

ε
4
=

1
200

200

∑
i=0

|Hn
i − ĤY ,n

i,` |
|Hn

i |
. (33)

Example 7.1. Consider the transfer function

G(q) =
(q−0.5)(q−0.3)
(q+0.5)(q+0.8)

(34)

and the odd Hammerstein nonlinearity N (u) = u3. We choose
Y (u) = eu−M(eu). Figure 3 indicates that the estimates of the
Markov parameters are correct up to a scalar factor. In (22)
we choose the basis functions to be sin( nπu

5 ) and cos( nπu
5 ) with

n = 0,1,2, . . . ,50. White noise input uniformly distributed in
[−5,5] is used with ` = 50,000 data points. Figure 4 shows
the actual nonlinearity and estimated nonlinearity scaled by
E[U3(k)(eU(k)−E[eU(k)])].

Example 7.2. Consider the transfer function (34) and the
even Hammerstein nonlinearity N (u) = u2. In (22) we choose
Y (u) = |u| − M(|u|), and the basis functions sin( nπu

5 ) and
cos( nπu

5 ) with n = 0,1,2, . . . ,50. White noise input uniformly
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distributed in [−5,5] is used with ` = 50,000 data points. Out-
put signal is corrupted with Gaussian noise of SNR=10. Figure 5
shows the actual nonlinearity and estimated nonlinearity scaled
by E[U2(k)(|U(k)|−E[|U(k)|])].

Example 7.3. Consider the transfer function (34) and the
neither even nor odd Hammerstein nonlinearity N (u) = eu. In
(22) we choose Y (u) = |u| −M(|u|), and the basis functions
sin( nπu

5 ) and cos( nπu
5 ) with n = 0,1,2, . . . ,50. White noise in-

put uniformly distributed in [−5,5] is used with `= 50,000 data
points. Figure 6 shows the actual nonlinearity and estimated non-
linearity scaled by E[eU(k)(|U(k)|−E[|U(k)|])].

Example 7.4. Consider the transfer function (34) and the
saturation Hammerstein nonlinearity

N (u) =


−1, if u <−1
u, if −1≤ u≤ 1
1, if u > 1.

(35)

In (22) we choose Y (u) = sin(u), and the basis functions
sin( nπu

5 ) and cos( nπu
5 ) with n = 0,1,2, . . . ,50. White noise in-

put uniformly distributed in [−5,5] is used with `= 50,000 data
points. Figure 7 shows the actual nonlinearity and estimated
nonlinearity scaled by E[N (U(k))sin(U(k))] where N (u) is as
shown in (35).

Example 7.5. Consider the transfer function (34) and the
deadzone Hammerstein nonlinearity

N (u) =


u+1, if u <−1
0, if −1≤ u≤ 1
u−1, if u > 1.

(36)

In (22) we choose Y (u) = eu−M(eu), and the basis functions
sin( nπu

5 ) and cos( nπu
5 ) with n = 0,1,2, . . . ,50. White noise in-

put uniformly distributed in [−5,5] is used with `= 50,000 data
points. Figure 8 shows the actual nonlinearity and estimated non-
linearity scaled by E[N (U(k))(eU(k)−E[eU(k)])] where N (u) is
as shown in (36).

Example 7.6. Consider the transfer function (34) and the
odd Hammerstein nonlinearity N (u) = u3. In (31) we choose
Y (u) = eu −M(eu), and the basis functions Ln(u) with n =
0,1,2, . . . ,50. Exponentially distributed input with unity mean is
used with `= 50,000 data points. Figure 9 shows the actual non-
linearity and estimated nonlinearity scaled by E[U3(k)(eU(k)−
E[eU(k)])].

Example 7.7. Consider the transfer function (34) and the
even Hammerstein nonlinearity N (u) = cos(u). In (31) we
choose Y (u) = eu−M(eu), and the basis functions Ln(u) with
n = 0,1,2, . . . ,50. Exponentially distributed input with unity

mean is used with ` = 50,000 data points. Figure 10 shows
the actual nonlinearity and estimated nonlinearity scaled by
E[cos(U(k))(eU(k)−E[eU(k)])].

Example 7.8. Consider the transfer function (34) and
the saturation Hammerstein nonlinearity (35). In (31) we
choose Y (u) = eu−M(eu), and the basis functions Ln(u) with
n = 0,1,2, . . . ,50. Exponentially distributed input with unity
mean is used with ` = 50,000 data points. Figure 11 shows
the actual nonlinearity and estimated nonlinearity scaled by
E[N (U(k))(eU(k)−E[eU(k)])] where N (u) as in (35).

8 CONCLUSIONS
In this paper, we briefly reviewed the approach for identi-

fying Hammerstein systems using ersatz nonlinearities. Then
we showed that using multiple orthogonal ersatz nonlinearities,
the Hammerstein nonlinearity can be estimated correctly up to
a scalar factor. Two different orthogonal bases, namely, sines
and cosines from the Fourier series and the Laguerre polyno-
mials were used to construct and estimate the true nonlinear-
ity represented as an orthogonal basis expansion. This method
was demonstrated on several numerical examples including odd,
even, neither odd nor even, saturation and deadzone nonlinear-
ities. Finally, we showed that the kernel of the inner product
associated with the orthogonal basis functions must be chosen to
be the density function of the input signal.
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Figure 3. Error between true and estimated Markov parameters after
normalization. The ersatz nonlinearity Y (u) = eu−M(eu) is used to
replace the unknown nonlinearity N (u) = u3.

Figure 4. Actual nonlinearity N (u) = u3 and estimated nonlinearity af-
ter scaling for example 7.1. We choose Y (u) = eu−M(eu), and the
basis functions sin( nπu

5 ) and cos( nπu
5 ) for n= 0,1,2, . . . ,50. The scal-

ing factor is E[U3(k)(eU(k)−E[eU(k)])].
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Figure 5. Actual nonlinearity N (u) = u2 and estimated nonlinearity af-
ter scaling for example 7.2. Gaussian distributed output noise w with
SNR=10 is added. We choose Y (u) = |u| −M(|u|), and the basis
functions sin( nπu

5 ) and cos( nπu
5 ) for n = 0,1,2, . . . ,50. The scaling

factor is E[U2(k)(|U(k)|−E[|U(k)|])].

Figure 6. Actual nonlinearity N (u) = eu and estimated nonlinearity af-
ter scaling for example 7.3. We choose Y (u) = |u|−M(|u|), and the
basis functions sin( nπu

5 ) and cos( nπu
5 ) for n= 0,1,2, . . . ,50. The scal-

ing factor is E[eU(k)(|U(k)|−E[|U(k)|])].

Figure 7. Actual nonlinearity (35) and estimated nonlinearity after scal-
ing for example 7.4. We choose Y (u) = sin(u), and the basis functions
sin( nπu

5 ) and cos( nπu
5 ) for n = 0,1,2, . . . ,50. The scaling factor is

E[N (U(k))sin(U(k))], where N (U(k)) is as shown in (35).
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Figure 8. Actual nonlinearity (36) and estimated nonlinearity after scal-
ing for example 7.5. We choose Y (u) = eu−M(eu), and the basis
functions sin( nπu

5 ) and cos( nπu
5 ) for n = 0,1,2, . . . ,50. The scaling

factor is E[N (U(k))(eU(k)−E[eU(k)])], where N (U(k)) is as shown
in (36).

Figure 9. Actual nonlinearity N (u) = u3 and estimated nonlinearity
after scaling for example 7.6. We choose Y (u) = eu −M(eu), and
the basis functions Ln(u) for n = 0,1,2, . . . ,50. The scaling factor is
E[U3(k)(eU(k)−E[eU(k)])].

Figure 10. Actual nonlinearity N (u) = cos(u) and estimated nonlin-
earity after scaling for example 7.7. We choose Y (u) = eu−M(eu),
and the basis functions Ln(u) for n = 0,1,2, . . . ,50. The scaling factor
is E[cos(U(k))(eU(k)−E[eU(k)])].

Figure 11. Actual nonlinearity (35) and estimated nonlinearity after
scaling for example 7.8. We choose Y (u) = eu −M(eu), and the
basis functions Ln(u) for n = 0,1,2, . . . ,50. The scaling factor is
E[N (U(k))(eU(k) −E[eU(k)])], where N ((U(k))) is as shown in
(35).
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