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Abstract— We revisit the Rohrs counterexamples within the
context of sampled-data adaptive control. In particular, ret-
rospective cost adaptive control (RCAC) is applied to the
sampled continuous-time plant with unmodeled high-frequency
dynamics, which involves nonminimum-phase (NMP) sampling
zeros. It is shown that, without knowledge of these NMP zeros,
RCAC stabilizes the uncertain plant and asymptotically follows
the sinusoidal command.

I. INTRODUCTION

The history of adaptive control is marked by two key

events. The first was the tragic accident in 1967 involving

the X-15. The second was the publication in 1982 of [1],

which presented two counterexamples showing the fragility

of model reference adaptive control (MRAC) schemes. These

counterexamples considered plants with high-frequency un-

modeled dynamics that can induce a large, unknown phase

shift in the plant’s open-loop response leading to unbounded

response. These events dampened enthusiasm for adaptive

control and led to a cautionary view of these techniques [2,

3]. Nevertheless, adaptive control continued to be developed

and applied to a vast range of applications [4–6].

The purpose of the present paper is to revisit both Rohrs

counterexamples using retrospective cost adaptive control

(RCAC). RCAC is a discrete-time, direct adaptive control

technique that can be used for plants that are possibly

MIMO, nonminimum phase (NMP), and unstable [7–11].

This approach relies on knowledge of Markov parameters

and, for NMP open-loop-unstable plants, estimates of the

NMP zeros. For SISO systems that are either open-loop

asymptotically stable or minimum phase, a single Markov pa-

rameter typically suffices. This information can be obtained

from either analytical modeling or system identification

[12]. Alternatively, an identified FIR model based on phase

matching can be used [11, 13, 14]

The goal of the present paper is thus to apply sampled-

data adaptive control to the Rohrs counterexamples. From a

sampled-data point of view, the challenging aspect of these

problems for RCAC is not the unmodeled dynamics per se,

but rather the sampling zeros, which may be NMP under

fast sampling. Since the Rohrs counterexamples are open-

loop asymptotically stable, RCAC is able to provide reliable

performance without knowledge of either the unmodeled

high-frequency dynamics or the NMP sampling zeros [11].

II. PROBLEM FORMULATION

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k) +D2w(k), (2)

z(k) = E1x(k) + E0w(k), (3)

where k ≥ 0, x(k) ∈ R
n, z(k) ∈ R

lz is the measured

performance variable to be minimized, y(k) ∈ R
ly con-

tains additional measurements that are available for control,

u(k) ∈ R
lu is the input signal, w(k) ∈ R

lw is the exogenous

signal that can represent either a reference command, an ex-

ternal disturbance, or both. The system (1)–(3) can represent

a sampled-data application arising from a continuous-time

system with sample and hold operations with the sampling

period h, where y(k) represents y(kh), z(k) represents

z(kh), and so on. The operator matrix from u to z is thus

given by

Gzu(q)
△
= E1(qI −A)−1B, (4)

where q is the shift operator which accounts for possibly

nonzero initial conditions. Furthermore, for a positive integer

i, Hi
△
= E1A

i−1B is the ith Markov parameter of Gzu.

Now, consider the output-feedback controller

xc(k + 1) = Ac(k)xc(k) +Bc(k)y(k), (5)

u(k) = Cc(k)xc(k), (6)

where xc ∈ R
nc . The closed-loop system with output

feedback (5), (6) is thus given by

x̃(k + 1) = Ã(k)x̃(k) + D̃1(k)w(k), (7)

y(k) = C̃x̃(k) +D2w(k), (8)

z(k) = Ẽ1x̃(k) + E0w(k), (9)

where x̃
△
=

[

xT xT
c

]T
,

Ã(k) =

[

A BCc(k)
Bc(k)C Ac(k)

]

, D̃1(k) =

[

D1

Bc(k)D2

]

,

C̃ =
[

C 0ly×nc

]

, Ẽ1 =
[

E1 0lz×nc

]

.

The goal is to develop an adaptive output feedback con-

troller to minimize the performance measure zTz in the

presence of the exogenous signal w with limited modeling

information about the dynamics and exogenous signal.

The model reference adaptive control (MRAC) problem

can be formulated in terms of (1)–(3), where z
△
= y0 − ym

is the command-following error between the plant output y0
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and the output ym of a reference model Gm whose input is

the reference signal r. For MRAC, the measurement of the

reference signal r is assumed to be available for feedforward

compensation, as shown in Figure 1.

Fig. 1. MRAC Problem

For the adaptive controller (5), (6), the closed-loop state

matrix Ã(k) may be time-varying. To monitor the ability of

the adaptive controller to stabilize the plant, we compute the

spectral radius spr(Ã(k)) at each time step. If the controller

converges, and spr(Ã(k)) converges to a number less than 1,

then the asymptotic closed-loop system is internally stable.

III. RETROSPECTIVE COST ADAPTIVE CONTROL

We represent (5), (6) by

u(k) = θT(k)φ(k − 1), (10)

where φ(k−1) = [ yT(k−1) ··· yT(k−nc) uT(k−1) ··· uT(k−nc) ]
T

,

θ(k) = [NT

1
(k) ··· NT

nc
(k) MT

1
(k) ··· MT

nc
(k) ]

T
, and, for all

1 ≤ i ≤ nc, Ni(k) ∈ R
ly×lu , Mi(k) ∈ R

lu×lu . The control

law (10) can be reformulated as

u(k) = Φ(k − 1)Θ(k), (11)

where Φ(k − 1)
△
= Ilu ⊗ φT(k − 1) ∈ R

lu×lunc(lu+ly), and

Θ(k)
△
= vec(θ(k)) ∈ R

lunc(lu+ly).

Now, for a positive integer r, we define the finite-impulse-

response (FIR) transfer matrix

Gf(q)
△
=

K1q
r−1 +K2q

r−2 + · · ·+Kr

qr
, (12)

where Ki ∈ R
lz×lu for 1 ≤ i ≤ r. Next, for k ≥ 1, we

define the retrospective performance variable

ẑ(Θ̂(k), k)
△
= z(k) + Φf(k − 1)Θ̂(k)− uf(k), (13)

with

Φf(k − 1)
△
= Gf(q)Φ(k − 1) ∈ R

lz×lunc(lu+ly), (14)

uf(k)
△
= Gf(q)u(k) ∈ R

lz , (15)

where Θ̂(k) will be determined by optimization below.

For k > 0, we define the cumulative cost function

J(Θ̂(k), k)
△
=

k
∑

i=1

λk−iẑT(Θ̂(k), i)ẑ(Θ̂(k), i)

+

k
∑

i=1

λk−iη(i)Θ̂T(k)ΦT
f (i − 1)Φf(i− 1)Θ̂(k)

+ λk(Θ̂(k)−Θ0)
TP−1

0 (Θ̂(k)−Θ0), (16)

where λ ∈ (0, 1], P0 is positive definite, and η(k) ≥ 0. In

this paper, we choose

η(k)
△
= η0

pc−1
∑

j=0

zT(k − j)z(k − j). (17)

where η0 ≥ 0, and pc ≥ 1. The following result, which fol-

lows from RLS theory [4, 5], provides the global minimizer

of the cost function (16) and thus the update law.

Proposition 3.1: Let P (0) = P0 and Θ(0) = Θ0. Then,

for all k ≥ 1, the cumulative cost function (16) has a unique

global minimizer Θ(k). Furthermore, Θ(k) is given by

Θ(k) = [I −K(k)Φf(k − 1)]Θ(k − 1)

− P (k)ΦT
f (k − 1) [z(k)− uf(k)] ,

where P (k) satisfies

P (k) =
1

λ
[P (k − 1)−K(k)Φf(k − 1)P (k − 1)] ,

and

K(k)
△
=P (k − 1)ΦT

f (k − 1)

·

[

λ

1 + η(k)
Ilz +Φf(k − 1)P (k − 1)ΦT

f (k − 1)

]−1

IV. CONSTRUCTION OF Gf

In this section, we discuss two methods for constructing

Gf . Since the Rohrs counterexamples are the focus of this

paper, we limit the discussion to SISO plants.

A. NMP-Zero-Based Construction of Gf

We rewrite (4) as Gzu(q) = Hd
N(q)
D(q) , where D(q) is a

monic polynomial of degree n, N(q) is a monic polynomial

of degree n−d, and d is the relative degree of Gzu. Assume

that Hd and the nonminimum-phase (NMP) zeros of Gzu, if

any, are known. Now, consider the numerator factorization

N(q) = βU(q)βS(q), (18)

where βU(q) and βS(q) are monic polynomials of orders

nU and nS = n − d − nU, respectively, and each NMP

zero of Gzu(q) is a root of βU(q). The NMP-zero-based

construction of Gf is given by

Gf(q) = Hd

βU(q)

qnU+d
. (19)

Robustness of this construction is discussed in [8] for

minimum-phase systems, where it is shown that RCAC

has 6-dB downward gain margin, and infinite upward gain

margin to uncertainty in Hd. Finally, this construction does

not require η0 > 0 in (17) as long as Gf captures the NMP

zeros of Gzu.

B. Phase-Matching-Based Construction of Gf

For Ω ∈ [0, π] rad/sample, consider the phase mismatch

∆(Ω) between Gf and Gzu defined by

∆(Ω)
△
= cos−1

Re
[

Gzu(e
Ω)Gf(eΩ)

]

|Gzu(eΩ)| |Gf(eΩ)|
∈ [0, 180]. (20)
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Note that ∆(Ω) represents the angle between Gzu(e
Ω) and

Gf(e
Ω) in the complex plane. For the phase-mismatch-based

construction, Gf is chosen to satisfy

∆(Ω) ≤ 90 deg, for all Ω ∈ [0, π] rad/sample. (21)

A weaker condition is sufficient when Gzu is asymptotically

stable, and the exogenous signal w(k) is harmonic. In this

case, the phase-mismatch-based construction requires

∆(Ω) ≤ 90 deg,Ω ∈ spec(w), (22)

where “spec(w)” is the frequency spectrum of w.

The phase-matching-based construction of Gf is applicable

to plants that are either minimum-phase or Lyapunov stable,

that is, plants that are not both unstable and NMP. For NMP

systems, this construction requires that η0 be positive.

The robustness of the phase-matching-based construction

to phase mismatch is addressed in [11, 13]. Assuming that

w is harmonic, the numerical examples in [13] suggest that

having (22) and
∣

∣GFIR(e
Ω)

∣

∣ > 0, for all Ω ∈ spec(w) is

sufficient for the performance to converge to zero, and the

asymptotic convergence is robust to the choice of tuning

parameters η0 and P0. It is also shown that (22) is not

necessary for zero steady-state error, and, when this condition

is not satisfied, an appropriate choice of tuning parameters

may still lead to zero asymptotic performance. However,

in this case, the asymptotic performance is sensitive to the

choice of η0 and P0. We stress that (22) is not required

for signal boundedness and stability properties, but for the

performance to converge to zero.

Two methods for minimizing phase mismatch are pre-

sented in [14]. These methods fit the IIR plant Gzu with an

FIR transfer function Gf . One method solves a constrained

linear least squares problem to bound ∆(Ω), while the other

method solves a nonlinear least squares problem to minimize

∆(Ω) with an FIR fit.

V. SAMPLING ZEROS OF THE ROHRS PLANT

Consider a discrete-time sampled-data system consisting

of a zero-order hold, a continuous-time transfer function

Tzu(s), and a sampler with sampling period h, connected

in series. The resulting discrete-time system is characterized

by the pulse transfer function Gzu(z) given by [16]

Gzu(z) = (1 − z−1)Z{Tzu(s)/s}. (23)

If the relative degree of Tzu(s) is at least 2, then Gzu(z)
has more zeros than Tzu(s). The additional zeros are called

sampling zeros [15].

Proposition 5.1: Let Tzu(s) be the nth-order rational

transfer function

Tzu(s) = H
(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)
(24)

with relative degree d = n−m ≥ 2, and let Gzu(z) be the

corresponding pulse transfer function. Then, as the sampling

period h approaches 0, n − d zeros of Gzu(z) approach 1,

and the remaining d− 1 zeros of Gzu(z) approach the roots

of Bd(z), where

Bd(z)
△
= βd,1z

d−1 + βd,2z
d−2 + · · ·+ βd,d, (25)

and for k ∈ {1, . . . , d},

βd,k
△
=

k
∑

i=1

(−1)k−j id
(

d+ 1
k − i

)

. (26)

Proof 5.1: See Theorem 1 of [15]. �

All of the zeros of Bd(z) are negative, and Bd(z) has at

least one zero that is on or outside the unit circle [17]. For

d ≥ 3, Bd(z) has at least one zero outside the unit circle.

As a consequence of Proposition 5.1, sampled-data sys-

tems are typically NMP. In particular, for sufficiently small

h, the pulse transfer function for a continuous-time system

whose relative degree is at least 3 is NMP.

We now discuss the complications that arise in sampled-

data control of the Rohrs counterexamples due to unmodeled

high-frequency dynamics. In Section IV, the NMP-zero-

based construction of Gf requires knowledge of the NMP

zeros of Gzu(z), rather than the NMP zeros of Tzu(s).
Therefore, we consider the pulse transfer function Gzu(z).

We consider the first-order transfer function T0(s) =
2

s+1
cascaded with the unmodeled high-frequency dynamics

Λ(s) =
229

(s− 15− 2)(s− 15 + 2)
.

The plant is given by Tzu(s)
△
= T0(s)Λ(s), which is

minimum phase. Although the phase of T0(ω) is in [0, 90]
deg for all ω, Tzu(ω) has a phase crossover frequency of

ωpc = 16.1 rad/sec.

Since the relative degree of T0(s) is 1, the pulse transfer

function G0(z) has no sampling zeros for every sampling

period h, and thus, G0(z) is minimum phase. However, due

to the unmodeled dynamics Λ(s), the relative degree of the

plant Tzu(s) is 3. Therefore, in accordance with Proposition

5.1, Gzu(z) is NMP for all sufficiently small h.

Applying (23) into T0(s) and Tzu(s), the numerator

polynomial corresponding to the pulse transfer functions

G0(z) = N0(z)/D0(z) and Gzu(z) = Nzu(z)/Dzu(z) are

N0(z) = 2(1− e−h), (27)

Nzu(z) = β2z
2 + β1z + β0, (28)

where

β0 = −2e−31h + 2.29e−30h + 1.03e−16h sin 2h

− 0.29e−16h cos 2h, (29)

β1 = −0.29e−30h + 4.29(e−16h − e−15h) cos 2h

+ 0.29e−h − 1.03e−15h sin 2h, (30)

β2 = 0.29e−15h cos 2h− 2.29e−h + 2

+ 1.03e−15h sin 2h. (31)

Figure 2 illustrates the zeros of (28). We observe that for

all h . 0.2, one of the sampling zeros is outside the unit

circle and thus Gzu(z) has an unknown NMP zero, which

is caused by the high-frequency dynamics Λ(s). Neither the
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presence nor the location of this NMP zero can be assumed

to be known, because Λ(s) is assumed to be unmodeled.
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Fig. 2. Sampling Zeros of Gzu(z) as a function of h.

VI. ROBUSTNESS OF RCAC FOR THE ROHRS

COUNTEREXAMPLES

For h > 0.2 sec, the Rohrs sampled-data plant Gzu(z)
is minimum phase. In this case, for η0 = 0, the robustness

of NMP-zero-based construction is determined by the ratio

of the first Markov parameters of G0(z) and Gzu(z), as

discussed in Section IV-A. In Figure 3, we illustrate the

first Markov parameters H0,1 = 2(1 − e−h) and Hzu,1 =
β2 of G0(z) and Gzu(z) for h ∈ [0, 5]. As h → ∞,

it follows from (27), (31) that both Markov parameters

approach 2. Therefore,
H0,1

Hzu,1
≥ 0.5 for all h. Hence, the

Markov parameter uncertainty is not a robustness issue for

the adaptive system. However, for h . 0.2, the available

model G0(z) does not capture the NMP sampling zeros, and

therefore, NMP-zero-based construction will not work.
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Fig. 3. First Markov parameters of G0(z) and Gzu(z).
On the other hand, using the error-dependent control

penalty η(k) (17) with η0 > 0 ensures robustness and

closed-loop stability, whether Gzu(z) is NMP or not. In-

tuitively, closed-loop stability is expected with η0 > 0.

Indeed, suppose that the closed-loop system becomes un-

stable, and z(k) diverges to infinity. In this case, the term
∑k

i=1 λ
k−iη(i)Θ̂(k)TΦT

f (i− 1)Φf(i− 1)Θ̂(k) in (16) starts

dominating other terms. Therefore, assuming
∑k

i=1 Φ
T
f (i −

1)Φf(i − 1) ≥ αI > 0, the optimization problem reduces

to minΘ̂(k) ‖Θ̂(k)‖, which gives Θ̂ = 0. Thus, the closed-

loop system reverts back to open-loop. Since the open-loop

plant is asymptotically stable, z(k) cannot diverge to infinity,

which contradicts the assumption that the closed-loop system

is unstable.

Since closed-loop stability does not imply zero asymptotic

performance, using η0 > 0 does not guarantee zero asymp-

totic performance. For zero performance, we use phase-

matching-based construction to satisfy (22). Since T0(s) and

Tzu(s) may have a phase difference larger than 90 deg at

high frequencies, fitting an FIR plant with G0(z) may result

in poor phase matching at high frequencies. However, as

discussed in Section IV-B, (22) is not a necessary condition

for zero steady-state error.

VII. SAMPLED-DATA ADAPTIVE CONTROL OF THE

ROHRS COUNTEREXAMPLES WITH RCAC

We now apply RCAC to the Rohrs counterexamples [1].

In each example, the goal is to follow the output of the

reference model Gm(s) =
3

s+3 . Each simulation is initialized

with the controller gain vector Θ(0) set to zero, and RCAC

is turned on at k = 5. We use λ = 1 in all simulations.

For consistency with the MRAC architecture, we use the

measurements of the plant output y0 and the reference signal

r so that y =
[

y0 r
]T

. All modeling information we

use is based on G0(z) rather than Gzu(z). In each case,

we illustrate the time traces of z(k), u(k), Θ(k), and the

closed-loop spectral radius spr(Ã(k)).

A. First Rohrs Counterexample: Sinusoidal Reference Inputs

In this section, we provide simulation results that illustrate

the effectiveness of the error-dependent weighting η(k) in

preserving the closed-loop stability as predicted in Section

VI regardless of the frequency content of the reference signal.

We first examine the NMP-based construction method with

η(k) = 0, and show that the method exhibits instability when

the sampling rate is small enough to cause the sampling

zeros to become NMP. We illustrate that the NMP sampling

zero is the only cause of instability, and when the sampling

period is large, the method does not suffer instability nor any

parameter drift, regardless of the frequency spectrum of the

reference input. Next, we introduce performance-dependent

penalty η(k) by letting η0 > 0, and show that the closed-loop

system remains stable even in the presence of the unknown

NMP sampling zero independently of the frequency content

of the reference signal.

1) NMP-Zero-Based Construction with η0 = 0: We first

consider the reference input r1(t) = 0.3 + 2 sin(8.0t). We

sample the continuous-time plant with h = 0.25 sec/sample,

so that the Nyquist frequency ωN = 4π rad/sec is larger

than the largest reference frequency 8 rad/sec. For this

sampling period, the sampling zeros are minimum-phase.

The first Markov parameters corresponding to the pulse

transfer functions Gzu(z) and G0(z) are Hzu,1 = 0.2341
and H0,1 = 0.4424, respectively. We let Gf = H0,1q

−1,

and choose P0 = 10I , nc = 10. As shown in Figure 4,

z converges to zero, u remains bounded, Θ converges, and

spr(Ã)(k) converges below 1.

Keeping h the same, we now consider the reference input

r2(t) = 0.3 + 1.8 sin(16.1t), which causes parameter drift

and instability in traditional adaptive methods [1]. Note that

the frequency of the reference signal is selected at the point

where Tzu(s) has a 180-deg phase lag. Furthermore, note

that the Nyquist rate ωN is smaller than the largest reference

frequency 16.1 rad/sec. However, the goal here is to show

that closed-loop stability is maintained independently of the
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Fig. 4. Response to the reference signal r1(t) = 0.3 + 2 sin(8.0t) with
h = 0.25 sec/sample and NMP-zero-based construction with η0 = 0.

frequency of the reference command, as long as the sampling

zeros arising from the unknown dynamics are minimum-

phase. Choosing the same controller and tuning parameters,

the parameters converge, and the closed-loop system is stable

after convergence as shown in Figure 5. Of course, since h
is not small enough to reconstruct r2(t) from the sampled

data, the performance z(t) is not equal to zero between

consecutive sampling instants.
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Fig. 5. Response to the reference signal r2(k) = 0.3 + 1.8 sin(16.1t)
with h = 0.25 sec/sample and NMP-zero-based construction with η0 = 0.

Finally, to improve the intersample behavior, we reduce h
to 0.1 sec/sample, and consider r2(t) again. We have shown

in Section VI that Gzu(z) is NMP for this sampling rate, and

predicted that the choice Gf = H0,1q
−1 with η0 = 0 would

lead to instability, since Gf does not capture the NMP zeros

of Gzu. The first Markov parameters are now Hzu,1 = 0.037,

H0,1 = 0.1903, and we choose Gf = H0,1q
−1, P0 = 10I ,

and nc = 10. RCAC destabilizes the closed-loop system as

shown in Figure 6. Similar behavior is obtained with r1(t)
and other reference signals, which confirms that the only

cause of instability is the unknown NMP sampling zero.
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Fig. 6. Response to the reference signal r2(t) = 0.3 + 1.8 sin(16.1t)
with h = 0.1 sec/sample and NMP-zero-based construction with η0 = 0.

2) Phase-matching-based Construction with η0 > 0: We

now introduce performance-dependent weighting η(k), and

use phase-matching-based construction for zero asymptotic

performance. We sample the plant with h = 0.1 sec/sample.

We use the linear fitting method outlined in [14] to obtain

Gf = 0.1946q−1 + 0.1761q−2, which bounds ∆̃(Ω) by

65 deg from above, where ∆̃(Ω) is defined as in (20)

with Gzu replaced by G0. Consequently, this choice does

not guarantee (22); in fact, we have ∆(Ω) > 90 for

Ω ∈ [0.6, 1.77] ∪ [2.73 π] rad/sample. Note that the NMP

sampling zero −1.82 of Gzu is not captured by Gf .

We first consider r1(t). We have ∆(0) = 0 deg, and

∆(0.8) = 94 deg at the reference frequencies. Choosing

η0 = 0.3, pc = 10, P0 = I , and nc = 10, z converges to

zero, and the asymptotic closed-loop system is stable with

no parameter drift as shown in Figure 7.
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Fig. 7. Response to the reference signal r1(t) = 0.3 + 2 sin(8t) with
h = 0.1 sec/sample and phase-matching-based construction with η0 = 0.3.

Keeping Gf , η0, P0, and nc the same, we now con-

sider r2(t). We have ∆(1.61) = 92 deg at the sinusoidal

component of the reference spectrum. To ensure that no

parameter drift occurs, we simulate the adaptive system for

2000 seconds. The performance converges to zero, and the

asymptotic closed-loop system is stable as shown in Fig. 8.
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Ã
(k

h
))

Fig. 8. Response to the reference signal r2(t) = 0.3+1.8 sin(16.1t) with
h = 0.1 sec/sample and phase-matching-based construction with η0 = 0.3.

B. Second Rohrs Counterexample: Sensor Noise and Lack

of Persistent Excitation

Unknown additive sensor noise is pointed as the second

main robustness challenge for common adaptive methods [1].

In this section, we show that RCAC is unconditionally robust

to sensor noise with either construction methods.
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We consider the unknown additive sensor noise d(t), and

modify the measurement vectors y and z to have

y(k)
△
=

[

y0(k) + d(k) r(k)
]T

,

z(k)
△
=

[

y0(k) + d(k)− yM(k)
]

Hence, RCAC interprets the sensor noise as an additional

component of the command that needs to be followed.

Hence, the performance measurement z is not equal to

the command-following error y0 − yM. For illustration, we

consider the step reference input r(t) = 2, which is persis-

tently exciting of order one, with the unknown sensor noise

d(t) = 0.5 sin 8t, which is persistently exciting of order two.

1) NMP-zero-based Construction with η0 = 0: We sam-

ple the continuous-time plant h = 0.25 sec/sample, and thus

the sampling zeros are minimum-phase. Applying RCAC

with Gf = H0,1q
−1, nc = 10, and P0 = 10I , the perfor-

mance measurement (not the command-following error) is

driven to zero, the parameters converge, and the closed-loop

system is stable as shown in Figure 9.
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Fig. 9. Response to the reference input r(t) = 2 and sensor noise d(t) =
0.5 sin 8t with h = 0.25 sec/sample and NMP-zero-based construction.

2) Phase-matching-based Construction with η0 > 0:

We now sample the continuous-time plant with h = 0.1
sec/sample, and thus one of the sampling zeros is NMP.

Applying RCAC with Gf = 0.1946q−1 + 0.1761q−2, η0 =
0.3, pc = 10, P0 = I , and nc = 10, z converges to zero, the

parameters converge, and the closed-loop system is stable as

shown in Figure 10.
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Fig. 10. Response to r(t) = 2 and d(t) = 0.5 sin 8t with h = 0.1
sec/sample and phase-matching-based construction with η0 = 0.3.

VIII. CONCLUSIONS

We revisited the Rohrs counterexamples within the context

of sampled-data adaptive control using RCAC algorithm.

From a sampled-data point of view, it turns out that the

challenging aspect of these problems for RCAC is not the

unmodeled dynamics per se, but rather the sampling zeros,

which may be NMP under fast sampling. These sampling

zeros are induced by the unmodeled dynamics, and thus

cannot be assumed to be known. Nevertheless, since the

Rohrs counterexamples are open-loop asymptotically stable,

with the use of a performance-dependent weighting, RCAC is

able to provide reliable performance without the knowledge

of either the unmodeled high-frequency dynamics or the

NMP sampling zeros, regardless of the frequency content

of the reference input. Finally, the presence of output dis-

turbances do not adversely affect the closed-loop stability of

the adaptive system, regardless of the degree of persistency

of the reference input or the disturbance signal.
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