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ABSTRACT

Decentralized control is a longstanding challenge in systems

theory. A decentralized controller may consist of multiple local

controllers, connected to disjoint or overlapping sets of sensors

and actuators, and where each local controller has limited abil-

ity to communicate directly with the remaining local controllers

and, in addition, may lack global knowledge of the plant and op-

eration of the remaining local controllers. In the present paper

we apply adaptive control to investigate the ability of the local

controllers to cooperate globally despite uncertainty, communi-

cation constraints, and possibly conflicting performance objec-

tives. The approach we apply in this paper is based on retrospec-

tive cost adaptive control (RCAC). The development of RCAC as-

sumes a centralized controller structure; the goal of the present

paper is to investigate the stability and performance of RCAC in

a decentralized setting.

1 INTRODUCTION

In most applications of control, a single processing unit is

used to update the control input; this is the case of centralized

control. In many applications, however, the plant is spatially dis-

tributed, possibly in the form of a network, and communication

constraints make it impractical to update all control inputs using

a centralized controller. For example, the electrical power grid

involves multiple sectors, which are controlled independently;

the challenge is to ensure that overall decentralized control of

this system is reliable. Decentralized control is a longstanding

challenge in systems theory [1–4].

A decentralized controller may consist of multiple local con-

trollers, connected to disjoint or overlapping sets of sensors and

actuators, and where each local controller has limited ability to

communicate directly with the remaining local controllers and,

in addition, may lack global knowledge of the plant and oper-

ation of the remaining local controllers. The local performance

objectives of the local controllers are typically consistent in terms

of a single global performance objective, although it may be the

case that the local performance objectives may conflict, and the

challenge is to ensure that the local controllers cooperate so that

a measure of global performance is not unnecessarily degraded.

The Witsenhausen counterexample [5, 6] illustrates the dif-

ficulties that arise in ensuring global performance objectives

based on local information. In particular, communication con-

straints on the controller structure induce a nonconvex optimiza-

tion problem that may be computationally intractable.

In the present paper we apply adaptive control to investi-

gate the ability of the local controllers to cooperate globally de-

spite uncertainty, communication constraints, and possibly con-

flicting performance objectives. This investigation consists of

simulations under various decentralized controller architectures

to experimentally assess the interplay between local decisions

and global performance. The application for this study is active

noise control, where it is desirable to implement an active noise

control system with independent local controllers that lack the

ability to communicate with the other local controllers.

The approach we apply in this paper is based on retrospec-

tive cost adaptive control (RCAC). RCAC has the ability to con-

trol MIMO systems that are possibly unstable and nonminimum

phase under limited modeling information [7–10]. The develop-

ment of RCAC in [7, 8, 11–13] assumes a centralized controller

structure; the goal of this paper is to investigate the stability and

performance of RCAC in a decentralized setting. Adaptive tech-

niques for decentralized control are considered in [14–16].
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2 Disturbance Rejection Problem

Consider the MIMO discrete-time system

x(k+ 1) = Ax(k)+Bu(k)+D1w(k), (1)

y(k) =Cx(k), (2)

z(k) = E1x(k), (3)

where k ≥ 0, x(k) ∈ R
n is the state variable, z(k) ∈ R

lz is the

measured performance variable to be minimized, y(k) ∈ R
ly

contains additional measurements that are available for control,

u(k) ∈R
lu is the input signal, and w(k) ∈R

lw is the external dis-

turbance signal to be rejected. The system (1)–(3) can represent

a sampled-data application arising from a continuous-time sys-

tem with sample and hold operations with the sampling period

h, where y(k) represents y(kh), z(k) represents z(kh), and so on.

The plant (1)–(3) is represented by the transfer matrices Gyu(z)
△
=

C(zI−A)−1B, Gyw(z)
△
=C(zI−A)−1D1, Gzu(z)

△
= E1(zI−A)−1B

and Gzw(z)
△
= E1(zI −A)−1D1. Furthermore, for a positive inte-

ger i, Hi
△
= E1Ai−1B is the ith Markov parameter of Gzu.

Now, consider the nth
c -order strictly proper output feedback

controller

xc(k+ 1) = Acxc(k)+Bcy(k), (4)

u(k) =Ccxc(k), (5)

where xc(k) ∈ R
nc . The feedback control (4)–(5) is described by

u(k) = Gc(q)y(k), where

Gc(q) =Cc(qI −Ac)
−1Bc,

and q is the forward shift operator. The closed-loop system with

output feedback (4), (5) is thus given by

x̃(k+ 1) = Ãx̃(k)+ D̃1w(k), (6)

y(k) = C̃x̃(k), (7)

z(k) = Ẽ1x̃(k), (8)

where x̃
△
=
[

xT xT
c

]T
,

Ã =

[

A BCc

BcC Ac

]

, D̃1 =

[

D1

0nc×lw

]

, (9)

C̃ =
[

C 0ly×nc

]

, Ẽ1 =
[

E1 0lz×nc

]

. (10)

The closed-loop system (6)–(8) is described by

[

z

y

]T

= G̃(z)w =

[

G̃zw(z)
G̃yw(z)

]T

w,

where

G̃yw(z) = C̃(zI − Ã)−1D̃1, (11)

G̃zw(z) = Ẽ1(zI− Ã)−1D̃1. (12)

The goal of the adaptive disturbance rejection problem is to

develop an adaptive output feedback controller of the form (4),

(5) that minimizes the performance measure zTz in the presence

of the exogenous signal w with limited modeling information

about the dynamics and the exogenous signal. For the adaptive

system, the matrices in (4), (5) may be time varying, and thus the

transfer function models (11), (12) may not be valid during con-

troller adaptation. However, (11), (12) illustrates the structure of

the closed-loop system after controller convergence.

Decentralized adaptive control problem is an extension of

the adaptive disturbance rejection problem, where the goal is to

have multiple adaptive controllers Gc,i which generate a control

signal ui(k) using a measurement yi(k). The objective of each

controller is to minimize a performance measure zT
i zi in the pres-

ence of the exogenous signal w as well as the control signals

generated by the remaining decentralized controllers which may

have conflicting performance objectives. Decentralized adaptive

architecture is shown in Figure 1 for two controllers.

Figure 1. DECENTRALIZED ADAPTIVE CONTROL ARCHITECTURE

WITH TWO CONTROLLERS.

3 RETROSPECTIVE COST ADAPTIVE CONTROL

3.1 Control Law

We represent Eqs. (4), (5) by

u(k) = θT(k)φ(k− 1), (13)

2 Copyright © 2012 by ASME



where

θ(k) = [NT
1 (k) ··· NT

nc (k) MT
1 (k) ··· MT

nc (k) ]
T , (14)

φ(k− 1) = [ yT(k−1) ··· yT(k−nc) uT(k−1) ··· uT(k−nc) ]
T , (15)

and, for all 1≤ i≤ nc, Ni(k)∈R
ly×lu , Mi(k)∈R

lu×lu . The control

law (13) can be reformulated as

u(k) = Φ(k− 1)Θ(k), (16)

where

Φ(k− 1)
△
= Ilu ⊗φT(k− 1) ∈ R

lu×lunc(lu+ly), (17)

Θ(k)
△
= vec(θ(k)) ∈R

lunc(lu+ly), (18)

“⊗” denotes the Kronecker product, and “vec” is the column-

stacking operator.

3.2 Retrospective Performance

For a positive integer nf, we define

Gf(q)
△
= D−1

f (q)Nf(q) ∈R
lz×lu [q], (19)

where

Nf(q)
△
= K1qnf−1 +K2qnf−2 + · · ·+Knf

,

Df(q)
△
= Ilzq

nf +A1qnf−1 +A2qnf−2 + · · ·+Anf
, (20)

Ki ∈R
lz×lu for 1≤ i≤ r, A j ∈R

lz×lz for 1≤ j ≤ r, nf ≥ 1 is the or-

der of Gf, and each polynomial entry of Df(q) is asymptotically

stable. Next, for k ≥ 1, we define the retrospective performance

variable

ẑ(Θ̂(k),k)
△
= z(k)+Φf(k− 1)Θ̂(k)− uf(k), (21)

with

Φf(k− 1)
△
= Gf(q)Φ(k− 1) ∈ R

lz×lunc(lu+ly), (22)

uf(k)
△
= Gf(q)u(k) ∈R

lz , (23)

where Θ̂(k) is determined by optimization below.

In this paper, we choose Gf as a finite-impulse-response fil-

ter so that Ai = 0 for all i∈{1, . . . ,nf}. The choice of Gf is further

discussed in Section 4.

3.3 Cumulative Cost and Update Law

For k > 0, we define the cumulative cost function

J(Θ̂(k),k)
△
=

k

∑
i=1

λk−iẑT(Θ̂(k), i)ẑ(Θ̂(k), i)

+
k

∑
i=1

λk−iη(i)Θ̂T(k)ΦT
f (i− 1)Φf(i− 1)Θ̂(k)

+λk(Θ̂(k)−Θ0)
TP−1

0 (Θ̂(k)−Θ0), (24)

where λ ∈ (0,1], P0 ∈ R
lunc(lu+ly)×lunc(lu+ly) is positive definite,

η(k)≥ 0, and Θ0 ∈ R
lunc(lu+ly). In this paper, we choose

η(k)
△
= η0

pc−1

∑
j=0

zT(k− j)z(k− j). (25)

where η0 ≥ 0, and pc ≥ 1. The following result provides the

global minimizer of the cost function (24).

Proposition 3.1. Let P(0) = P0 and Θ(0) = Θ0. Then, for

all k ≥ 1, the cumulative cost function (24) has a unique global

minimizer Θ(k). Furthermore, Θ(k) is given by

Θ(k) = Θ(k− 1)−
1

1+η(k)
P(k− 1)ΦT

f (k− 1)Λ−1(k)ε(k),

(26)

where

Λ(k)
△
=

λ

1+η(k)
Ilz +Φf(k− 1)P(k− 1)ΦT

f (k− 1),

ε(k)
△
= z(k)− uf(k)+ (1+η(k))ûf(k),

ûf(k)
△
= Φf(k− 1)Θ(k− 1),

and P(k) satisfies

P(k) =
1

λ
[P(k− 1)

−P(k− 1)ΦT
f (k− 1)Λ−1(k)Φf(k− 1)P(k− 1)]. (27)

Proof 3.1. The result follows from RLS theory [17, 18].
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4 CONSTRUCTION OF Gf BASED ON PHASE MATCH-
ING

The phase-matching-based construction of Gf is applicable

to plants that are either minimum-phase or Lyapunov stable, and

does not require knowledge of the NMP zeros of the plant. For

NMP systems, this construction requires that η0 be positive. For

unstable, NMP plants, knowledge of the NMP zero locations

may be necessary [8, 12].

Let Gziu j
denote the transfer function from the jth input u j ∈

R to the ith performance output zi ∈ R. Furthermore, let Gf,i j

denote the i jth entry of Gf. Then, for Ω ∈ [0,π] rad/sample, the

phase mismatch ∆i j(Ω) between Gf,i j and Gziu j
is defined as

∆i j(Ω)
△
= cos−1

Re
[

Gziu j
(ejΩ)Gf,i j(ejΩ)

]

∣

∣Gziu j
(ejΩ)

∣

∣

∣

∣Gf,i j(ejΩ)
∣

∣

∈ [0,180]. (28)

For the phase-matching-based construction, we construct Gf

such that, for each input-output pair i j, 1 ≤ i ≤ lz, 1 ≤ j ≤ lu, the

channel-wise phase mismatch is smaller than 90 deg, that is,

∆i j(Ω)≤ 90 deg, for all Ω ∈ [0, π] rad/sample, (29)

A weaker condition is sufficient when Gzu is asymptotically sta-

ble, and the exogenous signal w(k) is harmonic. In this case, the

phase-mismatch-based construction requires

∆(Ωi)≤ 90 deg,Ω ∈ spec(w), (30)

where “spec(w)” is the frequency spectrum of w.

Two methods for minimizing phase mismatch are presented

in [19]. These methods fit the IIR plant Gziui
with an FIR trans-

fer function Gf,i j to bound or minimize the phase mismatch. In

particular, one method solves a constrained linear least squares

problem to bound ∆i j(Ω), while the other method solves a non-

linear least squares problem to minimize ∆i j(Ω). The former

requires an estimate of the frequency response Gziui
(ejΩ) for

Ω ∈ [0, π] (or for Ω ∈ spec(w)), while the latter requires an esti-

mate of the phase∠Gziui
(ejΩ) for Ω∈ [0, π] (or for Ω∈ spec(w).)

Although these methods parameterize the fit with an FIR plant,

greater flexibility may be obtained by allowing Gf to be a stable

IIR filter. When the nonlinear fitting method is used, only the

phase difference is minimized, therefore, the magnitude of the

FIR fit may be arbitrary. In this case, considering the robustness

margins presented in [11], we typically normalize the leading

coefficient of Gf to H1.

5 SIMULATION RESULTS

5.1 Decentralized Disturbance Rejection on an
Acoustic Duct

Consider the acoustic duct shown in Fig. 2 with five equally

spaced speakers and microphones. The equations of motion for

the duct are given by [20]

1

c2
ptt(ξ, t) = pξξ(ξ, t)+

5

∑
i=1

ρ0v̇νi
(t)δ(ξ− ξi),

ζi(t) = pξi,t ,

where p(ξ, t) is the acoustic pressure, c is the phase speed of the

acoustic wave (343 m/sec in air at room conditions), vνi
are the

speaker cone velocities (m/sec), and ρ0 is the equilibrium den-

sity of air (1.21 kg/m3 at room conditions). By using separation

of variables, retaining r modal frequencies, p(ξ, t) is given by

p(ξ, t) =
r

∑
i=0

qi(t)Vi(ξ).

The state space realization of the system is given by

χ̇(t) = Āχ(t)+ B̄ν(t)

ζ(t) = Ē1χ(t)

where

χ(t)
△
=
[ ∫ t

0 q1(τ)dτ q1(t) · · ·
∫ t

0 qr(τ)dτ qr(t)
]T

,

ν(t)
△
=
[

ν1(t) · · · ν5(t)
]T

= As

[

vν1
(t) · · · vν5

(t)
]T

,

ζ(t)
△
=
[

ζ1(t) · · · ζ5(t)
]

Ā
△
=

















0 1 0 · · · 0

−ω2
n1 −2µ1ωn1 0 · · · 0

0 0
. . .

...
... 0 1

0 0 · · · −ω2
nr −2µrωnr

















B̄
△
=
[

b̄1 · · · b̄5

]

, b̄i
△
=
[

0
ρ0

As
V1(ξi) · · · 0

ρ0

As
Vr(ξi)

]T

Ē1
△
=







ē1

...
ē5






, ēi

△
=
[

0 V1(ξi) · · · 0 Vr(ξi)
]

and

ωni
△
=

iπ

L
c, Vi(ξ)

△
= c

√

2

L
sin(

iπ

L
ξ), i = 1, 2, · · · , r
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where As is the cross-sectional area of the speaker, µi is the damp-

ing ratio of the ith acoustic mode, and L is the length of the duct.

In the examples of this section, we let As = 0.0025 m2, L = 3 m,

µ j = 0.1, j = 1, · · · ,4, and ξi = 0.3+(i− 1)0.6 m, i = 1, · · · ,5.

In each example, we sample the continuous-time system with the

sampling period h = 0.005 sec/sample using zero-order hold.

The sampling rate is chosen to be large enough to capture the

fast modes of the system. In all examples, we assume that the

performance measurement zi is the input to the ith decentralized

controller Gc,i, that is, yi = zi for all controllers. Finally, in each

case, we assume that the phase plot and the first Markov param-

eter of Gziui
is available for each decentralized controller.

Figure 2. ACOUSTIC DUCT.

Example 5.1. [Decentralized Disturbance Rejection with

Shared Performance Measure.] Consider two RCAC controllers

Gc,1, Gc,2 connected to the acoustic duct as in Figure 1. The

controllers are placed symmetrically so that Gc,1 actuates on

speaker S2, that is, u1(k) = ν2(kh), Gc,2 actuates on speaker S4,

that is, u2(k) = ν4(kh), and the performance objective for both

controllers is to minimize the acoustic pressure ζ3(kh), there-

fore, z1(k) = z2(k) = ζ3(kh), in the presence of the disturbance

w(k) = ν3(kh) generated by speaker S3. Because of the symme-

try between the controllers, the sampled-data transfer functions

Gz1u1
(z) and Gz2u2

(z) are equal, whose pole-zero configurations

are shown in Figure 3. Furthermore, H1 = 9706.9 for both trans-

fer functions. Using the phase information, we apply the non-

linear fitting method [19] to minimize the phase mismatch and

obtain

Gf,1(q) = Gf,2(q) = Kf

[

q−1 · · · q−15
]T

, (31)

where

Kf = κ[1 0.94 0.93 0.83 0.65 0.38 0.04 −0.3 −0.6 −0.79 −0.87

−0.82 −0.68 −0.48 −0.24 ] (32)

and κ > 0. Note that the choice of κ does not affect the phase

of Gf and thus the phase mismatch, and, as stated in Section 4, κ
is typically normalized to H1 when one centralized controller is

constructed with nonlinear fitting method. However, for reasons

explained below, we choose κ = 2H1.
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Figure 3. POLES AND ZEROS OF Gz1u1
(z) AND Gz2u2

(z).

We consider the sinusoidal disturbance ν3(t) =
10−5(sinω1t + 1(t − 1)sinω2t) m3/sec, where ω1 = 1.257

kHz and ω2 = 0.838 kHz. Furthermore, we assume that at

t = 0.5 sec, speaker S2 experiences damage and loses the ability

to actuate.

Both controllers are chosen to be of order nc = 15, and the

RLS covariance matrix for each controller is initialized from

P0 = I. The plant is allowed to operate in open-loop for 100 time

steps, and at k = 100 (that is, t = 0.1), both controllers are turned

on. The acoustic pressure ζ3(kh), which is the performance mea-

surement, is driven to zero, Gc,2 readapts to counter the speaker

damage at k = 1000, and it further adapts when the second si-

nusoidal component of w(k) appears at k = 2000, as shown in

Figure 4.

In (32), contrary to the description in Section 4, we chose the

leading coefficient κ to be equal to 2H1, instead of H1. Poor re-

sults are obtained with κ = H1, and, if κ is further reduced below

H1, instability is observed. This is because the total control input

u(k) = u1(k)+u2(k) generated by the two symmetrically placed,

uncoordinated controllers is twice as large as the required control

level. Therefore, to reduce the control effort generated by each

decentralized controller, we multiply Gf,1 and Gf,2 by 2H1, that

is, twice the constant that is used with a centralized controller. �

Example 5.2. [Decentralized Disturbance Rejection with

Separate Performance Measures.] Consider two RCAC con-

trollers Gc,1, Gc,2 connected to the acoustic duct as in Figure

1. The controllers are placed on both edges of the duct so

that Gc,1 actuates speaker S1, that is, u1(k) = ν1(kh), Gc,2 ac-

tuates speaker S5, that is, u2(k) = ν5(kh). The controllers now

have separate performance objectives; z1(k) = ζ1(kh), whereas

z2(k) = ζ5(kh), and the disturbance signal w(k) is generated by

speaker S2. Because of the symmetry between the controllers

and the performance measurements, the sampled-data transfer

functions Gz1u1
(z) and Gz2u2

(z) are equal, whose pole-zero con-

figurations are shown in Figure 5. Furthermore, H1 = 33831 for

5 Copyright © 2012 by ASME
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Figure 4. SIMULATION RESULTS FOR EX. 5.1: TWO DECENTRAL-

IZED RCAC CONTROLLERS ARE TURNED ON AT k = 100 TO MIN-

IMIZE THE SHARED PERFORMANCE MEASURE z(k) = ζ3(kh). AT

k = 1000, SPEAKER S2 EXPERIENCES DAMAGE AND Gc,1 LOSES

THE ABILITY TO ACTUATE. Gc,2 READAPTS TO COUNTER THE

SPEAKER FAILURE AND THE ADDITIONAL COMPONENT OF THE

DISTURBANCE THAT APPEARS AT k = 2000.

both transfer functions. Using the phase information, we apply

the nonlinear fitting method [19] to minimize the phase mismatch

and obtain

Gf,1(q) = Gf,2(q)

= κ
q4 + 0.3771q3− 0.2711q2− 0.6127q− 0.4933

q5
,

where κ is chosen to be H1, since the performance measures are

separate.
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Figure 5. POLES AND ZEROS OF Gz1u1
(z) AND Gz2u2

(z).

We consider the sinusoidal disturbance ν2(t) = 10−3 sin ωt

m3/sec, where ω = 2.513 kHz, hence, w(k) = 10−3 sinΩk, Ω =

1.2566 rad/sample. The controllers interact with the duct as

follows. First, for 500 time steps, the duct is allowed to run

open-loop. Next, at k = 500, Gc,1 is turned on for minimiz-

ing the acoustic pressure ζ1(kh). At k = 1500, the parameters

θ1 of Gc,1 are frozen, and Gc,2 is turned on for minimizing the

acoustic pressure ζ5(kh). Finally, at k = 2500, Gc,1 is allowed

to adapt again, and both controllers adapt simultaneously. The

tuning parameters are chosen to be nc,1 = 4, nc,2 = 2, P0,1 =
0.001I, P0,2 = 0.005I, η0,1 = 0.005, pc,1 = 10, η0,2 = 0.001, and

pc,2 = 10. Even though Gziui
are minimum-phase for i = 1,2,

we choose nonzero η0,i to bound the control amplitude during

the transient period for better transient performance. The closed-

loop response is illustrated in Figure 6. The closed-loop sup-

pression levels at k = 1500,2500 and 3000 are compared with

the open-loop level in Figure 7. �
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Figure 6. EX. 5.2: TWO DECENTRALIZED RCAC CONTROLLERS AC-

TUATING SPEAKERS S1 AND S5 WITH SEPARATE PERFORMANCE

OBJECTIVES. AT k = 500, Gc,1 IS ACTIVATED AND DRIVES THE

ACOUSTIC PRESSURE ζ1(kh) AT MICROPHONE M1 TO ZERO.

NEXT, AT k = 1500, THE PARAMETERS OF Gc,1 ARE FROZEN,

Gc,2 IS ACTIVATED AND DRIVES ζ5(kh) TO ZERO, BUT DISRUPTS

ζ1(kh). FINALLY, AT k = 2500, Gc,1 IS ALLOWED TO ADAPT AGAIN

TO DRIVE ζ1(kh) BACK TO ZERO.

5.2 Decentralized Disturbance Rejection for a

Lumped-Parameter Structure

Consider the multiple degrees-of-freedom (MDOF) r-mass

lumped parameter structure with shown in Fig. 8. The equations

of motion for this system are given by

Mq̈+Cdq̇+Kq = B0 f +Dww̄, (33)
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Figure 7. OPEN-LOOP AND CLOSED-LOOP BODE MAGNITUDE

PLOTS IN EX. 5.2 AT TIME STEPS k = 1500,2500 AND 3000.

BLUE REPRESENTS OPEN-LOOP, RED REPRESENTS CLOSED-

LOOP. THE FIRST ROW SHOWS Gz1w, WHEREAS THE SECOND

ROW SHOWS Gz2w. COMPARED TO THE OPEN-LOOP LEVELS,

ABOUT 45 dB MORE SUPPRESSION IS OBTAINED AT THE COM-

MAND FREQUENCY 1.2566 RAD/SAMPLE IN BOTH CHANNELS AT

k = 3000.

where q =
[

q1 · · · qr

]

∈ R
r is the displacement vector, M, Cd

and K are the mass, damping and stiffness matrices respectively,

and are given by M = diag(m1, . . . ,mr),

Cd =















c1 + c2 −c2 0 · · · 0

−c2 c2 + c3 −c3 0 · · · 0

. . .
. . .

. . .
. . .

...
0 · · · −cr−1 cr−1 + cr −cr 0

0 · · · 0 −cr cr + cr+1















K =















k1 + k2 −k2 0 · · · 0

−k2 k2 + k3 −k3 0 · · · 0

. . .
. . .

. . .
. . .

...
0 · · · −kr−1 kr−1 + kr −kr 0

0 · · · 0 −kr kr + kr+1















.

The control input to the system is the force f ∈ R
lu , and the dis-

turbance signal is given by w̄ ∈ R
lw . The outputs are

y(t) =
[

C0 C1

]

[

q

q̇

]

, (34)

z(t) =
[

Ep Ev

]

[

q

q̇

]

, (35)

where z(t) ∈ R
lz is the performance measurement, and y(t) ∈

R
ly contains measurements available for feedback. We can write

(33)–(35) in state-space form as

χ̇(t) = Āχ(t)+ B̄ū(t)+ D̄1w̄(t), (36)

y(t) = C̄χ(t), (37)

z(t) = Ē1χ(t), (38)

where

Ā
△
=

[

0 Ir

−M−1K −M−1Cd

]

B̄
△
=

[

0r×lu

M−1B0

]

, D̄1
△
=

[

0r×lw

M−1Dw

]

,

C̄
△
=
[

C0 C1

]

, Ē1
△
=
[

Ep Ev

]

χ(t)
△
=
[

q(t) q̇(t)
]

, ū(t)
△
= f (t).

Figure 8. AN r-MASS LUMPED PARAMETER STRUCTURE.

In each example, we sample the continuous-time system

(36)–(38) with the sampling period h = 0.2 sec/sample using

zero-order hold to obtain the sampled-data plant (1)–(3). Each

example is constructed so that the sampling rate is sufficiently

large to capture the fastest mode of the plant, and the distur-

bance frequency is chosen smaller than the Nyquist rate to pre-

vent aliasing. Finally, in all examples, we assume that the perfor-

mance measurement zi is the input to the ith decentralized con-

troller Gc,i, that is, yi = zi for all controllers.

Example 5.3. [Decentralized Disturbance Rejection with

Separate Performance Measures.] Consider a 3DOF lumped pa-

rameter structure with the masses m1 = 1.1 kg, m2 = 1.2kg,

m3 = 1kg; spring constants k1 = 0.7 kg/sec2, k2 = 3 kg/sec2,

k3 = 2.3 kg/sec2, k4 = 1 kg/sec2; and the damping coefficients

c1 = 1.5 kg/sec, c2 = 0.5 kg/sec, c3 = 0.8 kg/sec, and c4 = 1

kg/sec. With these parameters, every eigenvalue of Ā lies in the

open left-half plane, and thus the structure is asymptotically sta-

ble.

Consider two RCAC controllers Gc,1, Gc,2 connected to the

structure as in Figure 1. The controller Gc,1 applies a force f1(kh)
on m1, and the controller Gc,2 applies a force f3(kh) on m3, that

is, u1(k) = f1(kh), u2(k) = f3(kh) (see Figure 8). The con-

trollers have separate performance objectives; z1(k) = q1(kh),
whereas z2(k) = q3(kh), and there is a disturbance force w̄2(t)
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exerted on the mass m2. The goal of each decentralized con-

troller is to reject the disturbance force from the corresponding

performance variable. Pole-zero configurations of the sampled-

data plants Gz1u1
(z) and Gz2u2

(z) are shown in Figure 9. Both

channels have a minimum-phase sampling zero near −0.7. Fur-

thermore, the first Markov parameter corresponding to Gz1u1
is

H1,1 = 0.0132, and the first Markov parameter corresponding

to Gz2u2
is H1,2 = 0.0144. Using the phase information of the

sampled-data channels, we apply the nonlinear fitting method

[19] to minimize the phase mismatch in both channels, and ob-

tain

Gc,1(q) = H1,1(q
−1 + 0.9318q−2),

Gc,2(q) = H1,2(q
−1 + 0.9297q−2).
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Figure 9. POLES AND ZEROS OF Gz1u1
(z) AND Gz2u2

(z).

We consider the sinusoidal disturbance force w̄2(t) =
100sinωt N, where ω = 5.236 Hz, hence, w(k) = 100sinΩk,

Ω = 1.0472 rad/sample. The controllers interact with the struc-

ture as follows. First, for 500 time steps, the duct is allowed to

run open-loop. Next, at k = 500, Gc,1 is turned on for minimizing

the displacement q1(kh). At k = 1500, the parameters θ1 of Gc,1

are frozen, and Gc,2 is turned on for minimizing the displacement

q3(kh). Finally, at k = 2500, Gc,1 is allowed to adapt again, and

both controllers adapt simultaneously. The tuning parameters are

chosen to be nc = 4, P0 = 1010I, η0 = 0 for both controllers. The

closed-loop response is illustrated in Figure 10. Unlike Ex. 5.2,

the decentralized controllers do not significantly disrupt the per-

formance measure of each other. This is because the bode gains

of Gz1u2
and Gz2u1

at the disturbance frequency are significantly

lower than the gains of Gz1u1
and Gz2u2

. The closed-loop sup-

pression levels at k = 1500,2500 and 3000 are compared with

the open-loop level in Figure 11. �

Example 5.4. [Decentralized Disturbance Rejection in the

Presence of Unknown NMP Zeros.] Consider a 4DOF lumped

parameter structure with the masses m1 = 0.5 kg, m2 = 1.2kg,

m3 = 1.4kg, m4 = 0.4 kg; spring constants k1 = 0.5 kg/sec2, k2 =
3.5 kg/sec2, k3 = 2 kg/sec2, k4 = 3 kg/sec2, k5 = 1 kg/sec2;

and the damping coefficients c1 = 1.7 kg/sec, c2 = 2.6 kg/sec,

c3 = 2.3 kg/sec, c4 = 2.5 kg/sec, and c5 = 1.8 kg/sec. With
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Figure 10. EX. 5.3: TWO DECENTRALIZED RCAC CONTROLLERS

EXERTING FORCES f1 AND f3 WITH SEPARATE PERFORMANCE

OBJECTIVES. AT k = 500, Gc,1 IS ACTIVATED AND DRIVES THE

PERFORMANCE DISPLACEMENT q1(kh) TO ZERO. NEXT, AT k =
1500, THE PARAMETERS OF Gc,1 ARE FROZEN, Gc,2 IS ACTIVATED

AND DRIVES q3(kh) TO ZERO. THE ACTIVATION OF Gc,2 DOES NOT

SIGNIFICANTLY AFFECT THE DISPLACEMENT q1.
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Figure 11. OPEN-LOOP AND CLOSED-LOOP BODE MAGNITUDE

PLOTS IN EX. 5.3 AT TIME STEPS k = 1500,2500 AND 3000.

BLUE REPRESENTS OPEN-LOOP, RED REPRESENTS CLOSED-

LOOP. THE FIRST ROW SHOWS Gz1w, WHEREAS THE SECOND

ROW SHOWS Gz2w. COMPARED TO THE OPEN-LOOP LEVELS,

ABOUT 60 dB MORE SUPPRESSION IS OBTAINED AT THE COM-

MAND FREQUENCY 1.0472 RAD/SAMPLE IN BOTH CHANNELS AT

k = 3000.

these parameters, every eigenvalue of Ā lies in the open left-half

plane, and thus the structure is asymptotically stable.

Consider two RCAC controllers Gc,1, Gc,2 connected to the

structure as in Figure 1. The controller Gc,1 applies a force

f1(kh) on m1, and the controller Gc,2 applies a force f4(kh) on

m4, and thus, u1(k) = f1(kh), u2(k) = f4(kh). The controllers

have separate performance objectives; z1(k) = q2(kh), whereas

z2(k) = q3(kh), and the disturbance forces w̄2(t) and w̄3(t) per-

turb the structure. The goal of each decentralized controller
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is to reject the disturbance forces from the corresponding per-

formance variable. As shown in Figure 12, both channels are

nonminimum-phase; Gz1u1
(z) has a NMP sampling zero near

−2.3, whereas Gz2u2
(z) has a NMP sampling zero near −2.2.

Furthermore, the first Markov parameter corresponding to Gz1u1

is H1,1 = 0.0035, and the first Markov parameter corresponding

to Gz2u2
is H1,2 = 0.0034. Using the frequency response infor-

mation of the sampled-data channels, we apply the linear fitting

method [19] to bound the phase mismatch for each channel from

above by 60 deg. This gives

Gc,1(q) =−0.005886q−1+ 0.006596q−2, (39)

Gc,2(q) =−0.005438q−1+ 0.006233q−2. (40)

Note that since the linear method is used to obtain (39), (40),

there is no need to normalize the leading coefficients.
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Figure 12. POLES AND ZEROS OF Gz1u1
(z) AND Gz2u2

(z).

We consider the sinusoidal disturbance forces w̄2(t) =
100sinω1t N and w̄3(t) = 80sinω2t, where ω1 = 4.488 Hz

and ω2 = 2.856 Hz. Hence, we have w(k)
[

w1(k) w2(k)
]

,

where w1(k) = 100sinΩ1k, w2(k) = 80sinΩ2k, Ω1 = 0.8976

rad/sample, and Ω2 = 0.5712 rad/sample. The controllers in-

teract with the structure as follows. First, for 500 time steps, the

duct is allowed to run open-loop. Next, at k = 500, Gc,1 is turned

on for minimizing the displacement q2(kh). At k = 3000, the

parameters θ1 of Gc,1 are frozen, and Gc,2 is turned on for min-

imizing the displacement q3(kh). Finally, at k = 6000, Gc,1 is

allowed to adapt again, so that both controllers adapt simultane-

ously. The time intervals for individual controller adaptation are

chosen to be larger than the previous Examples 5.2 and 5.3, be-

cause, typically, it takes longer for RCAC to converge when the

plant is nonminimum-phase. The tuning parameters are chosen

to be nc = 15 and P0 = 0.1I for both controllers. Furthermore,

since both channels have unknown NMP zeros, we let η0 = 0.1,

pc = 10 for Gc,1; η0 = 0.2, pc = 10 for Gc,2. The closed-loop

response is illustrated in Figure 13. The closed-loop suppression

levels at k = 3000, k = 6000 and k = 10000 are compared with

the open-loop level in Figure 14. �
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Figure 13. EX. 5.4: TWO DECENTRALIZED RCAC CONTROLLERS

TO MINIMIZE q2(kh), q3(kh) IN THE PRESENCE OF NMP SAMPLING

ZEROS. AT k = 500, Gc,1 IS ACTIVATED AND DRIVES THE PER-

FORMANCE DISPLACEMENT q2(kh) TO ZERO. NEXT, AT k = 3000,

THE PARAMETERS OF Gc,1 ARE FROZEN, Gc,2 IS ACTIVATED AND

DRIVES q3(kh) TO ZERO. THE PERFORMANCE q2(kh) DEGRADES

DUE TO THE ACTIVATION OF Gc,2. HOWEVER, AT k = 6000, Gc,1 IS

ALLOWED TO ADAPT AGAIN AND DRIVES q2(kh) BACK TO ZERO.
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Figure 14. OPEN-LOOP AND CLOSED-LOOP BODE MAGNITUDE

PLOTS IN EX. 5.4 AT TIME STEPS k = 3000, 6000 AND 10000.

BLUE REPRESENTS OPEN-LOOP, RED REPRESENTS CLOSED-

LOOP. FIRST ROW SHOWS Gz1w1
, SECOND ROW SHOWS Gz1w2

,

THIRD ROW SHOWS Gz2w1
, AND FOURTH ROW SHOWS Gz2w2

. DIS-

TURBANCE FREQUENCY IS ATTENUATED AT EACH CHANNEL.

6 CONCLUSION

In this paper, we investigated the stability and performance

of retrospective cost adaptive control in a decentralized setting.
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We applied adaptive control to investigate the ability of the lo-

cal controllers to cooperate globally despite uncertainty, lack

of communication, and possibly conflicting performance objec-

tives. The application for this study was noise rejection, where it

is desirable to implement an active noise control system with in-

dependent local controllers that lack the ability to communicate

with the other local controllers. When the decentralized con-

trollers share the same performance measure, stability was main-

tained by scaling the leading coefficient of the filter that is used

in retrospective cost optimization. When the decentralized con-

trollers have conflicting performance objectives, noise attenua-

tion was obtained by properly scheduling the adaptation periods

of the decentralized controllers.
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