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Abstract— We present a discrete-time adaptive control al-
gorithm that is effective for multi-input, multi-output systems
that are either minimum phase or nonminimum phase. The
adaptive control algorithm requires limited model informa-
tion, specifically, the first nonzero Markov parameter and the
nonminimum-phase zeros of the transfer function from the
control signal to the performance measurement. Furthermore,
the adaptive control algorithm is effective for stabilization as
well as command following and disturbance rejection, where
the command and disturbance spectrum is unknown. The novel
aspect of this adaptive controller is the use of a retrospective

performance function which is optimized using a recursive least-
squares algorithm.

I. INTRODUCTION

One of the major challenges in direct adaptive control is

the existence of nonminimum-phase zeros. More specifically,

many direct adaptive control methodologies rely on the

assumption that the plant is minimum phase [1]–[5], while

other invoke the stronger assumption that the plant is passive

or positive real [1]–[3]. With regard to command following

and disturbance rejection, many adaptive controllers rely on

assumptions regarding the spectrum of the commands to be

followed and disturbances to be rejected. More specifically,

it is commonly assumed that the commands and disturbances

have known spectrum and/or the disturbances are measured

directly [6], [7]. Furthermore, for disturbance rejection prob-

lems, many adaptive control methods require that the range

of the disturbance input matrix is contained in the range of

the control input matrix, meaning that the disturbance can

be rejected directly by the input without using the system

dynamics [5], [6].

In the present paper, we present a discrete-time adaptive

control algorithm that addresses several of these common

challenges in adaptive control. More specifically, the adaptive

controller presented in this paper is effective for plants that

are either minimum phase or nonminimum phase, provided

that we have estimates of the nonminimum-phase zeros.

Furthermore, this adaptive controller does not require that

the disturbance input matrix is matched to the control

input matrix. Finally, this adaptive controller is effective

for command following and disturbance rejection where the

spectrum of the commands and disturbances is unknown and

the disturbance is unmeasured.

Although the discrete-time adaptive control literature is

less extensive than the continuous-time literature, discrete-
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time versions of many continuous-time algorithms are avail-

able [2], [4], [8]–[10]. In addition, there are adaptive control

algorithms that are unique to discrete-time [4], [11]–[13]. In

[4], [11], discrete-time adaptive control laws are presented

for stabilization and command following of minimum-phase

systems based on the assumption that the commands are

known a priori and that an ideal tracking controller ex-

ists. An extension is given in [12], which addresses the

combined stabilization, command following, and disturbance

rejection problem. Note that the results of [4], [11], [12]

are restricted to minimum-phase systems. For nonminimum-

phase systems, [13] shows that periodic control may be used;

however, this adaptive control scheme requires periods of

open-loop operation.

Another class of discrete-time adaptive controllers use a

retrospective cost [14], [15]. These retrospective cost adap-

tive controllers are known to be effective for systems that

are either minimum phase or nonminimum phase provided

that knowledge of the nonminimum-phase zeros is avail-

able. Retrospective cost adaptive control uses a retrospective

performance measurement, in which the performance mea-

surement is modified based on the difference between the

actual past control inputs and the recomputed past control

inputs, assuming that the current controller had been used

in the past. Retrospective cost adaptive controllers have

been demonstrated on various experiments and applications,

including the Air Force’s deployable optical telescope testbed

in [16], the NASA generic transport model in [17], and flow

control problems in [18].

The adaptive laws of [14], [15] are derived by minimizing

an instantaneous retrospective cost, which is a function of

the retrospective performance at the current time. In this

paper, we present an adaptive control algorithm that is based

on a cumulative retrospective cost function. This cumu-

lative retrospective cost is a function of the retrospective

performance at the current time step and all previous time

steps. Using a cumulative retrospective cost function, which

is minimized by a recursive least-squares algorithm, can

result in improved transient performance as compared to the

instantaneous retrospective cost used in [14], [15].

II. PROBLEM FORMULATION

Consider the multi-input, multi-output discrete-time sys-

tem

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (1)

y(k) = Cx(k) + Du(k) + D2w(k), (2)

z(k) = E1x(k) + E2u(k) + E0w(k), (3)
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where x(k) ∈ R
n, y(k) ∈ R

ly , z(k) ∈ R
lz , u(k) ∈ R

lu ,

w(k) ∈ Rlw , and k ≥ 0. Our goal is to develop an

adaptive output feedback controller that generates a control

signal u that minimizes the performance z in the presence

of the exogenous signal w. We assume that measurements

of the output y and the performance z are available for

feedback; however, we assume that a direct measurement

of the exogenous signal w is not available.

Note that w can represent either a command signal to be

followed, an external disturbance to be rejected, or both. For

example, if D1 = 0, E2 = 0, and E0 6= 0, then the objective

is to have the output E1x follow the command signal −E0w.

On the other hand, if D1 6= 0, E2 = 0, and E0 = 0, then the

objective is to reject the disturbance w from the performance

measurement E1x. The combined command following and

disturbance rejection problem is addressed when D1 and E0

are block matrices. Lastly, if D1 and E0 are empty matrices,

then the objective is output stabilization, that is, convergence

of z to zero.

Furthermore, note that the performance variable z can

include the feedthrough term E2u. This term allows us to

design an adaptive controller where the performance z to be

minimized can include a weighting on control authority.

We represent (1) and (3) as the time-series model from u

and w to z given by

z(k) =

n
∑

i=1

−αiz(k − i) +

n
∑

i=d

βiu(k − i) +

n
∑

i=0

γiw(k − i),

(4)

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ Rlz×lu , γ0, . . . , γn ∈
Rlz×lw , and the relative degree d is the smallest non-negative

integer i such that the ith Markov parameter, either H0
△
= E2

if i = 0 or Hi
△
= E1A

i−1B if i > 0, is nonzero. Note that

βd = Hd.

III. CONTROLLER CONSTRUCTION

In this section, we construct an adaptive control algorithm

for the general control problem represented by (1)-(3). We

use a strictly proper time-series controller of order nc, such

that the control u(k) is given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (5)

where, for all i = 1, . . . , nc, Mi : N → Rlu×lu and Ni :
N → Rlu×ly are determined by the adaptive control law

presented below. The control (5) can be expressed as

u(k) = θ(k)φ(k),

where

θ(k)
△
=

[

N1(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)
]

,

and

φ(k)
△
=

[

yT(k − 1) · · · yT(k − nc)

uT(k − 1) · · · uT(k − nc)
]T

∈ R
nc(lu+ly).

Next, we define the retrospective performance

ẑ(θ̂, k)
△
= z(k) +

ν
∑

i=d

β̄i

[

θ̂ − θ(k − i)
]

φ(k − i), (6)

where ν ≥ d, θ̂ ∈ Rlu×(nc(ly+lu)) is an optimization variable

used to derive the adaptive law, and β̄d, . . . , β̄ν ∈ Rlz×lu .

The choice of ν and β̄d, . . . , β̄ν is discussed in sections IV

and V. Defining Θ̂
△
= vec θ̂ ∈ Rnclu(ly+lu) and Θ(k)

△
=

vec θ(k) ∈ Rnclu(ly+lu), it follows that

ẑ(Θ̂, k) = z(k) +

ν
∑

i=d

ΦT
i (k)

[

Θ̂ − Θ(k − i)
]

= z(k) −

ν
∑

i=d

ΦT
i (k)Θ(k − i) + ΨT(k)Θ̂, (7)

where, for i = d, . . . , ν, Φi(k)
△
= φ(k − i) ⊗ β̄T

i ∈
R

(nclu(ly+lu))×lz , where ⊗ represents the Kronecker prod-

uct, and Ψ(k)
△
=

∑ν

i=d Φi(k).
Now, define the cumulative retrospective cost function

J(Θ̂, k)
△
=

k
∑

i=0

λk−iẑT(Θ̂, i)Rẑ(Θ̂, i)

+ λk(Θ̂ − Θ(0))TQ(Θ̂ − Θ(0)), (8)

where λ ∈ (0, 1], and R ∈ Rlz×lz and Q ∈
R(nclu(ly+lu))×(nclu(ly+lu)) are positive definite. Note that

λ serves as a forgetting factor, which allows more recent

data to be weighted more heavily than past data.

The cumulative retrospective cost function (8) is mini-

mized by a recursive least-squares (RLS) algorithm with a

forgetting factor [2], [4], [5]. Therefore, J(Θ̂, k) is mini-

mized by the adaptive law

Θ(k + 1) =Θ(k) − P (k)Ψ(k)Ω(k)−1zR(k), (9)

P (k + 1) =
1

λ
P (k) −

1

λ
P (k)Ψ(k)Ω(k)−1ΨT(k)P (k), (10)

where Ω(k)
△
= λR−1 + ΨT(k)P (k)Ψ(k), P (0) = Q−1,

Θ(0) ∈ Rnclu(ly+lu), and the retrospective performance

measurement zR(k)
△
= ẑ(Θ(k), k). Note that the retrospec-

tive performance measurement is computable from (7) using

measured signals z, y, u, θ, and the matrix coefficients

β̄d, . . . , β̄ν . The cumulative retrospective cost adaptive con-

trol law is thus given by (9), (10), and

u(k) = θ(k)φ(k) = vec −1(Θ(k))φ(k). (11)

The key feature of the adaptive control algorithm is the

use of the retrospective performance (7), which modifies

the performance variable z(k) based on the difference be-

tween the actual past control inputs u(k − d), . . . , u(k − ν)

and the recomputed past control inputs û(Θ̂, k − d)
△
=

vec −1(Θ̂)φ(k − d), . . . , û(Θ̂, k − ν)
△
= vec −1(Θ̂)φ(k − ν),

assuming that the current controller Θ̂ had been used in

the past. In next two sections, we discuss how to select

β̄d, . . . , β̄ν .
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IV. β̄d, . . . , β̄ν FOR MINIMUM-PHASE SYSTEMS

Consider the case where the transfer function from u

to z is minimum phase, that is, the invariant zeros of

(A, B, E1, E2) are contained inside of the unit circle. In this

case, it is shown in [12] that the controller requires only

a single Markov parameter, namely, Hd. More specifically,

we let ν = d and β̄d = Hd. Under the minimum-phase

assumption, [12] proves asymptotic convergence of z to zero.

V. β̄d, . . . , β̄ν FOR NONMINIMUM-PHASE SYSTEMS

Consider the case where the transfer function from u

to z is nonminimum phase, that is, the invariant zeros

of (A, B, E1, E2) are not all contained inside of the unit

circle. For nonminimum-phase systems, we present three

constructions for the parameters β̄d, . . . , β̄ν .

A. Controller Construction Using Numerator Coefficients

First, consider the case where β̄d, . . . , β̄ν are the coeffi-

cients of the numerator polynomial matrix of the transfer

function from u to z, that is, ν = n and, for i = d, . . . , n,

β̄i = βi.

B. Controller Construction Using Nonminimum-Phase

Transmission Zeros

The results of [12] for the minimum-phase case suggests

that we require knowledge of only the first nonzero Markov

parameter and the nonminimum-phase transmission zeros of

the transfer function from u to z. In this section, we choose

β̄d, . . . , β̄ν to capture this information. Consider the matrix

transfer function from u to z given by Gzu(z)
△
= 1

α(z)β(z),

where α(z)
△
= z

n +α1z
n−1 + · · ·+αn−1z+αn and β(z)

△
=

z
n−dβd+z

n−d−1βd+1+· · ·+zβn−1+βn. Next, let β(z) have

the polynomial matrix factorization β(z) = βU(z)βS(z),
where βU(z) is a polynomial matrix of degree nU ≥ 0
whose leading matrix coefficient is βd, βS(z) is a monic

polynomial matrix of degree n − nU − d, and each Smith

zero of β(z) counting multiplicity that lies on or outside

the unit circle is a Smith zero of βU(z). More precisely,

if λ ∈ C, |λ| ≥ 1, and rank β(λ) < normal rank β(z),
then rank βU(λ) < normal rank βU(z) and rank βS(λ) =
normal rank βS(z). Furthermore, we can write βU(z) =
βU,0z

nU + βU,1z
nU−1 + · · · + βU,nU−1z + βU,nU

, where

βU,0
△
= βd. In this case, we let ν = nU + d and for

i = d, . . . , nU + d, β̄i = βU,i−d.

C. Controller Construction Using Markov Parameters

Consider the µ-MARKOV model of (4) obtained from µ

successive back-substitutions of (4) into itself, and given by

z(k) = −

n
∑

i=1

αµ,iz(k − µ − i) +

µ
∑

i=d

Hzu,iu(k − i)

+

n
∑

i=1

βµ,iu(k − µ − i) +

µ
∑

i=0

Hzw,iw(k − i)

+
n

∑

i=1

γµ,iw(k − µ − i), (12)

where αµ,i ∈ R, βµ,i ∈ R
lz×lu , γµ,i ∈ R

lz×lw , Hzu,i ∈
Rlz×lu , Hzw,i ∈ Rlz×lw , and µ ≥ d. Thus, the µ-MARKOV

transfer function from u to z is given by

Gzu,µ(z) =
1

pµ(z)

(

Hzu,dzµ+n−d + · · · + Hzu,µzn
)

+
1

pµ(z)

(

βµ,1zn−1 + · · · + βµ,n

)

, (13)

where pµ(z)
△
= zµ+n + αµ,1zn−1 + · · · + αµ,n.

The Laurent series expansion of Gzu(z) about z = ∞
is Gzu(z) =

∑∞

i=d z−iHzu,i. Truncating the numerator and

denominator of (13) is equivalent to the truncated Laurent

series expansion of Gzu(z) about z = ∞. Thus, the trun-

cated Laurent series expansion of Gzu(z) is Ḡzu,µ(z)
△
=

∑µ

i=d z−iHzu,i.

Note that, for a single-input, single-output system, a subset

of the roots of the polynomial H(z)
△
= zµ−dHzu,d +

zµ−d−1Hzu,d+1 + · · · + zHzu,µ−1 + Hzu,µ can be shown

to approximate the nonminimum-phase zeros from u to z

that lie outside of a circle in the complex plane centered at

the origin with radius equal to the spectral radius of A. Thus,

knowledge of Hzu,d, . . . , Hzu,µ encompasses knowledge of

the nonminimum-phase zeros from u to z that lie outside of

the spectral radius of A.

Therefore, we present a variation of the cumulative retro-

spective cost adaptive controller (9)-(11) that uses only the

Markov parameters Hzu,d, . . . , Hzu,µ. In this case, we let

ν = µ and for i = d, . . . , µ, β̄i = Hzu,i. This choice of

β̄d, . . . , β̄ν works well provided that µ ≥ d is chosen large

enough so that roots of H(z) approximate the nonminimum-

phase zeros from u to z.

VI. SIMULATION RESULTS

In this section, we present numerical examples to demon-

strate the cumulative retrospective cost adaptive controller. In

all simulations, we initialize the adaptive controller to zero,

that is, θ(0) = 0. Unless otherwise stated, the numerical

examples in this section are constructed as follows.

(i) We assume that the performance equals the output

measurement, that is, z = y.

(ii) We do not use a forgetting factor, that is, λ = 1.

(iii) The exogenous command and disturbance signal

w(k)
△
= [ w1(k) w2(k) w3(k) ]T, where, for i =

1, 2, 3, wi(k)
△
= Ai sin(2πωiTsk) + bi, where A1 = 6,

A2 = 8, and A3 = 10; ω1 = 5 Hz, ω2 = 10 Hz,

and ω3 = 15 Hz; b1 = 0, b2 = 0, and b3 = 20; and

Ts = 0.002 seconds.

(iv) All transfer functions from u to z are realized in

controllable canonical form, where

D1 =









0 0 0
1 0 0
0 1 0

0(n−3)×3









,

E0 =

[

0 0 −1

0(lz−1)×3

]

,
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and E2 = 0. Therefore, the control objective is to

reject the disturbances w1 and w2 while having the

first component of E1x follow the command w3. The

control effort is not weighted.

A. Stabilization for an unstable, SISO, minimum-phase plant

Consider the unstable, SISO, minimum-phase transfer

function from u to z, given by

Gzu(z) = β1
(z + 0.5)(z − 0.8)

(z + 1.1)(z − 1.2)(z + 0.3)
,

where β1 = −3. To represent the stabilization problem, let

D1, E2, and E0 be zero. Since Gzu is minimum phase,

the adaptive controller (9)-(11) requires knowledge of only

the first nonzero Markov parameter. More specifically, we

let ν = d = 1 and β̄1 = β1 = −3. The adaptive

controller (9)-(11) is implemented in feedback with nc = 3
and P (0) = 0.1I6. The plant has the initial condition

x(0) =
[

1 1 −2
]T

. Figure 1 shows the time history of

the closed-loop performance z and control u. The adaptive

controller is turned on at k = 0, and the closed-loop

performance approaches zero after approximately 50 time

steps.
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0.5

P
er

fo
rm

an
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z(

k)

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

C
o

n
tr

o
l 

 u
(k

)

Time steps

Fig. 1. Stabilization for an unstable, SISO, minimum-phase plant: The
adaptive control (9)-(11) with β̄1 = β1, nc = 3, and P (0) = 0.1I6 is
turned on at k = 0 and drives z to zero.

B. Command following and disturbance rejection for a sta-

ble, SISO, minimum-phase plant

Consider the stable, SISO, minimum-phase transfer func-

tion

Gzu(z) = β2
z − 0.3

(z − 0.4)(z + 0.6)(z− 0.8)
,

where β2 = 2. We let ν = d = 2 and β̄2 = β2 = 2.

The adaptive controller (9)-(11) is implemented in feedback

with nc = 20 and P (0) = 100I40. The plant has the initial

condition x(0) =
[

−2 2 0
]T

. Figure 1 shows the time

history of the closed-loop performance z and control u. The

system is allowed to run open loop for 100 time steps, and

the adaptive controller is turned on at k = 100. The closed-

loop performance approaches zero after approximately 70

time steps.
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Fig. 2. Command following and disturbance rejection for a stable, SISO,

minimum-phase plant: The adaptive control (9)-(11) with β̄2 = β2, nc =
20, and P (0) = 100I40 is turned on at k = 100 and drives z to zero.

C. Command following and disturbance rejection for a un-

stable, SISO, minimum-phase plant

Consider the unstable, SISO, minimum-phase transfer

function

Gzu(z) = β1
(z − 0.7)(z − 0.8)(z− 0.9)

(z − 1)2(z + 0.3 + 0.4)(z + 0.3 − 0.4)
,

where β1 = −1. We let ν = d = 1 and β̄1 = β1 = −1. The

adaptive controller (9)-(11) is implemented in feedback with

nc = 20 and P (0) = I40. The plant has the initial condition

x(0) = 0. Figure 3 shows the time history of the closed-

loop performance z and control u. The adaptive controller

is turned on at k = 0, and the closed-loop performance

approaches zero.
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−50
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Time steps

Fig. 3. Command following and disturbance rejection for an unstable,

SISO, minimum-phase plant: The adaptive control (9)-(11) with β̄1 = β1,
nc = 20, and P (0) = I40 is turned on at k = 0 and drives z to zero.

D. Stabilization for an unstable, SISO, nonminimum-phase

plant

Consider the unstable, SISO, nonminimum-phase transfer

function

Gzu(z) = β2
z − 1.1

z(z − 1.2)(z− 0.1)
,

where β2 = 2. To represent the stabilization problem, let

D1, E2, and E0 be zero. Note that Gzu is not strongly

stabilizable, that is, an unstable linear controller is required

to stabilize Gzu [19]. We let ν = n = 2 and let β̄2, β̄3

be the coefficients of the numerator polynomial of Gzu (as
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described in Section V-A), that is, β̄2 = 2 and β̄3 = −2.2.

The adaptive controller (9)-(11) is implemented in feedback

with nc = 3 and P (0) = I6. The plant has the initial

condition x(0) =
[

0.1 −0.1 0.2
]T

. Figure 4 shows the

time history of the closed-loop performance z and control

u. The adaptive controller is turned on at k = 0, and the

closed-loop performance approaches zero.
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Fig. 4. Stabilization for an unstable, SISO, nonminimum-phase plant: The
adaptive control (9)-(11) with nc = 3, P (0) = I6, and β̄2, β̄3 selected as
the numerator coefficients is turned on at k = 0 and drives z to zero.

E. Command following and disturbance rejection for a sta-

ble, SISO, nonminimum-phase plant

Consider the stable, SISO, nonminimum-phase transfer

function

Gzu(z) = β2
(z − 1.1)(z + 1.1)

z
2(z + 0.1 + 0.3)(z + 0.1 − 0.3)

,

where β2 = 0.5. We let ν = n = 4 and let β̄2, β̄3, β̄4 be

the coefficients of the numerator polynomial of Gzu. The

adaptive controller (9)-(11) is implemented in feedback with

nc = 40 and P (0) = 0.1I80. The plant has the initial

condition x(0) = 0. Figure 5 shows the time history of

the closed-loop performance z and control u. The system

is allowed to run open loop for 100 time steps, and the

adaptive controller is turned on at k = 100. The closed-loop

performance approaches zero.
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Fig. 5. Command following and disturbance rejection for a stable, SISO,

nonminimum-phase plant: The adaptive control (9)-(11) with nc = 40,
P (0) = 0.1I80, and β̄2, . . . , β̄4 selected as the numerator coefficients is
turned on at k = 100 and drives z to zero.

F. Command following and disturbance rejection for an

unstable, SISO, nonminimum-phase plant

Consider the unstable, SISO, nonminimum-phase transfer

function

Gzu(z) = β1
(z + 0.7)(z − 0.9)(z + 1.5)

(z − 1)2(z + 0.3 + 0.4)(z + 0.3 − 0.4)
,

where β1 = 0.5. We let ν = nU + d = 2 and let β̄1, β̄2 be

the coefficients of the unstable numerator polynomial βU (as

described in Section V-B). More specifically, let β̄1 = β1 =
0.5 and β̄2 = 1.5β1 = 0.75. The adaptive controller (9)-

(11) is implemented in feedback with nc = 25 and P (0) =
0.01I50. The plant has the initial condition x(0) = 0. Figure

6 shows the time history of the closed-loop performance z

and control u. The adaptive controller is turned on at k = 0,

and the closed-loop performance approaches zero.
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Fig. 6. Command following and disturbance rejection for an unstable,

SISO, nonminimum-phase plant: The adaptive control (9)-(11) with nc =
25, P (0) = 0.01I50, and β̄1, β̄2 selected as the coefficients of the unstable
numerator polynomial βU is turned on at k = 0 and drives z to zero.

G. Command following and disturbance rejection for a

stable, two-input, two-output, nonminimum-phase plant

Consider the stable, two-input, two-output, nonminimum-

phase transfer function

Gzu(z) =

[

(z+1.1)(z−1.1)
α(z)

(z+1.1)(z−1.5)
α(z)

z−1.1
α(z)

(z+1)(z−1.1)
α(z)

]

,

where α(z)
△
= (z+0.1)(z−0.2)(z−0.1+0.3)(z−0.1−0.3).

We let ν = n = 4 and let β̄2, β̄3, β̄4 be the coefficients

of the numerator polynomial matrix of Gzu (as described

in Section V-A). The adaptive controller (9)-(11) is imple-

mented in feedback with nc = 40 and P (0) = 0.01I320.

The plant has the initial condition x(0) = 0. Figure 7 is the

time histories of the closed-loop performance z. The system

is allowed to run open loop for 100 time steps, and the

adaptive controller is turned on at k = 100 . The closed-

loop performance approaches zero.

H. White-noise disturbance rejection for a stable, SISO,

nonminimum-phase plant

All of the examples thus far have focused on deterministic

command and disturbance signals. In this example, we

demonstrate that the retrospective cost adaptive controller

is able to improve open-loop performance under white-noise

4020



0 100 200 300 400 500 600
−60

−40

−20

0

20

40

P
er

fo
rm

an
ce

  
z 1

(k
)

0 100 200 300 400 500 600
−30

−20

−10

0

10

20

P
er

fo
rm

an
ce

  
z 2

(k
)

Time steps

Fig. 7. Command following and disturbance rejection for a stable, two-

input, two-output, nonminimum-phase plant: The adaptive control (9)-(11)
with nc = 40, P (0) = 0.01I320 , and β̄2, . . . , β̄4 selected as the numerator
coefficients is turned on at k = 100 and drives z to zero.

disturbances. Consider the stable, SISO, nonminimum-phase

transfer function from u to z, given by

Gzu(z) =
(z − 1.5)(z− 2)

α(z)
,

where α(z)
△
= (z − 0.4 + 0.9)(z − 0.4 − 0.9)(z − 0.8 +

0.5)(z − 0.8 − 0.5)(z + 0.9 + 0.4)(z + 0.9 − 0.4). The

transfer function Gzu is realized in a controllable canonical

form where D1 =
[

0 1 0 0 0
]T

, E0 = 0, E2 = 0,

and the initial condition is x(0) = 0. Therefore, the control

objective is to reject the disturbance w. In this example, w

is a white-noise sequence.

We let ν = n = 6 and let β̄4, β̄5, β̄6 be the coefficients of

the numerator polynomial of Gzu. The adaptive controller

(9)-(11) is implemented in feedback with nc = 6 and

P (0) = 0.01I12. Figure 8 shows the time history of the open-

loop and closed-loop performance z. The system is allowed

to run open loop for 0.5 seconds, then the adaptive controller

is turned on and the controller reduces the magnitude of

the response to the white-noise disturbance. Figure 9 shows

the power spectral density of the open-loop and closed-

loop performance variable. The adaptive controller yields

approximately 10 dB of peak attenuation near the modal

frequencies of the open-loop system. The open-loop and

closed-loop power spectral densities of z are calculated using

the final 3 seconds of the time history data presented in

Figure 8.
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